High Precision Satellite-based Navigation Theory and Applications

Daniel Medina (<u>daniel.ariasmedina@dlr.de</u>) Institute of Communications and Navigation, German Aerospace Center (DLR)

Thanks to our team and may more!

Multi Sensor Systems Group

- Daniel Medina Group leader, GNSS & robust estimation
- Christoph Lass deputy leader, Precise GNSS
- Andrea Bellés Precise GNSS & Machine Learning
- Hakan Uyanik GNSS Jamming Detection
- Iulian Filip LiDAR and Visual SLAM
- Alonso Llorente SLAM and DigitalTwin simulations
- Filippo Rizzi Multi-Sensor Architectures for PNT

Further collaborators

- My PhD advisor: Jordi Vilà-Valls
- My dear French collaborators: Éric Chaumette, Lorenzo Ortega, Paul Chauchat, Samy Labsir, François Vincent
- Northeastern University: Pau Closas, Haoqing Li, Helena Calatrava
- Spanish colleagues: Juan Manuel Gandarias, Gonzalo Seco
- Former colleagues: Anja, Xiangdong, JuanMar, Lukas, Iván, etc.

Thank you very much <u>TéSA</u>, <u>Lorenzo</u> and <u>Julien</u> for bringing me here!

"GNSS are everywhere"

Global Navigation Satellite Systems (GNSS) have become the <u>cornerstone for worldwide localization and timing</u>

"GNSS are everywhere"

GNSS presence extends across financial, energy grid, mass-market or vehicular applications

Prospective autonomous systems pose stringent navigation requirements

Overview on GNSS

GNSS is the main information source for Positioning, Navigation and Timing (PNT)

Challenge #1: Precision

The accuracy of standard *code*-based navigation is limited \rightarrow <10 meters positioning & poor attitude

Challenge #2: Robustness

Multipath and other local effects can severely degrade the performance \rightarrow large errors

The use of carrier phase observations is the key for high precision navigation!

Motivation for Precise GNSS

Intelligent vehicles

- For people: autonomous cars, assisted landing, etc.
- For services: package delivery, photogrammetry, farming, etc.

Demand For These Autonomous Delivery Robots Is Skyrocketing During This Pandemic (forbes.com)

Aerospace

- Spacecraft orientation
- Satellite orbit determination

Natural sciences

- Meteorology
- Crustal movement
- Solar terrestrial physics

GPS installation and use on the IGS (Gomez, ION GNSS 2004)

NOAA Precipitable Water Vapor (PWV) forecast

NOAA Precipitable Water Vapor (PWV) forecast

- Basics of carrier phase measurements: how to get them? How to use them?
- High precision GNSS techniques: PPP, RTK and the new horizon
- Multi antenna systems: orientation and navigation with carrier phase
- **Cooperative GNSS:** exchanging information in a network for better navigation
- Research & industry perspectives

1	What are Carrier Phase Observations?	
	Carrier Phase Limitations	
2	Precise Positioning Techniques	
	Real Time Kinematics (RTK)	
	Precise Point Positioning (PPP)	
3	Multi-Antenna Systems	
4	Cooperative GNSS Positioning	

Precise Positioning

Receiver to positioning performance

What are carrier phase observations?

What are carrier phase observations?

11

Carrier phase are even a hit more

So... why to use carrier phase??

12

Code and carrier phase observation models

Code observation

$$\rho^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}\| + I^{i} + T^{i} + c\left(dt - dt^{i}\right) + \varepsilon^{i}$$

Carrier phase observation

$$\Phi^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}\| - I^{i} + T^{i} + c\left(dt - dt^{i}\right) + \lambda N^{i} + \epsilon^{i}$$

Code and carrier phase observations look very similar

- Carrier phase do not add any additional positioning info
- Carrier phase are even a bit more complicated

Sanz Subirana, J., J. M. Juan Zornoza, and M. Hernández-Pajares. "GNSS Data Processing, Volume I: Fundamentals and Algorithms." *ESA Communications*,

