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Abstract

This paper studies a new Bayesian optimization algoritnnfufsing hyperspectral and multispectral
images. The hyperspectral image is supposed to be obtajnbllilsing and subsampling a high spatial
and high spectral target image. The multispectral imageddeted as a spectral mixing version of the
target image. By introducing appropriate priors for pareereand hyperparameters, the fusion problem
is formulated within a Bayesian estimation framework, vhis very convenient to model the noise
and the target image. The high spatial resolution hypetsgdémage is then inferred from its posterior
distribution. To compute the Bayesian maximum a postelstimator associated with this posterior,
an alternating direction method of multipliers within bkocoordinate descent algorithm is proposed.
Simulation results demonstrate the efficiency of the preddasion method when compared with several

state-of-the-art fusion techniques.
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I. INTRODUCTION

Image fusion has been a very active research topic duringntegears in remote sensing
[1]. A conventional fusion problem for remote sensing inage the pansharpening, which
consists of fusing a high spatial resolution panchrom&#d\) image and a low spatial resolution
multispectral (MS) image. Recently, hyperspectral (HSagmg, which consists of acquiring a
same scene in several hundreds of contiguous spectral Jeaslepened a new range of relevant
applications, such as target detection [2] and spectralxingi[3]. To take advantage of the good
spectral properties of HS images, the problem of fusing HERAN images has been explored
[4]. Many existing MS pansharpening algorithms have beeaptati to HS pansharpening [5],
[6]. Some methods have also been specifically designed taH®gpansharpening problem
such as [7]-[9]. Conversely, the fusion of MS and HS images lbeen considered in fewer
works. It is a challenging problem since the data to be psmmbsre of high dimensionality
and both spatial and spectral information is contained ittirband images. Note that a lot of
pansharpening methods, such as component substitutipraftDrelative spectral contribution
[11] are inapplicable or inefficient for the HS/MS fusion plem. Since the fusion problem is
generally ill-posed, Bayesian inference can offer a comr@nway to regularize the problem
by defining an appropriate prior distribution for the scerienterest. Following this strategy,
Hardieet al. proposed a Bayesian estimator for fusing the co-registbigial spatial-resolution
MS and high spectral-resolution HS images [12]. The estmaf [12] was implemented by
Zhanget al. in the wavelet domain to improve denoising performance.[EHjwever, in both
of these two works, the spectral response of MS sensors ifutiptexploited. More recently,
a hierarchical Bayesian model, explicitly taking advaetad the MS sensor spectral response,
was proposed in [14], [15]. The Bayesian estimators astatiaith this model were computed
from samples generated from the target posterior distabuising Markov chain Monte Carlo
(MCMC) methods. However, Monte Carlo based methods aree qu@mputationally intensive,
which makes the implementation time-consuming.

In this work, we propose to address the problem of fusing H& IS images following

the Bayesian framework initially proposed in [14], with aptinization method. Based on the



posterior distribution of the unknown parameters, we psepo compute the MAP estimators of
the unknown scene and the noise variances by using a blockinate descent (BCD) method
[16]. This descent method includes an alternating directizethod of multipliers (ADMM)
step. The ADMM step differs from the gradient method by idtroing variable splitting and an
augmented Lagrangian, which can solve the optimizatiomlpro analytically and alternately
instead of descending along gradient direction.

The paper is organized as follows. Section Il formulates firgon problem. Section llI
introduces the hierarchical Bayesian model of [14] defingdth® joint posterior distribution
of the unknown image, its hyperparameters and the noisan@es. Section IV studies a BCD
algorithm based on an ADMM step to maximize the joint postedistribution of the proposed
fusion model. Simulation results are presented in Sectio@anclusions are reported in Section

VI.

[I. PROBLEM FORMULATION

Fusing HS and MS images consists of estimating an unknowmspatial and high-spectral
resolution image from a high-spatial low-spectral MS image a low-spatial high-spectral HS
image. The HS imag&’y is supposed to be a blurred down-sampled and noisy versiomeof
target imageX whereas the MS imag¥ ), is a spectrally degraded and noisy versionXofAs
a conseqguence, the observation models associated withShanH MS images can be written

as [12]

Yu =XBS+ Ny
(1)

where X = [z,---,x,] € R™*" is the unknown full resolution image composed 1of,
bands and: pixels, Yy € R™*™ is the HS image composed of, bands andn pixels and
Yy € R™*™ is the MS image composed of, bands andu pixels. In (1),B € R"*" is a
cyclic convolution operator acting on the bands that modeds point spread function of the
HS sensor andd € R™™ is a downsampling matrix. The matriR € R™*™* models the

spectral response of the MS sensor. In this work, the noigeceaNy = [ny 1, - - - ny,,| and



