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Abstract. High resolution spectrometers are composed of different optical elements and detectors that must be modeled as

accurately as possible. Specifically, accurate estimates of Instrument Spectral Response Functions (ISRFs) are critical in order

not to compromise the retrieval of trace gas concentrations from spectral measurements. Currently, parametric models are used

to estimate these response functions. However, these models cannot always take into account the diversity of ISRF shapes that

are encountered in practical applications. This paper studies a new ISRF estimation method based on a sparse representation of5

the ISRF in a dictionary. The proposed method is shown to be very competitive when compared to parametric models, yielding

up to one order of magnitude smaller normalized ISRF estimation errors. The method is applied to different high-resolution

spectrometers, demonstrating its reproducibility for multiple remote sensing missions.

1 Introduction

Space remote sensing makes it possible to remotely measure the composition of the atmosphere or the troposphere and to10

retrieve trace gas concentrations. It can also be used to monitor molecule fluxes at the Earth’s surface, as is the case for the

MicroCarb mission that is designed to monitor CO2 fluxes (Cansot et al., 2022) in order to provide a better understanding

of the carbon cycle, which is important in the context of climate change. This can be done by analyzing the interaction of

the atmosphere with natural radiation, such as the sunlight, or artificial radiation, generated for example by a laser. Indeed,

the presence of some molecules in the path of radiation modifies its spectral content at the characteristic wavelengths of the15

different elements. The information directly obtained from satellites is the atmospheric spectrum. By considering some specific

wavelengths of interest, it is possible to determine the concentration of the desired trace gases in a column of atmosphere by

comparing these measured spectra with a reference spectrum obtained using a radiative transfer model.

The instruments used for gas concentration estimation are high resolution spectrometers. Spectrometers consist mainly of

an optical part (for example composed of a slit, a telescope and dispersive grating) and a detector. In this configuration, the20

telescope projects the image of the Earth onto the spectrometer slit and then onto the detector. Each pixel of the detector is

associated with a spatial direction (called ACT for ACross Track) and a specific wavelength. A binning and an averaging along
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the ACT axis are performed in order to improve the Signal to Noise Ratio (SNR). For each of the two parts (optical part and

detector), a response function is defined, which leads to a continuous optical function and another function associated with

each pixel of the detector. This results in a global response function associated with each pixel along the spectral axis, known25

as the Instrument Spectral Response Function (ISRF), associated with a specific wavelength. The ISRFs can vary significantly

depending on the instrument considered and their shapes depend on the central wavelength, among other factors. The estimation

of trace gas concentrations is an inversion process that is performed on the ground from spectrometer measurements and the

instrument ISRFs. The accuracy of this estimation highly depends on the knowledge of these ISRFs for all pixels. For some

missions, ISRFs are expected to be known with a normalized error less than 1%, which represents a significant challenge given30

that the variations in ISRF shape across the entire band frequently exceed this threshold.

Spectrometers are first calibrated on ground where their associated ISRFs are estimated experimentally. However, the ISRFs

are subject to in-flight changes due to mechanical movements associated with the launch of the instruments, thermal changes in

orbit, or certain sensitivities linked to the instrument itself (such as the MicroCarb’s sensitivity to the scene). As a consequence,

these ISRFs need to be re-estimated regularly in-flight throughout the mission. The principle of the estimation is to take a35

measurement of a spectrally known scene and to compare it with a spectral model of the scene convolved with the ISRFs at

different wavelengths. Parametric models have been widely used in the literature to estimate ISRFs. Gaussian and generalized

Gaussian parametric models (referred to as “Gauss” and “Super-Gauss”) were proposed in (Beirle et al., 2017). Parametric

models are attractive for their simplicity and small number of parameters. However, they are not flexible enough to represent

the diversity of ISRF shapes adequately. The ISRF estimation problem and the most important parametric models that have40

been considered in the literature are detailed in Section 2.

The objective of this work is to overcome the limitations of the existing parametric ISRF estimation methods caused by

their insufficient accuracy. To that end, we propose as a first major contribution a new estimation strategy based on sparse

representations of the ISRFs in a dictionary of well chosen atoms. More precisely, the ISRFs are decomposed in a dictionary

that is constructed using several ISRFs that are available from ground characterization for each instrument. The dictionary45

can also be updated iteratively on-line. For each instrument, each ISRF is then approximated by a linear combination of a

small number of atoms of the dictionary associated with the instrument. The proposed approach is detailed in Section 3. We

investigate and compare two different methods for obtaining the sparse representations of ISRFs.