~300m

Emission

Reception

Code and carrier phase observation models

Code observation

$$\rho^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}\| + I^{i} + T^{i} + c\left(dt - dt^{i}\right) + \varepsilon^{i}$$

Carrier phase observation

$$\Phi^{i} = \|\boldsymbol{p}^{i} - \boldsymbol{p}\| - I^{i} + T^{i} + c\left(dt - dt^{i}\right) + \lambda N^{i} + \epsilon^{i}$$

Noise on carrier phase observations is two orders of magnitude lower than code noise

$$\varepsilon \sim \mathcal{N}\left(0, \sigma_{\rho}^{2}\right), \ \sigma_{\rho} \simeq 2 - 5 \ [m]$$

 $\epsilon \sim \mathcal{N}\left(0, \sigma_{\Phi}^{2}\right), \ \sigma_{\Phi} \simeq 2 \ [mm]$

^{2024-06-14,} Daniel Medina -- High Precision GNSS

Working principle for carrier phase-based positioning

Recap on standard (code-based) positioning

Positioning methods

- Single Point Positioning (SPP)
- Differential and augmented GNSS (DGNSS)

Estimation methods

- Snapshot / memoryless: Maximum Likelihood Estimation (Least Squares)
- Recursive: Maximum A Posteriori (Kalman Filter)

GNSS high precision is all about carrier phase... + correction data + integer estimation

High Precision GNSS Techniques

2024-06-14, Daniel Medina -- High Precision GNSS

High precision GNSS techniques

Precise Point Positioning (PPP)

Real Time Kinematic (RTK)

Precise Point Positioning

Precise Point Positioning (PPP)

- "absolute" positioning, no need for a nearby reference station
- Global network of ground stations necessary → corrections on satellite orbits, clock, biases, atmospheric delays, etc.
- <u>Precise ephemeris cannot be deployed in real time</u> (* Galileo High Accuracy Service (HAS), Kepler)
- Several unknowns to be estimated: clock offsets, troposheric delays, ambiguities, ...
- Estimation process: recursive with Kalman Filter
- **Challenge:** convergence time, quality of corrections
- Accuracy: decimeter up to centimeter

Real Time Kinematic

- RTK is a differential phase-based positioning → base station of known coordinates transmits its data
- The estimation technique is well studied (but still challenging!)
- Estimation process: Kalman Filtering or Least Squares
- Challenge: need for nearby stations + communication, computation complexity
- Accuracy: (instantaneous) centimeter to millimeter

Real Time Kinematic (RTK)

RTK Processing

$$\begin{split} \Phi_{B}^{i} &= \|\boldsymbol{p}^{i} - \boldsymbol{p}_{B}\| - I^{i} + T^{i} + c\left(-dt^{i} + dt_{B}\right) + \lambda N_{B}^{i} + \epsilon_{B}^{i} \\ (-) \quad \Phi_{R}^{i} &= \|\boldsymbol{p}^{i} - \boldsymbol{p}_{R}\| - I^{i} + T^{i} + c\left(-dt^{i} + dt_{R}\right) + \lambda N_{R}^{i} + \epsilon_{R}^{i} \\ \Phi_{B}^{r} &= \|\boldsymbol{p}^{r} - \boldsymbol{p}_{B}\| - I^{r} + T^{r} + c\left(-dt^{r} + dt_{B}\right) + \lambda N_{R}^{r} + \epsilon_{B}^{i} \\ (-) \quad \Phi_{R}^{r} &= \|\boldsymbol{p}^{r} - \boldsymbol{p}_{R}\| - I^{r} + T^{r} + c\left(-dt^{r} + dt_{R}\right) + \lambda N_{R}^{r} + \epsilon_{R}^{r} \end{split}$$

