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ABSTRACT

This paper introduces a hierarchical Bayesian model for the
reconstruction of hyperspectral images using compressed
sensing measurements. This model exploits known proper-
ties of natural images, promoting the recovered image to be
sparse on a selected basis and smooth in the image domain.
The posterior distribution of this model is too complex to
derive closed form expressions for the estimators of its pa-
rameters. Therefore, an MCMC method is investigated to
sample this posterior distribution. The resulting samples are
used to estimate the unknown model parameters and hyperpa-
rameters in an unsupervised framework. The results obtained
on real data illustrate the improvement in reconstruction qual-
ity when compared to some existing techniques.

Index Terms— Spectral imaging, compressive sampling,
Bayesian reconstruction

1. INTRODUCTION

Compressive spectral imaging (CSI) has been recently receiv-
ing a lot of attention in the signal and image processing com-
munities [1, 2, 3, 4, 5]. CSI consists of recovering the full
spatial and spectral information of a scene from a significantly
undersampled set of random projections acquired by a com-
pressive spectral imager, such as the Coded Aperture Snap-
shot Spectral Imaging (CASSI) [6, 7, 8].

When using a significant undersampling rate, there is an
infinite number of possible images that can be associated with
a particular set of measurements. Thus, it is usual to promote
realistic properties of the image to recover in order to regu-
larize the problem and obtain a unique solution. One of the
most common regularizations consists of enforcing the im-
age of interest to have a sparse representation in a given basis
[9, 10, 11, 12]. Although this technique has shown satisfac-
tory results, the quality of the reconstruction can be further
improved by exploiting additional properties of natural im-
ages such as their important degree of local structure similar-
ity [13, 14].

In this work, we introduce a new hierarchical Bayesian
model for the reconstruction of compressed hyperspectral im-
ages. This model promotes the solution to be sparse in a se-
lected basis and smooth in the image domain. A Gibbs sam-
pler is used to draw samples asymptotically distributed ac-

cording to its posterior distribution. The generated samples
are then used to build estimators of the unknown model pa-
rameters.

The proposed model provides improved reconstruction
quality due to the exploitation of the local structure similarity
of natural images. It also allows the model hyperparame-
ters to be estimated from the observed measurements in an
unsupervised framework (instead of fixing them a-priori as
required by most convex optimization methods [15, 16, 17]).
Finally, the samples generated by the Gibbs sampler can be
used to determine measures of uncertainty for the estimates
such as the estimation variance of confidence intervals.

The paper is organized as follows: Section 2 introduces
the proposed Bayesian model. Section 3 presents the Gibbs
sampler used to generate samples asymptotically distributed
according to the posterior of this model. Experiments con-
ducted with real data are shown in Section 4. Conclusions
and future work are reported in Section 5.

2. PROPOSED METHOD

The CSI inverse problem addressed in this paper can be for-
mulated as follows

y = Φx+ e (1)

where x ∈ RMNL is the lexicographically ordered vector-
ization of an image of size M × N with L spectral bands,
Φ ∈ RP×MNL is the sparse measurement matrix that de-
pends on the compressive sensing imager (see [1, 2, 3, 4] for
more details), e ∈ RP is an additive white Gaussian noise and
y ∈ RP is the observed measurement vector. In this paper,
we concentrate on the CASSI sampler [6, 7, 8], whose sens-
ing matrix Φ has the structure shown in Fig. 1. We propose
to recover x from y by solving the following problem

θ̂ = argmin
θ

( 1

2σ2
n

||Hθ − y||2 + τ ||θ||1 + λ||(B − I)Ψθ||2
)
(2)

where H = ΦΨ, θ ∈ RMNL contains the coefficients of
x in a given basis Ψ ∈ RMNL×MNL (i.e., x = Ψθ) and
B ∈ RMNL×MNL is a weighting matrix (as the one con-
sidered in [14, 18]) associated with a low-pass filter. Note
that the first term in (2) is the data-fidelity term, that the sec-
ond term is a penalty enforcing sparsity of θ and the third
term promotes image smoothness by encouraging each pixel
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Fig. 1. Example of CASSI sensing matrix Φ forM = N = 8,
L = 4 using two shots.

of x to be close to a linear combination of its neighbors. The
model hyperparameters τ and λ adjust the relative importance
of the three terms. In the following section, we show that the
inverse problem (2) is equivalent to the determination of the
maximum a posteriori (MAP) estimator of a Bayesian model
whose likelihood and priors are provided.

