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Part 1
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Introduction
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Context of the thesis
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PEM fuel cell

Anode:  H2 2H+ + 2e- (oxidation)

Cathode: ½ O2 + 2H+ + 2e- H2O  (reduction)

Global equation:

H2 + ½ O2 H2O + electricity + heat

Irreversible losses affecting component voltage

𝑼𝒄𝒆𝒍𝒍 = 𝑬𝒓𝒆𝒗 − 𝜼𝒂𝒄𝒕 − 𝜼𝒅𝒊𝒇𝒇 − 𝜼𝒐𝒉𝒎

To reach the activation 

energy

To supply reactants Loss of charge of e-

and H+ ions

Theoretical voltage

Cost & Durability

Activation losses Diffusion losses Ohmic losses

Polarization curve
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Model-based 
methods

Data-driven 
methods

Hybrid 
methods

• Propose statistical / machine learning methods,

• Integrating knowledge from physical models, 

• Predict the future performance of a fuel cell.

Three main approaches for aging modeling

Modeling approach
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Part 2
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Characterization of fuel cell (FC) aging
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Polarization curve

time

time

▪ Provides information on the fuel cell's static behavior.

▪ Under stable operating conditions (temperature, pressure, humidity, ...).

Mean of measurements over the 

stabilization range.
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Electrochemical impedance spectroscopy

time

time

▪ Provides information on the dynamic behavior of the FC, around an operating point.

▪ Application of low-amplitude sinusoidal current disturbances with frequency variation.

Nyquist diagram

Ohmic resistance 𝒓𝒐𝒉𝒎



10

Description of the aging campaign

Break-in phase

Initial 
characterization

Cycle 1

Final 
characterization

Cycle X

Cycle N

1 ≤ X ≤ N

Load profile

V(I)+ EIS

Stop / Start

• Polarization curve V(I)

• Electrochemical 
impedance 

spectroscopy (SIE)

Time [h]
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Voltage over time under load profile

Polarization curves and ohmic resistances over time

Operating conditions

Temperature, Pression, …

Data

𝑈𝑐𝑒𝑙𝑙 𝑗 = 𝐸𝑟𝑒𝑣 𝑃, 𝑇 −
𝑅𝑇

2𝛼𝐹
ln

𝑗 + 𝒋𝒏
𝒋𝟎

− 𝒓𝒅𝒊𝒇𝒇 × 𝑗 − 𝒓𝒐𝒉𝒎 𝒋 × 𝑗
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Hybrid approach for predicting the future 

performance of a FC



13

Model

𝑈𝑐𝑒𝑙𝑙 𝑗 = 𝐸𝑟𝑒𝑣 𝑃, 𝑇 −
𝑅𝑇

2𝛼𝐹
ln

𝑗 + 𝒋𝒏
𝒋𝟎

− 𝒓𝒅𝒊𝒇𝒇 × 𝑗 − 𝒓𝒐𝒉𝒎 𝒋 × 𝑗

▪ Parameters 𝑗0, 𝑗𝑛 and 𝑟𝑑𝑖𝑓𝑓 vary over time.

• How to estimate them under load profile ?

• How to predict their future values ?

▪ Ohmic resistance 𝒓𝒐𝒉𝒎 𝒋 depend on the current and is sensitive to operating conditions.

▪ These can only be estimated at chararcterization phase 
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Testbench

Polarization curve Ohmic resistances

Parametric identification

𝑈𝑐𝑒𝑙𝑙 𝑗, 𝜃 = 𝐸𝑟𝑒𝑣 𝑃, 𝑇 −
𝑅𝑇

2𝛼𝐹
ln

𝑗 + 𝑗𝑛
𝑗0

− 𝑟𝑑𝑖𝑓𝑓 × 𝑗 − 𝑟𝑜ℎ𝑚 𝑗 × 𝑗

𝜃 = (𝑗0, 𝑗𝑛, 𝑟𝑑𝑖𝑓𝑓 )

Modeling of parameters 𝜽

Voltage over time

𝑗0 𝑡 = 𝑓(𝑡)

𝑗𝑛 𝑡 = 𝑔(𝑡)

𝑟𝑑𝑖𝑓𝑓 𝑡 = 𝑟(𝑡)

Modeling of 𝒓𝒐𝒉𝒎 by 

Random Forest

𝑈𝑐𝑒𝑙𝑙 𝑗, 𝜃 = 𝐸𝑟𝑒𝑣 𝑃, 𝑇 −
𝑅𝑇

2𝛼𝐹
ln

𝑗 + 𝑗𝑛
𝑗0

− 𝑟𝑑𝑖𝑓𝑓 × 𝑗 − 𝑟𝑜ℎ𝑚 𝑗 × 𝑗

Extended Kalman filter

መ𝜃(𝑡)
Optimal values of the parameters 

under the load profile

Measurements

Operating 

conditions

1 2 3

4



15

መ𝜃(𝑡0, … , 𝑡𝑛)

Optimal values of the parameters under 

the load profile in the training interval

…
LSTM

Operating 

conditions

መ𝜃(𝑡𝑛+1, … )

෡𝑈(𝑡𝑛+1, … )

Predicted voltage



• Good fit of model parameters to experimental data..

• 0.3% mean relative error
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Proposed temporal evolution laws

... modeling only the part where the system is considered healthy.

Parameters identification
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Modeling of the ohmic resistance

Aggregation of decision trees

Random Forests Selection of features
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Distribution of errors according to learning time

Learning set

Test set

• Good precision on the learning set.

• Maximum mean relative error: 0.2 %.

• Performance increases with learning time.

• Good ability to infer.

• Maximum mean relative error: 3.7%.
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Estimation and prediction of state variables
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Learning on 400 hours

• Very satisfactory estimation on 

the learning interval

• Tendency to underestimate the 

predicted voltage on the test 

sample at long horizons.

• Better accuracy over the shortest 

forecast horizons.

Future performance prediction
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• Improved predictions at long 

horizons as learning time 

increases.

Future performance prediction

• Less pessimistic predictions for 

performance.

Learning on 1000 hours
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• Adaptation to reversible phenomena in 

the learning phase

Prédiction des performances futures

• Sign of robustness of the extended 

Kalman filter.

Learning on 1600 hours
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Distribution of residuals for different learning time (y axis)

Test set

Mean and median errors on the test set

• Satisfactory order of magnitude: a few tens of millivolts on average.
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Part 4
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Conclusion and future work
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Conclusion

• Proposal of a hybrid approach for predicting the future performance of a fuel cell.

• Modeling of the ohmic resistance by Random Forests.

• Estimation of the internal parameters of the physical model using a Kalman filter.

• Learning the variation of internal parameters using LSTM.

• Overall satisfactory results.

• Test adaptive filtering algorithms.

• Developing an LSTM (or other types of RNN) with physical constraints during training.
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Merci pour votre attention !
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