Single-differencing \rightarrow removes ionospheric and tropospheric effects Double-differencing \rightarrow eliminates the clock offsets and satellite biases

$$DD(\cdot)^{i} \equiv (\cdot)_{R,B}^{i,r} = (\cdot)_{R}^{i} - (\cdot)_{B}^{i} - ((\cdot)_{R}^{r} - (\cdot)_{B}^{r})$$
$$(\cdot) = \{\Phi, \rho\}$$

2024-06-14, Daniel Medina -- High Precision GNSS

RTK Processing

State estimate

$$\mathbf{x} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \ \mathbf{a} \in \mathbb{Z}^n, \ \mathbf{b} \in \mathbb{R}^3$$

Set of observations

$$\mathbf{y} = \begin{bmatrix} DD\Phi\\DD\rho \end{bmatrix}, \ \mathbf{y} \in \mathbb{R}^{2n}$$

Observation model

$$DD\Phi^{i} = -\left(\mathbf{u}^{i} - \mathbf{u}^{r}\right)^{\top} \mathbf{b} + \lambda a^{i} + \epsilon_{R,B}^{i,r}$$
$$DD\rho^{i} = -\left(\mathbf{u}^{i} - \mathbf{u}^{r}\right)^{\top} \mathbf{b} + \varepsilon_{R,B}^{i,r}$$

$$\mathbb{E}(\mathbf{y}) = \mathbf{A}\mathbf{a} + \mathbf{B}\mathbf{b}$$
$$\mathbb{D}(\mathbf{y}) = \mathbf{Q}_{\mathbf{y}}$$

Also known as Mixed Estimation Model

RTK / mixed model estimation

RTK / mixed model estimation

Integer Ambiguity Resolution (IAR)

IAR is the theoretical framework for integer estimation + hypothesis testing on their reliability

- It is an *n*-hiperdimensional ellipsoidal search
- The success of the process depends on:
 - Quality of the observation model
 - Number of observations

$$\mathcal{S}(\mathbf{\hat{a}}) = \begin{cases} \mathbf{\check{a}} & \text{if } \mathbf{\hat{a}} \in \Omega_a \quad (\text{success}) \\ \mathbf{\check{a}} \neq \mathbf{a} & \text{if } \mathbf{\hat{a}} \in \Omega / \Omega_a \quad (\text{failure}) \\ \mathbf{\hat{a}} & \text{if } \mathbf{\hat{a}} \in \Omega \quad (\text{undecided}) \end{cases}$$

Teunissen, Peter JG., and Verhagen S. "Integer Aperture Estimation." *Inside GNSS* (2011). Teunissen, Peter, and Oliver Montenbruck, eds. *Springer handbook of global navigation satellite systems*. Springer, 2017.

Putting all together: RTK in action!

San Fernando IGS stations 2019, DOY 001, 00:00 – 23:59

36.46536.4645 Latitude 36.46436.463536.463-6.207-6.206-6.205Longitude

Castro-Arvizu, J. M., Medina, D., Ziebold, R., Vilà-Valls, J., Chaumette, E., & Closas, P. (2021). Precision-aided partial ambiguity resolution scheme for instantaneous RTK positioning. Remote sensing, 13(15), 2904.

2024-06-14, Daniel Medina -- High Precision GNSS

Further on the Mixed Model Estimation

The RTK problem can be cast as a minimization over integer- and real-valued parameters:

Cramér Rao Bound for the Mixed Estimation Problem

- Estimation bounds for the real/integer problem? Not available!
 - Proposed Cramér-Rao lower bound (CRB) for the mixed model estimation
- Is this three-step estimation procedure efficient?

Medina, D., Vilà-Valls, J., Chaumette, E., Vincent, F., & Closas, P. (2021). Cramér-Rao bound for a mixture of real-and integer-valued parameter vectors and its application to the linear regression model. *Signal Processing*, *179*, 107792.

