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Abstract

This paper studies a new Bayesian optimization algorithm for fusing hyperspectral and multispectral

images. The hyperspectral image is supposed to be obtained by blurring and subsampling a high spatial

and high spectral target image. The multispectral image is modeled as a spectral mixing version of the

target image. By introducing appropriate priors for parameters and hyperparameters, the fusion problem

is formulated within a Bayesian estimation framework, which is very convenient to model the noise

and the target image. The high spatial resolution hyperspectral image is then inferred from its posterior

distribution. To compute the Bayesian maximum a posterioriestimator associated with this posterior,

an alternating direction method of multipliers within block coordinate descent algorithm is proposed.

Simulation results demonstrate the efficiency of the proposed fusion method when compared with several

state-of-the-art fusion techniques.
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I. INTRODUCTION

Image fusion has been a very active research topic during recent years in remote sensing

[1]. A conventional fusion problem for remote sensing images is the pansharpening, which

consists of fusing a high spatial resolution panchromatic (PAN) image and a low spatial resolution

multispectral (MS) image. Recently, hyperspectral (HS) imaging, which consists of acquiring a

same scene in several hundreds of contiguous spectral bands, has opened a new range of relevant

applications, such as target detection [2] and spectral unmixing [3]. To take advantage of the good

spectral properties of HS images, the problem of fusing HS and PAN images has been explored

[4]. Many existing MS pansharpening algorithms have been adapted to HS pansharpening [5],

[6]. Some methods have also been specifically designed to theHS pansharpening problem

such as [7]–[9]. Conversely, the fusion of MS and HS images has been considered in fewer

works. It is a challenging problem since the data to be processed are of high dimensionality

and both spatial and spectral information is contained in multi-band images. Note that a lot of

pansharpening methods, such as component substitution [10] and relative spectral contribution

[11] are inapplicable or inefficient for the HS/MS fusion problem. Since the fusion problem is

generally ill-posed, Bayesian inference can offer a convenient way to regularize the problem

by defining an appropriate prior distribution for the scene of interest. Following this strategy,

Hardie et al. proposed a Bayesian estimator for fusing the co-registeredhigh spatial-resolution

MS and high spectral-resolution HS images [12]. The estimator of [12] was implemented by

Zhanget al. in the wavelet domain to improve denoising performance [13]. However, in both

of these two works, the spectral response of MS sensors is notfully exploited. More recently,

a hierarchical Bayesian model, explicitly taking advantage of the MS sensor spectral response,

was proposed in [14], [15]. The Bayesian estimators associated with this model were computed

from samples generated from the target posterior distribution using Markov chain Monte Carlo

(MCMC) methods. However, Monte Carlo based methods are quite computationally intensive,

which makes the implementation time-consuming.

In this work, we propose to address the problem of fusing HS and MS images following

the Bayesian framework initially proposed in [14], with an optimization method. Based on the
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posterior distribution of the unknown parameters, we propose to compute the MAP estimators of

the unknown scene and the noise variances by using a block coordinate descent (BCD) method

[16]. This descent method includes an alternating direction method of multipliers (ADMM)

step. The ADMM step differs from the gradient method by introducing variable splitting and an

augmented Lagrangian, which can solve the optimization problem analytically and alternately

instead of descending along gradient direction.

The paper is organized as follows. Section II formulates thefusion problem. Section III

introduces the hierarchical Bayesian model of [14] defined by the joint posterior distribution

of the unknown image, its hyperparameters and the noise variances. Section IV studies a BCD

algorithm based on an ADMM step to maximize the joint posterior distribution of the proposed

fusion model. Simulation results are presented in Section V. Conclusions are reported in Section

VI.