As a second contribution, we conduct an extensive numerical study of the proposed ISRF estimation approach and compare

it to parametric methods for datasets from several different spectrometers used in space missions, whose characteristics are50

detailed in Section 4. The main focus is on the MicroCarb instrument (Cansot et al., 2022), which is dedicated to study the at-

mospheric carbon dioxyde and oxygen, with the objective of determining their concentrations at the Earth’s surface. Additional

results showing the applicability of the proposed methodology to other spectrometers are reported for the OCO-2 spectrometer

(Lee et al., 2017), and complemented by results for several other spectrometers that are reported in the Supplementary Material

(El Haouari et al., 2024).55

Numerical results are reported in Section 5 and lead to conclude that the proposed method yields significantly improved

flexibility and accuracy for ISRF estimation when compared to previous state-of-the-art parametric methods, consistently
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through the different datasets and scenarios, with a small number of parameters that can be easily and efficiently estimated

in real-time. Moreover, the method is shown to be robust with respect to design choices, to the noise corrupting the observed

measurements, to ISRF changes depending on the scene or to possible mismatches on the prior knowledge on the ISRFs or60

reference spectra.

2 Existing models and estimation methods

2.1 ISRF estimation model

The ISRF, that is sometimes referred to as Instrument Line Shape (ILS) (Sun et al., 2017b) or Slit Function (Sun et al., 2017a),

is a function that describes the response of an instrument to a given wavelength. In this work, we only consider the spectral65

information and thus each “pixel” l is associated with a specific wavelength λl yielding an ISRF at this wavelength.1 The

in-flight identification of ISRFs is obtained from scenes that are assumed to be perfectly known radiometrically and spectrally

(such as Sun, Moon, uniform scenes such as desert, etc.), which are referred to as reference spectra. The principle of ISRF

estimation is to determine the in-flight ISRFs for each wavelength λl that minimize some similarity measure between the

measured spectrum s(λl) and the reference spectrum r(λ) convolved with the ISRF denoted as Il(λl):70

s(λl) = (r ∗ Il)(λl) =

∫
R

r(λl −u)Il(u)du, l = 1, ...,Nλ, (1)

where ∗ denotes convolution and Nλ is the number of central wavelengths λl, each associated with one ISRF Il. For practical

purposes, this equation can be discretized leading to:

s(λl)≈
N/2∑

n=−N/2

r(λl −n∆)Il(n∆), l = 1, ...,Nλ, (2)

where ∆ is the sampling period between two consecutive points of the ISRF, which is assumed to be regularly sampled. In75

other words, a vector I l = [Il(−N
2 ∆), ..., Il(

N
2 ∆)]T ∈ RN+1 needs to be estimated for each ISRF, corresponding to the values

that it takes on the wavelength grid at which the ISRFs are sampled. ∆= {−N
2 ∆, ..., N2 ∆} ∈ RN+1. The objective of the

ISRF estimation problem is to solve the inverse problem (2) assuming knowledge of both the reference spectrum r(λ) and the

measurements s(λl).

A major difficulty with the inverse problem (2) is that there is only one measurement per fixed wavelength λl, which makes

it impossible to estimate the vector I l without further assumptions. Two approaches can be used to make this estimation

problem identifiable.2 The first idea is to consider knowledge of several reference spectra for every wavelength. The problem

1In practice, the wavelength associated with the pixel is obtained as the center (maximum, median, or barycenter) of the measured ISRF at the given pixel.