Precise Point Positioning

Precise Point Positioning (PPP)

- "absolute" positioning, no need for a nearby reference station
- Global network of ground stations necessary → corrections on satellite orbits, clock, biases, atmospheric delays, etc.
- <u>Precise ephemeris cannot be deployed in real time</u> (* Galileo High Accuracy Service (HAS), Kepler)
- Several unknowns to be estimated: clock offsets, troposheric delays, ambiguities, ...
- Estimation process: recursive with Kalman Filter
- **Challenge:** convergence time, quality of corrections
- Accuracy: decimeter up to centimeter

On PPP corrections

Precise ephemeris

Туре		Accuracy	Latency	Sample interval
Proadcast	Orbits	~ 100 cm	Pooltimo	daily
DIOducasi	Sat clocks	~ 5 ns	Real time	ually
Ultra Danid	Orbits	~3cm	2.0 hours	1E min
Опга-карій	Sat clocks	~ 150 ps	3-9 nours	12 ШШ
Danid	Orbits	~ 2.5 cm	17-41 hours	15 min
карій	Sat clocks	~ 75 ps		5 min
Final	Orbits	~ 2.5cm	12-18 days	15 min
FIIIdI	Sat clocks	~ 75 ps		30 s

International GNSS Service, Products. Link: http://www.igs.org/products

The new trend: PPP-RTK / PPP-Ambiguity Resolution

- Hybrid between PPP & RTK with the aim to achieve high precision solutions fast and worldwide:
 - The core is a PPP engine fed with precise ephemeris and regional/local atmospheric information
 - Single differencing (wrt. a pivot satellite) is applied to eliminate the receiver's carrier biases
- Galileo High Accuracy Service (HAS) is a great effort from the EU to make

Growing interest to make high precision GNSS available for the <u>mass</u> $\underline{\text{market}}$ addressing carrier phase issues is key!

PPP-RTK in action!

¢

within

sitioning

of the

Per

autonomous driving of inland waterway vessels. GPS Solutions, 27(2), 86.

Briefly on Galileo High Accuracy Service (HAS)

Source: EUSPA

Briefly on Galileo HAS

HAS	SERVICE LEVEL 1	SERVICE LEVEL 2	
COVERAGE	Global	European Coverage Area (ECA)	
TYPE OF CORRECTIONS	PPP - Orbit, clock, biases (code and phase)	PPP - Orbit, clock, biases (code and phase) incl. atmospheric corrections	
CORRECTIONS DISSEMINATION	SIS (Galileo E6-B) and IDD (Ntrip)	SIS (Galileo E6-B) and IDD (Ntrip)	
SUPPORTED CONSTELLATIONS & FREQUENCIES	Galileo E1/E5a/E5b/E6; E5 AltBOC GPS L1/L5; L2C	Galileo E1/E5a/E5b/E6; E5 AltBOC GPS L1/L5; L2C	
HORIZONTAL ACCURACY 95%	<20 cm	<20cm	
VERTICAL ACCURACY 95%	<40cm	<40cm	
CONVERGENCE TIME	<300 s	<100 s	
USER HELPDESK	24/7	24/7	

Source: EUSPA

Recap on high precision GNSS

- As of today, RTK is the most used technique for high precision
 - Instantaneous cm (or even mm) level accuracy
 - Requires nearby base stations + low latency and "broad" communication channel
- PPP allows for global positioning with dm-accuracy
 - A "long" convergence time is required to achieve high precision
 - Real time applicability is limited by the correction services
- PPP-RTK is likely to be the future & we are in the time and place to make that a reality!
- Estimation bounds for PPP / PPP-RTK are not yet derived...

1	What are Carrier Phase Observations?	
	Carrier Phase Limitations	
2	Precise Positioning Techniques	
	Real Time Kinematics (RTK)	
	Precise Point Positioning (PPP)	
3	Multi-Antenna Systems	
4	Cooperative GNSS Positioning	

Outline

Multi-Antenna Applications Estimating a vehicle's pose

37

Precise attitude estimation

Dealing with multiple antennas and integer ambiguities

- Attitude Determination → the orientation of a vehicle wrt. a reference frame
- Using multi-antenna setups → "absolute" "drift-less" attitude information
- Orientation precision depends on:
 - Inter-antenna separation
 - Differential positioning error

Carrier phase observations & Integer Ambiguity Resolution (IAR) is key
 The abundance of measurements may complicate things...