Ny = [np g, - - -y,] @re assumed to be distributed according to matrix Gausssribdtions

[17]
NH ~ MNmA’m(Om)\,maAHJm)

NM ~ MNYL)\JL(OH)\JH AM7 In)

wherel.. is thec x ¢ identity matrix, 0, is thea x 1 vector of zeros, and the diagonal matrices
Ay = diag(sf -+, St ) € R™7 ™ and Ay = diag(syy -+, Sk, ) € R™*™ correspond
to band-dependent noise variances. The fusion problemistersf estimating the high-spatial
resolution HS imag& from the two available image¥y and Y, using the observation model
(1). The proposed estimation scheme relies on a hieratcBagesian model introduced in

Section IlI.

[1l. HIERARCHICAL BAYESIAN MODEL

A. Dimension Reduction

Because the HS bands are spectrally correlated, the HSrveatsually lives in a space whose
dimension is much smaller than, [3]. More precisely, the HS image can be rewrittenXas-
VU whereV € R™*™ has normalized orthogonal columns alide R™*" is the projection
of X onto the subspace spanned by the column¥ ofncorporating this decomposition of the

HS imageX into the observation model (1) leads to

Yuv = RVU + Ny

Note thatV is a full-column rank matrix whose rows span the sp&ée*!. In this work, we
assume that the signal subspace has been previously idengfg. obtained after conducting a
principal component analysis of the HS data. Then, the densd fusion problem is solved in

this lower-dimensional subspace, by estimating the ptegeonageU.



B. Likelihood and prior distributions

Using the statistical properties of the noise matridgs and Ny, the distributions ofY'y and

Y are matrix Gaussian distributions, i.e.,

Yu|U, Ay ~ MN o (VUBS, Ay, 1)
Yu|U, Ayt ~ MN, o(RVU, Ay, 1),

3)

The unknown parameter vectér associated with (3) is composed of the projected sdene
and the noise variance$ = {sf |, -+, 5%, , 5315 » S, 1o -€., 0 = {U, s*}. Appropriate

prior distributions assigned to the unknown parametergezeented below.

Scene prior. Independent Gaussian prior distributions are assignebteqrojected vectors;
(t=1,---,n),ie.,

The Gaussian prior has the advantage of being a conjugdtédi®on relative to the likelihood
function, leading to simple computations of the Bayesiamregors derived from the posterior
distribution of interest and has been used successfullyanymmage processing applications
including image denoising [18] and image restoration [19].

The meang.,,. are fixed using the interpolated HS image in the subspaceeareist following
the strategy of [12] an& is an unknown covariance matrix. The hyperparam&ias related
to the regularization parameter of a penalized optimizapeoblem, which adjusts the trade-
off between the data-fitting term (likelihood) and the péna&trm (prior). Instead of fixing= a
priori, we propose to estimate it jointly with from the data by defining a hierarchical Bayesian
model, which requires to define prior for this hyperparamete
Hyperparameter prior : Assigning a conjugate inverse-Wishart (IW) distributitmnthe covari-
ance matrix3: has provided interesting results in the signal/image msiog literature. Following

these works, an IW distribution has been chosen, i.e.,

X ~IW(P,n) (5)



where (¥, )" are fixed to provide a reasonable prior 6t
Noise variance priors Conjugate inverse-gamma distributions are chosen as gistributions

: : 5
for the noise variancesy; ; and sy, ;

SIQFI,i‘VH77HNIg (VTH,VTH)’Z:L My (6)
SIQ\A,i‘VM77M NIg (%7%) ,7,- = 1’ , M)

These conjugate distributions allow one to obtain closedifexpressions for the conditional
distributionsp (s*| Yy, Yyr) of the noise variances. Other motivations for using thisllof prior
distribution can be found in [20]. In this work, we assumevhgancess;; ; andsy; ; area priori

independent since the noise properties highly depend osehsor characteristics.