II. PROBLEM FORMULATION

Fusing HS and MS images consists of estimating an unknown high-spatial and high-spectral

resolution image from a high-spatial low-spectral MS imageand a low-spatial high-spectral HS

image. The HS imageYH is supposed to be a blurred down-sampled and noisy version ofthe

target imageX whereas the MS imageYM is a spectrally degraded and noisy version ofX. As

a consequence, the observation models associated with the HS and MS images can be written

as [12]

YH = XBS+NH

YM = RX+NM

(1)

where X = [x1, · · · ,xn] ∈ R
mλ×n is the unknown full resolution image composed ofmλ

bands andn pixels,YH ∈ R
mλ×m is the HS image composed ofmλ bands andm pixels and

YM ∈ R
nλ×n is the MS image composed ofnλ bands andn pixels. In (1),B ∈ R

n×n is a

cyclic convolution operator acting on the bands that modelsthe point spread function of the

HS sensor andS ∈ R
n×m is a downsampling matrix. The matrixR ∈ R

nλ×mλ models the

spectral response of the MS sensor. In this work, the noise matricesNH = [nH,1, · · ·nH,m] and
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NM = [nM,1, · · ·nM,n] are assumed to be distributed according to matrix Gaussian distributions

[17]

NH ∼MNmλ,m(0mλ,m,ΛH, Im)

NM ∼MN nλ,n(0nλ,n,ΛM, In)

whereI c is thec× c identity matrix,0a is thea× 1 vector of zeros, and the diagonal matrices

ΛH = diag(s2H,1, · · · , s
2
H,mλ

) ∈ R
mλ×mλ andΛM = diag(s2M,1, · · · , s

2
M,nλ

) ∈ R
nλ×nλ correspond

to band-dependent noise variances. The fusion problem consists of estimating the high-spatial

resolution HS imageX from the two available imagesYH andYM using the observation model

(1). The proposed estimation scheme relies on a hierarchical Bayesian model introduced in

Section III.

III. H IERARCHICAL BAYESIAN MODEL

A. Dimension Reduction

Because the HS bands are spectrally correlated, the HS vector xi usually lives in a space whose

dimension is much smaller thanmλ [3]. More precisely, the HS image can be rewritten asX =

VU whereV ∈ R
mλ×m̃λ has normalized orthogonal columns andU ∈ R

m̃λ×n is the projection

of X onto the subspace spanned by the columns ofV. Incorporating this decomposition of the

HS imageX into the observation model (1) leads to

YH = VUBS+NH

YM = RVU+NM.
(2)

Note thatV is a full-column rank matrix whose rows span the spaceR
m̃λ×1. In this work, we

assume that the signal subspace has been previously identified, e.g. obtained after conducting a

principal component analysis of the HS data. Then, the considered fusion problem is solved in

this lower-dimensional subspace, by estimating the projected imageU.
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B. Likelihood and prior distributions

Using the statistical properties of the noise matricesNH andNM, the distributions ofYH and

YM are matrix Gaussian distributions, i.e.,

YH|U,ΛH ∼MNmλ,m(VUBS,ΛH, Im)

YM|U,ΛM ∼MN nλ,n(RVU,ΛM, In).
(3)

The unknown parameter vectorθ associated with (3) is composed of the projected sceneU

and the noise variancess2 =
{
s2H,1, · · · , s

2
H,mλ

, s2M,1, · · · , s
2
M,nλ

}
, i.e.,θ = {U, s2}. Appropriate

prior distributions assigned to the unknown parameters arepresented below.

Scene prior: Independent Gaussian prior distributions are assigned tothe projected vectorsui

(i = 1, · · · , n), i.e.,

ui|µui
,Σ ∼ N

(
µ

ui
,Σ

)
. (4)

The Gaussian prior has the advantage of being a conjugate distribution relative to the likelihood

function, leading to simple computations of the Bayesian estimators derived from the posterior

distribution of interest and has been used successfully in many image processing applications

including image denoising [18] and image restoration [19].

The meansµ
ui

are fixed using the interpolated HS image in the subspace of interest following

the strategy of [12] andΣ is an unknown covariance matrix. The hyperparameterΣ is related

to the regularization parameter of a penalized optimization problem, which adjusts the trade-

off between the data-fitting term (likelihood) and the penalty term (prior). Instead of fixingΣ a

priori, we propose to estimate it jointly withU from the data by defining a hierarchical Bayesian

model, which requires to define prior for this hyperparameter.

Hyperparameter prior : Assigning a conjugate inverse-Wishart (IW) distributionto the covari-

ance matrixΣ has provided interesting results in the signal/image processing literature. Following

these works, an IW distribution has been chosen, i.e.,

Σ ∼ IW(Ψ, η) (5)
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where(Ψ, η)T are fixed to provide a reasonable prior forΣ.