High Precision GNSS Techniques

2024-06-14, Daniel Medina -- High Precision GNSS

GNSS for attitude estimation

GNSS-based Attitude Determination requires:

- Multi antenna setup
- Surveyed antennas' position in the local frame

Attitude accuracy depends on:

- Antenna separation
- Positioning accuracy

SPP
■ PPP
▲ RTK

80

40

$\Phi_j^i = \|p^i - p_j\| - X^i + T^i + c\left(-dt^i + dt_j\right) + \lambda N_j^i + \varepsilon_j^i$ pivot satellite $(-) \quad \Phi_m^i = \|p^i - p_m\| - I^i + T^i + c \left(dt^i + dt_m \right) + \lambda N_m^i + \varepsilon_m^i$ *i*th satellite $\rho_m^r, \Phi_{r_s}^m$ ho_1^i, Φ_1^i $\Phi_{j}^{r} = \|p^{r} - p_{j}\| - I^{r} + T^{r} + c\left(dt^{r} + dt_{j}\right) + \lambda N_{j}^{r} + \varepsilon_{j}^{r}$ (-) $\Phi_{m}^{r} = \|p^{r} - p_{m}\| - I^{r} + T^{r} + c\left(-dt^{r} + dt_{m}\right) + \lambda N_{m}^{r} + \varepsilon_{m}^{r}$ ρ_m^i, Φ_1^m $\mathcal{G}\mathbf{p}_m$ G

The Mixed Attitude Model

Set of observations

$$\mathbf{y} \sim \mathcal{N}\left(\mathbf{A}\mathbf{a} + \mathbf{h}(\mathbf{q}), \mathbf{\Sigma}
ight), \; \mathbf{a} \in \mathbb{Z}^{M}, \mathbf{q} \in \mathcal{S}^{3}$$

 $\mathbf{y} = \begin{bmatrix} DD\Phi_1^{\top}, \dots, DD\Phi_N^{\top}, DD\rho_1^{\top}, \dots, DD\rho_N^{\top} \end{bmatrix}$

 \mathcal{B}

master antenna

global frame

 $\mathcal{G}\mathbf{b}_{2,m}$

 $\langle \rho_1^r, \Phi_r^1 \rangle$

vehicle frame

The GNSS-Based Attitude Model Solving the puzzle

Estimation Bounds for the GNSS Attitude Model

- Even more challenging than RTK (mixed real and integer)
- The GNSS Attitude Model involves: Lie Group SO(3) + Integers
- Luckily, our dear Samy Labsir is a CRB-derivation machine → Intrinsic CRB for the attitude model

Carrier Phase-Based GNSS Attitude Estimation.

Joint Position and Attitude (JPA) Model

 JPA estimation → solving the navigation for a vehicle with multiple antennas and access to a base station

The goal

- 1. Exploit the knowledge on the antennas' configuration & noise cross-correlation
- 2. Propose snapshot and recursive estimators for the JPA problem
- 3. Increase availability of precise orientation and positioning

Medina, D., Vilà-Valls, J., Hesselbarth, A., Ziebold, R., & García, J. (2020). On the recursive joint position and attitude determination in multi-antenna GNSS platforms. Remote Sensing, 12(12), 1955.

JPA in action

- Monte Carlo-based simulation to address JPA against RTK & GNSS Attitude
- A multi-antenna setup with 4 antennas separated by 1 meter
- The initial distance to the base station is 5 km

JPA in action

In summary...