However, there are some effects, such as the smile (in ACT) or some gaps in our knowledge about the wavelengths (in along track), that can result in spectral

shifts, which can degrade the estimation of ISRFs. These aspects are not considered in the present work. Thus, it is assumed that each pixel is associated with

one wavelength which is known, and address the ISRF estimation problem by solving an inverse problem.
2Additional measurements could in principle be obtained experimentally using, e.g., a spectrally tunable on-board calibration source, albeit at extra cost.
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is that this would not only require a sufficient number of calibration scenes to be available, but also that they substantially

differ for each wavelength in order to provide complementary information on the shapes of the ISRFs. The second method,

which is considered in this paper, has the advantage that it makes use of only one reference spectrum and is based on the

assumption that the ISRFs for adjacent wavelengths λl are similar, i.e., they exhibit slight variations along the spectral axis

between λl and λl+1. It is expected that the average of the normalized absolute error between the ISRFs in a window of

Nobs +1 observations and the central ISRF at wavelength λl is below a given criterion for the ISRF estimation error. Note

that the larger this variation, the more important the discrepancies in ISRF shapes. The small variation assumption is not valid

for the whole set of wavelengths and the size of the sliding window must be adjusted in order to solve the ISRF estimation

problem. This is a reasonable assumption for the ISRFs of real-world spectrometers. To estimate the ISRF at wavelength λl, we

propose to consider a vector sl = [s(λ
l−Nobs

2

), ...,s(λ
l+

Nobs
2

)]T ∈ RNobs+1 of Nobs +1 observations, including also those from

the neighboring ISRFs. Rewritten in matrix form, (2) simplifies to:

sl =RlI l,

where Rl = [r
l−Nobs

2

, ...,r
l+

Nobs
2

]T ∈ R(Nobs+1)×(N+1) contains the values rl = [r(λl − N
2 ∆), ..., r(λl +

N
2 ∆)] ∈ RN+1 of the80

reference spectrum covered by the different ISRFs in the neighborhood (see algorithm in Appendix A1). Given a model for the

ISRF, estimating I l can then be conducted for each wavelength λl by minimizing the residual error ||sl −RlI l||22.

2.2 Parametric models

It is difficult to analytically construct accurate forward models with a small number of parameters for ISRFs because they would

need to incorporate a significant number of “contributors” associated with the instrument optics (slit, mirror, lens, separator,85

dispersing element), the detector or the acquisition mode. The state of the art therefore considers simple parametric models. A

classical way to model and estimate the ISRF at wavelength λl is to use a parametric Gaussian model defined by:

I l,βG
(x) =AG exp

[
− (λl −x−µG)

2

2σ2
G

]
, l = 1, ...,Nλ, x ∈∆, (3)

where βG = [AG,µG,σ
2
G]

T is the unknown vector of parameters to be estimated.

An alternative ISRF model was studied (Beirle et al., 2017) using a generalized Gaussian distribution referred to as “super-90

Gaussian” in order to better fit the ISRF shapes:

I l,βSG
(x) =ASG exp

[
−
∣∣∣∣λl −x−µSG

wSG

∣∣∣∣kSG
]
, l = 1, ...,Nλ, , x ∈∆, (4)

where βSG = [ASG,µSG,wSG,kSG]
T is the unknown parameter vector to estimate. This model reduces to the Gaussian model

when wSG = 2σ2
G and kSG = 2. The parameters wSG and kSG are the scale and shape parameters of the distribution, allowing

more or less flat shapes to be modeled.95

When using the parametric models (3) and (4), the ISRF estimation problem consists of estimating the unknown model

parameters for each sliding window. This estimation can be performed using the least squares method, which minimizes the
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following cost function:

Cl(β) =

N+1∑
n=1

||sl −RlI l,β||22, l = 1, ...,Nλ, (5)

where β ∈ {βG,βSG} is the unknown parameter vector and I l,β = [I l,β(δ1), ...,I l,β(δN+1)]
T .100

Simple parametric models, such as Gaussian or generalized Gaussian models, are attractive for their simplicity and small

number of parameters, yet can struggle to take into account the variety of different ISRF shapes that can be observed in practice.

An illustration is provided in Fig. 1, which shows examples of ISRFs for the MicroCarb mission. Clearly, these ISRFs cannot

be accurately modeled by bell-shaped Gaussian distributions or by generalized Gaussians (because of the dip at the center, for

example). This motivates the study of a new estimation method for ISRFs.105

3 Sparse approximations of ISRFs

This paper investigates the use of sparse representations for ISRFs in a dictionary of well chosen atoms. Models based on sparse

approximations and on dictionary learning have been widely and successfully used for different signal and image processing

applications (Zhang et al., 2015). These applications include image denoising, image classification, image reconstruction,

compressed sensing or dimensionality reduction and involve large varieties of signals and images (Figueiredo et al., 2007; Tošić110

and Frossard, 2011). However, sparse representations have never been investigated for ISRF estimation, which is precisely the

objective of this work.
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Figure 1. Illustration of a superposition of 1024 ISRFs with centered wavelengths λl = 758.3, ...,768.3nm around their central wavelengths.