Noise variance priors: Conjugate inverse-gamma distributions are chosen as prior distributions

for the noise variancess2H,i ands2M,j

s2H,i|νH, γH ∼ IG
(
νH
2
, γH

2

)
, i = 1, · · · , mλ

s2M,i|νM, γM ∼ IG
(
νM
2
, γM

2

)
, i = 1, · · · , nλ.

(6)

These conjugate distributions allow one to obtain closed-form expressions for the conditional

distributionsp (s2|YH,YM) of the noise variances. Other motivations for using this kind of prior

distribution can be found in [20]. In this work, we assume thevariancess2H,i ands2M,j area priori

independent since the noise properties highly depend on thesensor characteristics.

C. Posterior distribution

DefiningY = {YH,YM} as the set of observed images, the joint posterior distribution of the

unknown parameters and hyperparameters can be computed as

p (θ,Σ|Y) ∝ p (Y |θ) p (θ|Σ) p (Σ)

∝ p (YH|θ) p (YM|θ) p (θ|Σ) p (Σ)

where the parameter prior is

p (θ|Σ) =

n∏

l=1

p (ul|Σ)

mλ∏

i=1

p
(
s2H,i

) nλ∏

j=1

p
(
s2M,j

)
.

In practice, it is difficult to judge the ill-posed problem iswell regularized or not. If the prior

or hyperprior is too flat or non-informative, the ill-posedness may remain in the regularized

optimization. According to Bayesian methodology [21, Section 5.2], ‘it is often practical to start

with a simple, relatively non-informative prior distribution on parameters and seek to add more

prior information if there remains too much variation in theposterior distribution. This adjustment

can be done by tuning the parameters of prior distribution, i.e., (νH, γH) for s2H,i, (νM, γM) for

s2M,i and (Ψ, η) for Σ. Generally, more informative prior can regularize the ill-posed problem

better and lead to more robust while more subjective results.
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The two classical estimators considered within a Bayesian estimation framework are the

minimum mean square error (MMSE) and maximum a posteriori (MAP) estimators. However, for

the considered fusion problem, deriving closed-form expressions for these estimators is difficult.

An alternative for approximating the MMSE estimator consists of resorting to Monte Carlo

integration. However, this strategy is computationally intensive due to the high dimensionality of

the problem. Instead, in this work, an optimization algorithm is designed to maximizep (θ,Σ|Y)

providing the MAP estimator of (θ,Σ). The negative logarithm of the joint posterior distribution

p (θ,Σ|Y) is given as

L(U, s2,Σ) = − log p (θ,Σ|Y) =

− log p (YH|θ)− log p (YM|θ)−
n∑

l=1

log p (ul|Σ)

−
mλ∑
i=1

log p
(
s2H,i

)
−

nλ∑
j=1

log p
(
s2M,j

)
− log p (Σ)− C

(7)

where C is a constant. The MAP estimator of the unknown model parameters can then be

obtained by minimizing the functionL(U, s2,Σ) with respect toU, s2 andΣ. To solve this

multivariate optimization problem, we propose to use a BCD algorithm whose details are given

in the following section.

IV. BLOCK COORDINATE DESCENTMETHOD

BCD consists of optimizing with respect to (w.r.t.) the unknown parameters iteratively, which

can be easily implemented in the considered fusion problem (see Algorithm 1). Contrary to

gradient based optimization methods, BCD does not require any stepsize tuning, which makes

the algorithm more usable by practitioners. BCD is known to converge to a stationary point of

the target cost function to be optimized provided that this target function has a unique minimum

point with respect to each variable [16, Prop. 2.7.1], whichis the case for the criterion in (7).

The three steps of the BCD algorithm are detailed below.
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Algorithm 1: Block coordinated descent algorithm

Input : YH, YM, m̃λ, B, S, R, s20, Σ0

1 for t = 1, 2, . . . to stopping rule do
2 Ut = argminU L(U, s2

t−1,Σt−1) ; /* See Section IV-A */
3 s2t = argmin

s
2 L(Ut, s

2,Σt−1) ; /* See Section IV-B */
4 Σt = argminΣ L(Ut, s

2
t ,Σ) ; /* See Section IV-C */

5 end
Output : Û (Projected high resolution HS image)

A. Optimization with respect to U

The optimization w.r.t. toU consists of minimizing

LU(U) = 1
2
‖Λ

− 1

2

H (YH −VUBS) ‖2F+

1
2
‖Λ

− 1

2

M (YM −RVU) ‖2F + 1
2
‖Σ− 1

2 (U− µU) ‖
2
F .