- ➢ JPA leads to higher accuracy → both for positioning and attitude!
- Positioning greatly improves in availability and time-to-fix

2024-06-14, Daniel Medina -- High Precision GNSS

1	What are Carrier Phase Observations?	
	Carrier Phase Limitations	
2	Precise Positioning Techniques	
	Real Time Kinematics (RTK)	
	Precise Point Positioning (PPP)	
3	Multi-Antenna Systems	
4	Cooperative GNSS Positioning	

Outline

Cooperative Positioning Network of users helping each other

Collaborative Positioning Overcoming the limitations for RTK

- Real Time Kinematic (RTK) is the standard for high precision positioning
- <u>RTK underperforms in urban scenarios</u>: limited visibility, multipath effects, distance to stations
- Collaborative approaches → paradigm for connected vehicles, helpful for GNSS limitations
- Collaboration understood from different prisms
 - Active collaboration: inter-agent ranging & localization exchange
 - Passive collaboration: broadcast of observations

■ Collaborative RTK (C-RTK) → concept for high precision positioning with passive collaboration

Conventional RTK $m{y}_i \sim \mathcal{N} \left(m{A}m{a}_i + m{B}m{b}_i, m{\Sigma}_i
ight)$ -

C-RTK – Positioning Problem

for N users

 $\begin{array}{l} \textbf{Collaborative RTK}\\ \tilde{\pmb{y}} \sim \mathcal{N}\left(\tilde{\pmb{A}}\tilde{\pmb{a}} + \tilde{\pmb{B}}\tilde{\pmb{b}}, \tilde{\pmb{\Sigma}}\right), ~~ \tilde{\pmb{a}} \in \mathbb{Z}^{n \cdot N}, \tilde{\pmb{b}} \in \mathbb{R}^{3 \cdot N} \end{array}$

"Extended" version of obs., unknowns, matrices

$$egin{aligned} ilde{m{y}} &= egin{bmatrix} m{D}m{D}m{\Phi}_1^ op, \dots, m{D}m{D}m{\Phi}_N^ op, m{D}m{D}m{
ho}_1^ op, \dots, m{D}m{D}m{
ho}_N^ op ig]^ op \ & ilde{m{a}} &= egin{bmatrix} m{a}_1^ op, \dots, m{a}_N^ op ig]^ op, \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{D}m{D}m{
ho}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{D}m{D}m{
ho}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{D}m{D}m{h}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op ig]^ op \ & ilde{m{b}} &= egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op iggin{bmatrix} m{b}_1^ op, \dots, m{b}_N^ op egin{bmatrix} m{b}_1^ op, \dots, m{b}_N^$$

The importance of stochastic modeling
 ➤ The cross-correlations due to combining observations wrt. base station → fundamental information!

We can leverage on the existing CRBs and estimators for the mixed model problem

C-RTK – Overview, Benefits, Limitations

- Regular RTK: involves base station to users communication
- C-RTK is a <u>centralized</u>, passive collaboration architecture
- ✓ **Privacy preserving:** users do not compromise their localization information
- \checkmark Estimation process benefit from all available information
- ➤ A low-latency, "broad" 2-way communication channel is needed
- Dealing with asynchronous measurements
 Growing computational complexity with the number of users
- ? What is the performance gain?

Monte Carlo based Performance Analysis

The information gain in C-RTK \rightarrow superior performance wrt. RTK

Medina, D., Calatrava, H., Castro-Arvizu, J. M., Closas, P., & Vila-Valls, J. (2023, April). A Collaborative RTK Approach to Precise Positioning for Vehicle Swarms in Urban Scenarios. In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 254-259).