C. Posterior distribution

Defining = {Yy, Yu} as the set of observed images, the joint posterior distabudf the

unknown parameters and hyperparameters can be computed as

p(0,2]Y) o p(YO)p(0]X)p (%)
o8 p(YH‘O)p(YM‘O)p(O‘E)p(E)

where the parameter prior is

n nx

p(0%) = Hp (w|%) Hp (Ssz) Hp (Sil,j) :

I=1 j=1
In practice, it is difficult to judge the ill-posed problemwgell regularized or not. If the prior
or hyperprior is too flat or non-informative, the ill-poseds may remain in the regularized
optimization. According to Bayesian methodology [21, 8etb.2], ‘it is often practical to start
with a simple, relatively non-informative prior distribof on parameters and seek to add more
prior information if there remains too much variation in fhesterior distribution. This adjustment
can be done by tuning the parameters of prior distributian, (v, yi) for S%Li’ (vm, ym) for
siu and (¥, n) for X. Generally, more informative prior can regularize thepitised problem

better and lead to more robust while more subjective results



The two classical estimators considered within a Bayesstimation framework are the
minimum mean square error (MMSE) and maximum a posterioAR)lestimators. However, for
the considered fusion problem, deriving closed-form esgigns for these estimators is difficult.
An alternative for approximating the MMSE estimator cotssief resorting to Monte Carlo
integration. However, this strategy is computationallgisive due to the high dimensionality of
the problem. Instead, in this work, an optimization alduritis designed to maximize(0, X|Y)
providing the MAP estimator ofd,X). The negative logarithm of the joint posterior distrilauri
p(0,X|Y) is given as

L<U7 827 E) = - lng(e, 2|y) =
—logp (Yul6) —logp (Yn|0) — l_ﬁlllogp(uz\i?) 7)

my N
— Zl logp (%) — 21 logp (s3;,) —logp (%) - C
i= ji=

where C' is a constant. The MAP estimator of the unknown model pararsetan then be
obtained by minimizing the functiod.(U, s?, ) with respect toU, s?> and 3. To solve this
multivariate optimization problem, we propose to use a B@gwr@thm whose details are given

in the following section.

IV. BLOCK COORDINATE DESCENTMETHOD

BCD consists of optimizing with respect to (w.r.t.) the uoium parameters iteratively, which
can be easily implemented in the considered fusion probksge @Algorithm 1). Contrary to
gradient based optimization methods, BCD does not requiyesgepsize tuning, which makes
the algorithm more usable by practitioners. BCD is knowndaverge to a stationary point of
the target cost function to be optimized provided that thrget function has a unique minimum
point with respect to each variable [16, Prop. 2.7.1], whilhe case for the criterion in (7).

The three steps of the BCD algorithm are detailed below.



Algorithm 1: Block coordinated descent algorithm
Input: Yy, Yu, ﬁ”L}U B, S, R, 8(2), EO

1 for t=1,2,... to stopping rule do

2 U, = argminyg L(U, s? |, 3 1) ; /= See Section IV-A */
3 s? = argming: L(U;, 8% %, 1) ; /= See Section |V-B */
4 | X, =argming L(U;, s2, %) ; /* See Section IV-C */
5 end

Output: U (Projected high resolution HS image)

A. Optimization with respect to U

The optimization w.r.t. tdU consists of minimizing

_1
Ly(U) = 3[[Ay* (Yu — VUBS) |3+

2

X (8)
1 1
1Ay (Yu —RVU) |5 + 311272 (U — py) [[3-

DeterminingU which makes the gradient dfy(U) equal to zero is not straightforward, mainly

due to left- and right-side linear operators appliedt@and the size of the matrices involved in

the computation. In fact, it is equivalent to solve the falilog Sylvester equation [22]
V7A;'VUBS (BS)" + ((RV)"A/RV + =71 ) U ©
= VIA;' Yy (BS) + (RV) AL Yy + 27 g

As the Schur decomposition of matr&S (BS)” is not easy achieved, the analytic solution of

the Sylvester equation is almost not solvable.

Fortunately, this kind of optimization problem has beenvedl efficiently by the ADMM
method [23]. After defining the splitting¥’; = UB, V, = U and V3 = U and the respective

scaled Lagrange multiplierl&, G, Gs, the augmented Lagrangian associated with (8) can be



written as

Ly(U, V1, Ve, V3, Gy, Go, G3) =
S = VViS)[L+ SUB -V, -Gyl +
A (Vs = RVV) [+ S0 = Vo - G+
S5 (o = Vo) [+ S U = Vi - Gl
The iterative update olJ, Vi, V,, V3, Gy, G,, G5 can be achieved with the split augmented
Lagrangian shrinkage algorithm (SALSA) [24], [25], whichan instance of the ADMM algo-

rithm with convergence guaranty. The detailed implemeotabf the SALSA scheme for the

fusion problem are summarized in Algorithm 2.