2.1. Likelihood

Assuming that the additive noise in (1) is white Gaussian with
variance σ2

n, the distribution of the observation vector is a
Gaussian distribution with mean vector Hθ and covariance
matrix σ2

nIP , i.e.,

f(y|θ, σ2
n) = N

(
y
∣∣∣Hθ, σ2

nIP

)
(3)

where IP is the P × P identity matrix and N denotes the
Gaussian distribution. This likelihood is the Bayesian equiv-
alent of the data-fidelity term previously shown in (2).

2.2. Prior distributions

2.2.1. Image coefficients θ

To promote sparsity in the wavelet domain and smoothness
in the image domain, the following prior distribution is intro-
duced for the image basis coefficients θ

f(θ|λ, τ) ∝ N
(
θ
∣∣0,C/λ)NML∏

i=1

exp (−τ |θi|) (4)

with C−1 = ΨT (B − I)T (B − I)Ψ, and where λ and τ
are two hyperparameters. This prior can be shown to be the
Bayesian equivalent of the regularization terms in (2). To sim-
plify the analysis, it is convenient to define the hyperparame-
ter a = σ2

nτ
2 which transforms the prior to

f(θ|λ, a, σ2
n) ∝ N

(
θ
∣∣0,C/λ)NML∏

i=1

exp

(
−
√

a

σ2
n

|θi|
)
. (5)

It is then easy to show that (5) is the marginal distribu-
tion of the data-augmented density f(θ, δ2|λ, τ), where

δ2 ∈ (R+)NML is a vector of independent latent variables
distributed according to gamma distributions such that (see
[19] for details)

f(δ2|a) =
NML∏
i=1

G
(
δ2i

∣∣∣1, a
2

)
. (6)

The advantage of using this data augmentation scheme is that
the conditional distribution of θ|λ, δ2, σ2

n is much easier to
sample than the conditional distribution of θ|λ, a, σ2

n since

f(θ|λ, δ2, σ2
n) ∝ N

(
θ
∣∣0,C/λ)N(θ∣∣∣0, σ2

n∆
)

(7)

where ∆ ∈ RNML×NML is a diagonal matrix whose ith di-
agonal element is δ2i .

2.2.2. Noise variance σ2
n

The noise variance is assigned a Jeffrey’s prior

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (8)

where 1R+(ξ) = 1 if ξ ∈ R+ and 0 otherwise (indicator
function on R+ ). This choice is very classical when no infor-
mation about a scale parameter is available (see [20]).

2.3. Hyperparameter priors

In order to be able to estimate the hyperparameters a and λ
of a Bayesian model, one can define a hierarchical Bayesian
model defined by hyperparameter priors. The hyperpriors
considered in this work are summarized in this section.

2.3.1. Hyperprior of a

A Jeffrey’s prior is assigned to a to keep the system as non-
informative as possible

f(a) ∝ 1

a
1R+(a). (9)

2.3.2. Hyperprior of λ

A conjugate gamma hyperprior is assigned to λ

f(λ) = G
(
λ
∣∣∣αλ, βλ). (10)

The values of αλ and βλ are chosen to make the hyperprior
non-informative. The values we used for our experiments are
specified in Section 4.

2.4. Posterior distribution

Using the likelihood as well as the parameter and hyperpa-
rameter priors defined in the previous sections, the poste-
rior distribution associated with the proposed hierarchical
Bayesian model is

f(σ2
n,θ, a, λ, δ

2|y) ∝ f(y|θ, σ2
n)f(θ|λ, δ

2, σ2
n) (11)

f(δ2|a)f(σ2
n)f(a)f(λ).
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3. GIBBS SAMPLER

The posterior distribution (11) is intractable, in the sense that
it does not allow closed-form expressions for the Bayesian es-
timators of the its parameters and hyperparameters to be de-
rived. Thus we propose to draw samples distributed according
to (11) using a Markov chain Monte Carlo (MCMC) method.
The generated samples are then used to estimate the unknown
image jointly with the other model parameters and hyperpa-
rameters. More precisely, after an appropriate burn-in period,
the samples associated with a given parameter generated by
the MCMC method are averaged in order to approximate the
minimum mean square error estimator of this parameter. The
MCMC method considered in this paper is a Gibbs sampler,
which generates the unknown variables sequentially accord-
ing to their conditional distributions, as shown in Algorithm 1
(see [20]). Note that the full vector θ can be sampled in a sin-
gle step since it is more efficient than sampling each element
of θ separately (it allows convergence to be reached with a
smaller number of iterations). The corresponding conditional
distributions are shown in Table 1 where GIG, N , G, and IG
are the generalized inverse Gaussian, normal, gamma, and in-
verse gamma distributions (see [19] for details about the GIG
distribution).