The ISRFs have been simulated for the band B1 of the MicroCarb instrument using uniform scenes.
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3.1 Construction of the dictionary

Sparse representations express a given signal as a linear combination of a small number of signals that belong to a collection of

reference patterns, or atoms, which is called a dictionary. This paper proposes to decompose the ISRF in a dictionary of atoms115

Φ ∈ R(N+1)×ND :

I l ≈ IK
l =Φαl =

K∑
k=1

Φγk
αl,k, l = 1, ...,Nλ, (6)

where Φγk
is the γkth selected atom, i.e., the γkth column of the dictionary Φ and αl,k is the corresponding non zero co-

efficient of the sparse vector αl = [αl,1, ...,αl,K ]T ∈ RND . The dictionary is built in such a way that linear combinations of

a small number of its atoms (i.e., its columns) provide an efficient representation of the ISRF. Different methods allowing120

the dictionary to be built have been proposed in the literature. These methods are based on probabilistic learning, clustering,

vector quantization or Bayesian inference (Tošić and Frossard, 2011). Dictionary learning usually involves a two-stage opti-

mization structure, consisting first of a sparse coding step, to find the sparse vector αl which minimizes the objective function

||I l−Φαl||22 for a fixed dictionary Φ and then a dictionary update step, where the dictionary is estimated given a fixed sparse

vector αl. Depending on the application, the dictionary can be updated using a closed form solution, gradient descent, or using125

ground truth data. In this work we investigate two different ways of building the dictionary Φ. The first method constructs Φ by

using the ND singular vectors associated with the largest singular values of the SVD of a matrix composed of representatives

ISRF examples, as described in the algorithm of Appendix A2. The second method uses the K-SVD algorithm of (Aharon

et al., 2006), which belongs to the state of the art and is recalled in the algorithm of Appendix A5. The K-SVD algorithm is

a generalization of the K-means algorithm in which the dictionary is updated by changing its columns separately and sequen-130

tially and applying K singular value decompositions (SVDs) on an appropriate error matrix. Fig. 2 displays the first atoms of

dictionaries constructed using these two methods for the band B1 of MicroCarb. These dictionaries are found to be similar,

especially the two first atoms that correspond to the most energetic singular values. The two first atoms can be interpreted

as the approximate average of all ISRFs used to build the dictionary (first atom), and a correction for adjusting the different

widths of the ISRFs for different wavelengths (second atom), as seen in Fig. 1. The higher order atoms obtained with SVD and135

K-SVD are slightly different but with similar shapes overall.

3.2 Inverse problem

Assuming that the ISRF can decomposed in the dictionary Φ as in (6), the measured spectrum can be written as follows:

sl ≈RlI l ≈RlΦαl =Ψlαl, l = 1, ...,Nλ.

Thus, the ISRF estimation problem reduces to finding the sparse vector αl that minimizes the residual ||sl −Ψlαl||22. This140

sparse coding problem has been mathematically formulated in different ways (Zhang et al., 2015). One can use the l0 pseudo-

norm regularization || · ||0 with a penalty parameter µ, leading to the following problem:

argmin
αl

L(αl,µ) = argmin
αl

||sl −Ψlαl||22 +µ||αl||0, l = 1, ...,Nλ. (7)
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Figure 2. Representation of the four first atoms of the dictionary of ISRFs Φ constructed using an SVD on the matrix of representative ISRFs

(top) or using the K-SVD algorithm using the same matrix of representative ISRFs (bottom) for the MicroCarb spectrometer (band B1).