Algorithm 2: SALSA step

1 if pixel 7 is sampled,
0 otherwise;
Initialization : choosey, > 0, U V¥ vi% v v p pO po
3 for £k=0,1,... to stopping rule do

1 Define: Ds € {0, 1}" such thatDs(i) =

N

[+ optimze wr.t U (light with FFT) * [
a | UG [(V&’“’ +GMBT + (VP + G + (VY + Gg’“))} (BB +21)

[+ optimze wr.t V; x [
5 | v+ (UEDB - GW);

/* Update V; according to downsanpling * [

6 | VIV Ds)  (VIALV + pd) ™ (VIAL Yo + v (;, Ds));

7 ngﬂ)(:,l—Ds) +—vi(;,1 —Ds);

[+ optimze wr.t V, x [
g | vy (UKD — Gy,

o | VI (VIRTAGRV + ) (VIRTAL Yy + jws);

[+ optimze w.r.t V3 */
10 vy« (UKD ng));

11 Vékﬂ) — (=7 + ,uI)f1 (=7 g + ps);

/* update Lagrange nultipliers * [
2 | Gy 4 VDY,

15 | GED  (Cpy 4 VDY,

14 ngﬂ) — (—vs3+ V§k+1));

15 end
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B. Optimization with respect to s*

The optimization w.r.ts? is decomposed intai(, +n,) parallel optimizations w.r.t{gs’%m.};”:1

and {sMJ} thanks to the criterion separability

L32 (82) =

my mx 2
va4n, 2 Y +HI(Yn—VU;_1BS),||
(5™ + 1) Yo log sy, + > 4 ille

=1 =1

23H,i

) 7’”1)\ 2
vmtn 2 HI(YM—RVU; 1), [7
(B +1) > log sy + > - .
Jj=1 Jj=1

25\,

Computing the derivatives af,(s*) w.rt. si;; and s3; ; and forcing them to be zero leads to

the update rules
Sti = srpara On + (Y = VU BS), [17)

Siq,j = m (7M + | (Ym — RVUt—l)j HF) .
C. Optimization with respect to X
Fixing U and s?, the objective function is
Ls(%) = ng\ﬁl
it (S0 (= ) (= )"+ @) 57
wheretr(-) is the trace operator. The maximum of this function is oledifor

(Upy — p) (Upy — py)' + W

Et: ~
n+my+n-+1

D. Relationship with the MCMC method of [14]

It is worthy to note that the proposed optimization procedis structured similarly to the
Gibbs sampler developed in [14] to solve the fusion problémdeed, the BCD method can
be interpreted as a deterministic counterpart of the Gilalspter, consisting of replacing the
stochastic sampling procedures according to the conditipasterior distributions of the target
distribution by iterative evaluations of their modes. Huewe the BCD method requires much
fewer computation resources when compared with Monte &smt®d methods, which is crucial

for practical implementations.
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V. SIMULATION RESULTS

This section presents numerical results obtained with tloggsed fusion algorithm. The
reference image, considered here as the high spatial amdspiectral resolution image to be
recovered, is an HS image acquired over Moffett field, CA, 394 by the JPL/NASA airborne
visible/infrared imaging spectrometer (AVIRIS). This ig&is of sizel28 x 64 and was initially
composed oR24 bands that have been reduced1@ bands after removing the water vapor
absorption bands. A composite color image of the scene efaat is shown in the top right

panel of Fig. 2.

A. Smulation scenario

We propose to reconstruct the reference HS imigom two HS and MS image¥y and
Y. First, a high-spectral and low-spatial resolution image has been generated by applying
a 5 x 5 averaging filter and by down-sampling evetypixels in both vertical and horizontal
direction for each band oX . Second, &-band MS imageY,; has been obtained by filtering
X with the LANDSAT-like reflectance spectral responses [d&le HS and MS images are both
contaminated by additive centered Gaussian noises. Thaations have been conducted with
SNRy ; = 35dB for the first127 bands and SNR; = 30dB for the remainingh0 bands of the
HS image, where SNR; = 10log <%) For the MS image, the noise level has been

[IRX]; 1%
2

adjusted to obtain SNR; = 10log< ) = 30dB in all the spectral bands. The observed

M,j
HS and MS images are shown in the top left and right of Fig. 2g(ribat the HS image has

been interpolated for better visualization and that the Mi&ge has been displayed using an
arbitrary color composition). To learn the projection maf¥’, a PCA has been conducted, i.e.,
them, = 10 most discriminant vectors associated with filelargest eigenvalues of the sample
covariance matrix of the HS image have been computed. Theésectors lead t®9.89% of

the information contained in the HS image.
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B. Hyperparameter Selection

Similarly to the Monte Carlo-based approach in [14], thepmsed algorithm requires to tune
the hyperparametergy and vy (vv and iy, resp.) associated with the HS (MS, resp.) noise
variance priors, andl andn associated with the image covariance matrix prior. Thetesisa
adopted to adjust these hyperparameters is detailed in folats.