Algorithm 1 Gibbs sampler.
Initialize a, σ2

n and λ
Sample θ from its prior distribution
repeat

for i = 1 to N do
Sample δ2i from f(δ2i |θi, σ2

n, a)
end for
Sample θ from f(θ|y, σ2

n, δ
2, λ)

Sample λ from f(λ|θ)
Sample a from f(a|δ2)
Sample σ2

n from f(σ2
n|y,θ, δ

2)
until convergence

δ2i GIG
(

1
2 , a,

θ2i
σ2
n

)
θ N

(
ΣHTy
σ2
n

,Σ
)
,Σ−1 = 1

σ2
n
(HTH +∆−1) + λC−1

λ G
(
NML

2 + αλ,
||(B−I)Ψθ||2

2 + βλ

)
a G

(
NML, ||δ||

2

2

)
σ2
n IG

(
NML+P

2 , 12

[
||y −Hθ||2 +

∑ θ2i
δ2i

])
Table 1. Full conditionals f(δ2i |θi, σ2

n, a), f(θ|y, σ2
n, δ

2, λ),
f(λ|θ), f(a|δ2) and f(σ2

n|y,θ, δ2) associated with (11).

3.1. Sampling considerations

The variables δ2i , λ, a and σ2
n can be easily sampled using

standard generators of random variables. However, sampling

all the elements of θ jointly in a direct manner is not straight-
forward, since the inversion of the precision matrix Σ−1 ∈
RNML×NML becomes intractable even for small hyperspec-
tral images. In order to solve this problem, we propose to
use the sampling technique introduced by Orieux et al [21]
that was proposed to sample from high dimensional multi-
variate Gaussian distributions. Note that the method bypasses
the problem of inverting the precision matrix Σ−1 by using
a perturbation-optimization algorithm. A conjugate gradient
method has been used in this paper to solve the perturbation-
optimization problem.

4. SIMULATION RESULTS

In order to evaluate the performance of the proposed algo-
rithm, experiments were performed on a real hyperspectral
image. The image was acquired using a monochromator with
wavelengths separated by 1nm, more precisely with a CCD
camera AVT Marlin F033B, with 656 × 492 pixels, 24 spec-
tral bands and a pixel pitch of 9.9µm. The experiments were
conducted on a section of 128 × 128 pixels and 8 spectral
bands (from 461nm to 596nm) that was extracted from the
acquired image. Five matrices Φ were calculated, each cor-
responding to a random realization of a CASSI sensing ma-
trix with a different compression ratio P

MNL , more precisely
13%, 26%, 40%, 53%, and 66%. Compressed images were
then generated by multiplying the hypercube by each of the
matrices Φ and adding Gaussian noise to obtain SNR = 25dB.

Four different algorithms were used to recover the hy-
percube from each set of measurements: i) The SpaRSA
optimization algorithm for the LASSO problem (SpaRSA
LASSO) [10], ii) the SpaRSA algorithm for solving the
proposed problem (2) (SpaRSA smooth), iii) the Bayesian
LASSO [22] and iv) the proposed method. Note that algo-
rithms ii and iv estimate the image by solving (2) whereas
algorithms i and iii do not use the smoothing term. Note also
that algorithms i and ii require to set a priori values of σ2

n,
τ and λ, e.g., by using cross-validation, whereas algorithms
iii and iv are implemented in a Bayesian framework, that
estimates is own hyperparameters from the observed data.