(8)

DeterminingU which makes the gradient ofLU(U) equal to zero is not straightforward, mainly

due to left- and right-side linear operators applied toU and the size of the matrices involved in

the computation. In fact, it is equivalent to solve the following Sylvester equation [22]

V
T
Λ

−1
H VUBS (BS)T +

(
(RV)TΛ−1

M RV+Σ
−1
)
U

= V
T
Λ

−1
H YH (BS)T + (RV)TΛ−1

M YM +Σ
−1µ

U
.

(9)

As the Schur decomposition of matrixBS (BS)T is not easy achieved, the analytic solution of

the Sylvester equation is almost not solvable.

Fortunately, this kind of optimization problem has been solved efficiently by the ADMM

method [23]. After defining the splittingsV1 = UB, V2 = U andV3 = U and the respective

scaled Lagrange multipliersG1,G2,G3, the augmented Lagrangian associated with (8) can be
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written as

LU(U,V1,V2,V3,G1,G2,G3) =

1

2

∥∥H− 1

2 (YH −VV1S)
∥∥2

F
+

µ

2

∥∥UB−V1 −G1

∥∥2

F
+

1

2

∥∥Λ− 1

2

M (YM −RVV2)
∥∥2

F
+

µ

2

∥∥U−V2 −G2

∥∥2

F
+

1

2

∥∥Σ− 1

2 (µ
U
−V3)

∥∥2

F
+

µ

2

∥∥U−V3 −G3

∥∥2

F
.

The iterative update ofU,V1,V2,V3,G1,G2,G3 can be achieved with the split augmented

Lagrangian shrinkage algorithm (SALSA) [24], [25], which is an instance of the ADMM algo-

rithm with convergence guaranty. The detailed implementation of the SALSA scheme for the

fusion problem are summarized in Algorithm 2.

Algorithm 2: SALSA step

1 Define: Ds ∈ {0, 1}n such thatDs(i) =

{
1 if pixel i is sampled,
0 otherwise;

2 Initialization : chooseµ > 0, U(0),V(0)
1 ,V(0)

1 ,V(0)
1 ,V(0)

1 , D(0)
1 , D(0)

2 ,D(0)
3

3 for k = 0, 1, . . . to stopping rule do
/* optimize w.r.t U (light with FFT) */

4 U
(k+1) ←

[
(V

(k)
1 +G

(k)
1 )BT + (V

(k)
2 +G

(k)
2 ) + (V

(k)
3 +G

(k)
3 )

] (
BB

T + 2I
)−1

;

/* optimize w.r.t V1 */

5 ν1 ← (U(k+1)
B−G

(k)
1 );

/* Update V1 according to downsampling */

6 V
(k+1)
1 (:,Ds)←

(
V

T
Λ

−1
H V + µI

)−1
(VT

Λ
−1
H YH + ν1(:,Ds));

7 V
(k+1)
1 (:, 1−Ds)← ν1(:, 1−Ds) ;

/* optimize w.r.t V2 */

8 ν2 ← (U(k+1) −G
(k)
2 );

9 V
(k+1)
2 ←

(
V

T
R

T
Λ

−1
M RV+ µI

)−1
(VT

R
T
Λ

−1
M YM + µν2);

/* optimize w.r.t V3 */

10 ν3 ← (U(k+1) −G
(k)
3 );

11 V
(k+1)
3 ←

(
Σ

−1 + µI
)−1 (

Σ
−1µU + µν3

)
;

/* update Lagrange multipliers */

12 G
(k+1)
1 ← (−ν1 +V

(k+1)
1 );

13 G
(k+1)
2 ← (−ν2 +V

(k+1)
2 );

14 G
(k+1)
3 ← (−ν3 +V

(k+1)
3 );

15 end
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B. Optimization with respect to s2

The optimization w.r.t.s2 is decomposed into (mλ+nλ) parallel optimizations w.r.t.
{
s2H,j

}mλ

j=1

and
{
s2M,j

}nλ

j=1
thanks to the criterion separability

L
s
2(s2) =

(
νH+n

2
+ 1

) mλ∑
i=1

log s2H,i +
mλ∑
i=1

γH+‖(YH−VUt−1BS)i‖
2

F

2s2
H,i

(
νM+n

2
+ 1

) nλ∑
j=1

log s2M,j +
nλ∑
j=1

γM+‖(YM−RVUt−1)j‖
2

F

2s2
M,j

.