The noise variance hyperparameters can be tuned based @ mon knowledge. Indeed,
since the SNR; are approximately known in practice, rough estimationsiofcan be obtained
as 5?,71. = 1'(‘)?,5;*% Following alst-order moment technique, these rough estimations can be
used to adjust the means of the prior in (6), leading{o= (vg — 2) §§“ A similar strategy is

adopted to definey,.

The values oty andwy, are related to the variances of the inverse-gamma diswitsi{6),

2y?
(v.—2)%(v.—4)

noise variances of the HS and MS images (i.e., fixiggand 1, to both small values) lead to

since var[s%i] = . It has been observed that assigning non-informative gfarboth
poor fusion results, since these priors are not sufficieinfigrmative to regularize the ill-posed
problem. In this work, informative priors foﬁm have been chosen by fixing, = 10n and
flat priors forsﬁj have been chosen by fixing; = 3.

The prior distribution assigned t& depends on the parameteds and n. As there is no
available prior knowledge aboui, the two parameters and ¥ have been chosen in order to

obtain a non-informative prior foE. More preciselyy) = m) + 3 and ¥ = (n+ my + 1) 1 5,.

C. Fusion performance

To evaluate the quality of the proposed fusion strateggelmage quality measures have been
investigated. Referring to [13], [14], the root mean squamer (RMSE), the averaged spectral
angle mapper (SAM) and the universal image quality indexQlYlare used as quantitative
measures. The RMSE is defined by the distance between tmeassti and reference images,
while the definitions of SAM and UIQI can be found in [13]. Thaaler RMSE and SAM, the
better the fusion. The larger UIQI, the better the fusion.

The experiments compare the proposed algorithm with thege-sf-the-art fusion algorithms
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[12]-[14]. Note that the fusion method in [14] can be consedeas the Monte Carlo-based
counterpart of the proposed method, since both methodg sharsame hierarchical Bayesian
model. Results obtained with these algorithms are depict&ily. 2 and quantitative results are
reported in Table I. These results show that the proposetadgirovides better results than the
methods of [12], [13] and competitive results when compaved the method in [14]. However,
as observed by comparing the execution times reported ite Talbhe proposed optimization
algorithm is significantly faster than the method of [14].

The estimation of noise variances for both HS bands and M8are shown in Fig. 3. These

results show that the noise variances for different bandgearacked with tolerant discrepancy.

VI. CONCLUSION

This paper proposed to maximize the posterior distributassociated with a hierarchical
Bayesian model for fusing multispectral and hyperspedtredges using a block coordinate
descent (BCD) method. The high spatial and high spectralugsn image to be recovered was
defined in a lower-dimensional subspace, identified by a PgpAed to the hyperspectral image.
The joint optimization was conducted iteratively with respto the image to be recovered,
the noise variances and the image prior covariance matme garticularity of the proposed
BCD algorithm was to involve an ADMM step for estimating thekaown image. Numerical
experiments showed that the proposed method compares tbvehewith other state-of-the-art
methods, with the great advantage of reducing the compugticomplexity when compared
with a Monte Carlo-based counterpart method. It is intémgdb note that recently the proposed
framework has been successfully used to incorporate aespaia [27]. A related acceleration

to achieve fast fusion is also noteworthy [28].
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FIGURES 17

Fig. 2. Fusion results. Top, left: HS image. Top, middle: M&ge. Top, right: Reference image. Middle, 1: MAP estim§ta.
Middle, 2: Wavelet MAP estimator [13]. Middle, 3: MMSE estator. Middle, 4: Proposed method. Bottom: The correspandin
RMSE maps (More black, smaller errors; more white, largeorsy.
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TABLE |
PERFORMANCE OF THE FUSION METHODSRSNR (x1072)

, UIQI, SAM (°) AND TIME (SECOND).

Methods | RMSE| UIQI | SAM | Time
Hardie [12] | 6.96 | 0.9932| 5.15| 3
Zhang [13] | 5.68 | 0.9956| 4.22 | 72
MCMC [14] | 5.06 | 0.9971| 3.73 | 6228
Proposed | 5.10 | 0.9971| 3.74 | 96