The basis representation Ψ used in all experiments is de-
fined as the Kronecker product of three bases Ψ = Ψ1 ⊗
Ψ2⊗Ψ3, where the combination Ψ1⊗Ψ2 is the 2D-Wavelet
Symmlet 8 basis and Ψ3 is the cosine basis. For algorithms
ii and iv, B was chosen as a low-pass Gaussian filter with
radius 3 and standard deviation 0.6. Finally, the hyperprior
parameters were fixed by cross validation to αλ = 1 × 10−3

and βλ = 10× 10−6.
Table 2 shows the PSNRs of the reconstructed images

obtained for different compression ratios of Φ and for the
four algorithms. We can observe that the algorithms using
the smoothness term have a performance that is up to 2dB
higher than the ones that do not. Note that the optimization
algorithms yield slightly better results than their Bayesian
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counterparts. We believe that this improved performance is
due to the fact that the hyperparameters in the optimization
algorithms have been manually set to optimize the PSNR
whereas these hyperparameters are estimated from the data
by the Bayesian algorithms. Fig. 2 illustrates the seventh
spectral band recovered by the algorithms when applied to
the measurements corresponding to a 53% compression ra-
tio. The algorithms that include the smoothness term clearly
provide results that are visually less noisy.

Compression ratio 13% 26% 40% 53% 66%
Proposed method 24.4 27.1 28.6 29.6 30.4
Bayesian LASSO 22.9 26.0 27.5 28.4 28.4
SpaRSA smooth 25.2 27.1 28.8 29.7 30.6
SpaRSA LASSO 23.5 26.8 28.5 29.4 30.4

Table 2. PSNRs [dB] obtained by the different algorithms.

(a) (b)30.18 dB 28.79 dB

30.15 dB 29.79 dB

Fig. 2. Seventh spectral band of the image: (Left) Ground
truth. Reconstruction results for: (top center) the pro-
posed method, (bottom center) SpaRSA Smooth, (top right)
Bayesian LASSO and (bottom right) SpaRSA LASSO.
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Fig. 3. Spectral signature for pixel #(20, 33).

Examples of reconstructions along the spectral axis for
spatial pixel #(20, 33) (selected randomly) are compared in
Fig. 3. The methods that use the smoothing term are closer

Compression ratio 13% 26% 40% 53% 66%
Proposed method 10.85 10.51 9.79 9.21 9.05
Bayesian LASSO 25.90 18.21 15.06 13.10 13.10

Table 3. Mean standard deviations of the estimations of x.

Computational cost Iterations Seconds
Proposed method 500 20× 103

Bayesian LASSO 750 18× 103

SpaRSA smooth 300 316
SpaRSA LASSO 300 42

Table 4. Computational costs for a 53% compression ratio.

to the ground truth. In addition, the Bayesian methods are
able to calculate the standard deviation (SD) of their estima-
tions, which is included in the graph showing that the refer-
ence is within their 2 SD error margin. Table 3 shows the
values of SD for both Bayesian approaches. The proposed
method presents significantly lower values of SD, providing
more confident estimates than the Bayesian LASSO.

Finally, Table 4 shows the computational costs obtained
with the algorithms for measurements associated with a 53%
compression ratio. All algorithms were ran on a personal
computer with an Intel Core i7-4790 CPU 3.60GHz proces-
sor and 32GB of memory. Algorithms were implemented us-
ing MATLAB with MEX files written in C. The algorithms
based on MCMC methods are significantly slower than the
ones based on optimization, as usual. However, it is important
to note that optimization algorithms require to have their hy-
perparameters manually adjusted, and thus have to be run sev-
eral times to find the optimal solution. Conversely, Bayesian
methods can estimate their hyperparameters jointly with the
recovered image coefficients using a single run.

5. CONCLUSION

This paper introduced a hierarchical Bayesian model to solve
the compressive spectral imaging problem by promoting the
image to be sparse in a given basis and smooth in the spatial
domain. A Gibbs sampler was developed to draw samples
asymptotically distributed according to the corresponding
posterior, sampling the full image in a single step to acceler-
ate the convergence speed. The generated samples were used
to calculate the Bayesian estimators of the unknown image.
The resulting algorithm was compared to other reconstruction
methods for a hyperspectral image compressed with different
compression ratios. Our experiments showed that including a
spatial smoothing term can improve the PSNR of the recov-
ered image up to 2dB. Future work includes the introduction
of different regularization terms to promote smoothness of
the recovered image, such as total variation. It would also
be interesting to analyze the effect of small uncertainties af-
fecting the sensing matrix on the performance of the image
reconstruction algorithm.
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