Computing the derivatives ofL
s
2(s2) w.r.t. s2H,i and s2M,j and forcing them to be zero leads to

the update rules

s2H,i =
1

νH+n+2
(γH + ‖ (YH −VUt−1BS)i ‖

2
F )

s2M,j =
1

νM+n+2

(
γM + ‖ (YM −RVUt−1)j ‖

2
F

)
.

C. Optimization with respect to Σ

Fixing U ands2, the objective function is

LΣ(Σ) = η+m̃λ+n+1
2

log |Σ|

+1
2
tr
((∑n

i=1

(
ui − µ

ui

) (
ui − µ

ui

)T
+Ψ

)
Σ

−1
)

wheretr(·) is the trace operator. The maximum of this function is obtained for

Σt =
(Ut−1 − µU) (Ut−1 − µU)

T +Ψ

η + m̃λ + n+ 1
.

D. Relationship with the MCMC method of [14]

It is worthy to note that the proposed optimization procedure is structured similarly to the

Gibbs sampler developed in [14] to solve the fusion problem.Indeed, the BCD method can

be interpreted as a deterministic counterpart of the Gibbs sampler, consisting of replacing the

stochastic sampling procedures according to the conditional posterior distributions of the target

distribution by iterative evaluations of their modes. However, the BCD method requires much

fewer computation resources when compared with Monte Carlo-based methods, which is crucial

for practical implementations.
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V. SIMULATION RESULTS

This section presents numerical results obtained with the proposed fusion algorithm. The

reference image, considered here as the high spatial and high spectral resolution image to be

recovered, is an HS image acquired over Moffett field, CA, in 1994 by the JPL/NASA airborne

visible/infrared imaging spectrometer (AVIRIS). This image is of size128×64 and was initially

composed of224 bands that have been reduced to177 bands after removing the water vapor

absorption bands. A composite color image of the scene of interest is shown in the top right

panel of Fig. 2.

A. Simulation scenario

We propose to reconstruct the reference HS imageX from two HS and MS imagesYH and

YM. First, a high-spectral and low-spatial resolution imageYH has been generated by applying

a 5 × 5 averaging filter and by down-sampling every4 pixels in both vertical and horizontal

direction for each band ofX . Second, a7-band MS imageYM has been obtained by filtering

X with the LANDSAT-like reflectance spectral responses [26].The HS and MS images are both

contaminated by additive centered Gaussian noises. The simulations have been conducted with

SNRH,j = 35dB for the first127 bands and SNRH,j = 30dB for the remaining50 bands of the

HS image, where SNRH,j = 10 log
(

‖[XBS]j‖
2

F

s2
H,j

)
. For the MS image, the noise level has been

adjusted to obtain SNRM,j = 10 log
(

‖[RX]j‖
2

F

s2
M,j

)
= 30dB in all the spectral bands. The observed

HS and MS images are shown in the top left and right of Fig. 2 (note that the HS image has

been interpolated for better visualization and that the MS image has been displayed using an

arbitrary color composition). To learn the projection matrix V, a PCA has been conducted, i.e.,

the m̃λ = 10 most discriminant vectors associated with the10 largest eigenvalues of the sample

covariance matrix of the HS image have been computed. These10 vectors lead to99.89% of

the information contained in the HS image.
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B. Hyperparameter Selection

Similarly to the Monte Carlo-based approach in [14], the proposed algorithm requires to tune

the hyperparametersγH and νH (γM and νM, resp.) associated with the HS (MS, resp.) noise

variance priors, andΨ and η associated with the image covariance matrix prior. The strategy

adopted to adjust these hyperparameters is detailed in whatfollows.