1	What are Carrier Phase Observations?
	Carrier Phase Limitations
2	Precise Positioning Techniques
	Real Time Kinematics (RTK)
	Precise Point Positioning (PPP)
3	Multi-Antenna Systems
4	Industry and research perspectives

Outline

Industry and Research Perspectives

From industry:

- LEO navigation is becoming a thing & carrier phase is also involved
- Certification (integrity monitoring) is the last step before GNSS is truly everywhere
- Other interesting applications: collaborative or lunar positioning

From research:

55

- There is a need for better (robust!) estimators
- Multi sensor integration (with cameras, LiDARs, etc.) is still challenging
- What is the role of Machine Learning? How to successfully deploy it for GNSS?
- Further on architectures and solutions for Coop. GNSS \rightarrow ITSNT 27th June
- GNSS is a multi-billion industry with unlimited perspectives
- Knowledge on high precision GNSS techniques is one of the most wanted skills!

Seminar on 5th July

Say hi at: daniel.ariasmedina@dlr.de

Thanks for your attention!

Impressum

Title:High Precision Satellite-based NavigationTheory and Applications

Date: 2024-06-14

- Author: Daniel Medina (<u>daniel.ariasmedina@dlr.de</u>)
- Institut: Communications and Navigation
- Credits: All pictures are "DLR (CC BY-NC-ND 3.0)", unless otherwise stated

2024-06-14, Daniel Medina -- High Precision GNSS

BACK UP SLIDES

General GNSS Receiver Architecture

$\mathbf{x} = \begin{bmatrix} \mathbf{a} \\ \mathbf{b} \end{bmatrix}, \ \mathbf{a} \in \mathbb{Z}^n, \ \mathbf{b} \in \mathbb{R}^3$

State estimate

RTK Processing

Set of observations $\mathbf{y} = \begin{bmatrix} \mathbf{D} \mathbf{D} \mathbf{\Phi} \\ \mathbf{D} \mathbf{D} \mathbf{\rho} \end{bmatrix}, \ \mathbf{y} \in \mathbb{R}^{2n}$

Careful with noise statistics

$$oldsymbol{\eta} \sim \mathcal{N}ig(oldsymbol{0}_{2n,1}, egin{bmatrix} \mathbf{Q}_{\Phi} \ \mathbf{Q}_{
ho} \end{bmatrix} ig) \ \mathbf{Q}_{y}$$

Integer Ambiguity Resolution

Some basic integer solving

Integer Ambiguity Resolution

Some basic integer solving

$$\hat{a} = \begin{bmatrix} 15.23 \\ -36.55 \end{bmatrix}$$
$$\mathbf{Q}_{\hat{a}} = \begin{bmatrix} 2 & 0.4 \\ 0.4 & 0.6 \end{bmatrix}$$

Integrity monitoring measures the trust on the navigation estimates & provides timely warnings when an unacceptable fault occurs / system is unreliable

Navigational requirements

- Accuracy
- Continuity
- Availability

Integrity components

- Alert Limit
- Integrity Risk
- Time to Alert
- Protection Level

Reid, Tyler GR, et al. "Localization requirements for autonomous vehicles." *arXiv* preprint arXiv:1906.01061 (2019).

Integrity monitoring measures the trust on the navigation estimates & provides timely warnings when an unacceptable fault occurs / system is unreliable

Navigational requirements

- Accuracy
- Continuity
- Availability

Integrity components

- Alert Limit
- Integrity Risk
- Time to Alert
- Protection Level

Positioning Error (PE)

66

State of the Art on Integrity Monitoring: the limitations

- Standard solutions are derived specifically for aviation purposes:
 - open sky assumption
 - very low number of faults (only due to satellite faults)
 - not applicable to landing / take-off maneuvers
- Typically, only code observations are used (or code-carrier smoothing)
- Only snapshot solutions are considered (no recursive estimation)
- Multi sensor integration and related challenges are not contemplated
- Availability of Integrity Support Message (ISM), meaning "perfect" stochastic modeling

There is a need for new methods on Integrity Monitoring!

Integrity Threats for Precise Navigation

So... what is the least we could do?

- 1. pre-processing
- 2. estimator + Fault Detection and Exclusion (FDE) mechanism (+ Test statistic)
- 3. error bounding (protection level / integrity risk)

Multi Hypothesis-based Filtering

• Fault Detection and Exclusion inherently covered