The noise variance hyperparameters can be tuned based on some prior knowledge. Indeed,

since the SNRH,i are approximately known in practice, rough estimations ofs2H,i can be obtained

as s̃2H,i =
‖(YH)i‖

2

F

10
SNRH,i/10

. Following a 1st-order moment technique, these rough estimations can be

used to adjust the means of the prior in (6), leading toγH = (νH − 2) s̃2H,i. A similar strategy is

adopted to defineγM.

The values ofνH andνM are related to the variances of the inverse-gamma distributions (6),

since var
[
s2·,i

]
= 2γ2

·

(ν·−2)2(ν·−4)
. It has been observed that assigning non-informative priors for both

noise variances of the HS and MS images (i.e., fixingνH andνM to both small values) lead to

poor fusion results, since these priors are not sufficientlyinformative to regularize the ill-posed

problem. In this work, informative priors fors2M,j have been chosen by fixingνM = 10n and

flat priors fors2H,j have been chosen by fixingνH = 3.

The prior distribution assigned toΣ depends on the parametersΨ and η. As there is no

available prior knowledge aboutΣ, the two parametersη andΨ have been chosen in order to

obtain a non-informative prior forΣ. More precisely,η = m̃λ + 3 andΨ = (η + m̃λ + 1) I m̃λ
.

C. Fusion performance

To evaluate the quality of the proposed fusion strategy, three image quality measures have been

investigated. Referring to [13], [14], the root mean squareerror (RMSE), the averaged spectral

angle mapper (SAM) and the universal image quality index (UIQI) are used as quantitative

measures. The RMSE is defined by the distance between the estimated and reference images,

while the definitions of SAM and UIQI can be found in [13]. The smaller RMSE and SAM, the

better the fusion. The larger UIQI, the better the fusion.

The experiments compare the proposed algorithm with three state-of-the-art fusion algorithms
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[12]–[14]. Note that the fusion method in [14] can be considered as the Monte Carlo-based

counterpart of the proposed method, since both methods share the same hierarchical Bayesian

model. Results obtained with these algorithms are depictedin Fig. 2 and quantitative results are

reported in Table I. These results show that the proposed method provides better results than the

methods of [12], [13] and competitive results when comparedwith the method in [14]. However,

as observed by comparing the execution times reported in Table I, the proposed optimization

algorithm is significantly faster than the method of [14].

The estimation of noise variances for both HS bands and MS bands are shown in Fig. 3. These

results show that the noise variances for different bands can be tracked with tolerant discrepancy.

VI. CONCLUSION

This paper proposed to maximize the posterior distributionassociated with a hierarchical

Bayesian model for fusing multispectral and hyperspectralimages using a block coordinate

descent (BCD) method. The high spatial and high spectral resolution image to be recovered was

defined in a lower-dimensional subspace, identified by a PCA applied to the hyperspectral image.

The joint optimization was conducted iteratively with respect to the image to be recovered,

the noise variances and the image prior covariance matrix. One particularity of the proposed

BCD algorithm was to involve an ADMM step for estimating the unknown image. Numerical

experiments showed that the proposed method compares competitively with other state-of-the-art

methods, with the great advantage of reducing the computational complexity when compared

with a Monte Carlo-based counterpart method. It is interesting to note that recently the proposed

framework has been successfully used to incorporate a sparse prior [27]. A related acceleration

to achieve fast fusion is also noteworthy [28].
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FIGURES 17

Fig. 2. Fusion results. Top, left: HS image. Top, middle: MS image. Top, right: Reference image. Middle, 1: MAP estimator[12].
Middle, 2: Wavelet MAP estimator [13]. Middle, 3: MMSE estimator. Middle, 4: Proposed method. Bottom: The corresponding
RMSE maps (More black, smaller errors; more white, larger errors).
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Fig. 3. Noise variances and their MMSE estimates. Top: HS Image (SNR2 = 30dB). Bottom: MS Image (SNR1 = 30dB).
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TABLE I
PERFORMANCE OF THE FUSION METHODS: RSNR (×10

−2), UIQI, SAM (◦) AND TIME (SECOND).

Methods RMSE UIQI SAM Time
Hardie [12] 6.96 0.9932 5.15 3
Zhang [13] 5.68 0.9956 4.22 72

MCMC [14] 5.06 0.9971 3.73 6228
Proposed 5.10 0.9971 3.74 96