This problem is non-convex and NP-hard, and many approximations and heuristics have been proposed in the literature to find

an approximate solution. A standard method consists of using greedy algorithms such as the Orthogonal Matching Pursuit145

(OMP). OMP is a modification of the Matching Pursuit (MP) algorithm, which improves convergence by adding an orthog-

onalization step (Mallat and Zhang, 1993; Pati et al., 1993). The atoms of the dictionary that minimize the data fidelity term

||sl −Ψlαl||22 are iteratively determined by minimizing the remaining residual error. The OMP algorithm is summarized in

the algorithm of Appendix A3. Another method replaces the pseudo-norm l0 in (7) by the l1 norm, which leads to a convex

problem known as the LASSO problem (Tan et al., 2015):150

argmin
αl

L(αl,µ) = argmin
αl

||sl −Ψlαl||22 + γ||αl||1, l = 1, ...,Nλ, (8)

and the related algorithms studied in, e.g., (Figueiredo et al., 2007; Kim et al., 2007).

The OMP and LASSO algorithms provide a highly flexible decomposition of the ISRF, as the choice of the dictionary is

not constrained to a specific form. Indeed, the basis functions can be learned, for example by using the K-SVD algorithm in

conjunction with various Matching Pursuit algorithms. Another advantage of these methods is that they do not necessitate any155

prior assumption on the shape of the ISRFs (such as Gaussian ISRFs) and estimate them in a non-parametric way.

In the following, this paper compares the use of fixed dictionaries obtained by a single SVD, and dictionaries estimated by

K-SVD (alternation between SVD to update the dictionary and OMP to update the sparse code). The proposed approach using

OMP or LASSO (or other sparse formulations) and either fixed or re-estimated dictionaries will be referred to as SPIRIT for

“SParse representation of Instrument spectral Response Functions using a dIcTionary”.160
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4 Instruments, datasets & preprocessing

The spectrometers used in this study are passive pushbroom spectrometers, mainly hyperspectral dispersive spectrometers,

such as the MicroCarb high-resolution spectrometer and the OCO-2 instrument. 3

4.1 Synthetic data generation

Reference spectra used in this study were generated using the 4A/OP (Automatized Atmospheric Absorption Atlas) software165

(NOVELTIS et al., 2012). This software is based on a fast and accurate line-by-line transfer model that can be integrated

in operational processing chains including inverse problem processing (Armante et al., 2013). It was selected as the official

radiative model and reference code by CNES for the MicroCarb mission. The profiles originate from the Thermodynamical

Initial Guess Retrieval (TIGR) database, which is hosted by Aeris data 4. An example of profile was selected from this database

for the generation of a reference spectrum. The measured spectra were then obtained by convolving the reference spectrum with170

the ISRFs (normalized to area 1 for each instrument, see details in the next paragraphs) and embedded in additive Gaussian

noise to generate representative measurements. The advantage of this data generation method is to provide ground truth ISRFs,

which can be used to assess the performance of the different methods in a controlled scenario.

4.2 MicroCarb mission

MicroCarb is a mission developed by the Centre National des Études Spatiales (CNES) whose aim is to ensure continuity175

with other carbon measuring missions such as OCO-2 and GoSat, in order to monitor CO2 fluxes at the Earth surface and

determine CO2 atmospheric concentrations. The MicroCarb mission uses a compact and low cost space instrument that will be

smaller than the current spectrometers. The instrument is capable of acquiring four spectral bands with a single detector. The

first band B1 (758.3-768.3) nm is an O2 band with a spectral resolution of about 0.01 nm. The bands B2 (1596.7-1618.9 nm)

and B3(2023-2051 nm) with respective spectral resolutions of about 0.02 nm and 0.03 nm are sensitive to the concentration180

of CO2 and have CO2 absorption lines. The last band B4 (1264-1282.2 nm) is a second O2 band with spectral resolution of

about 0.02 nm. The wavelengths associated with this last band are closer to the CO2 wavelength and can be used for validation

of space-based greenhouse gas observation (Bertaux et al., 2020). The whole dataset has been delivered by the French Space

Agency (CNES, Toulouse) containing 1024 ISRFs associated with 1024 spectral measurements for the different bands. The

data used for this experiment is the first band of MicroCarb with Nλ = 1024 ISRFs and a sample size N = 895. The design185

of the MicroCarb instrument, obtained from (Castelnau et al., 2019), is displayed in Fig. 3. More details about MicroCarb can

3Alternative designs, such as Fourier Transform InfraRed spectroscopy (FTIR) spectrometer are also employed in practice and the associated ISRFs can

be obtained through the inverse Fourier transform. However, in certain applications, applying the Fourier transform can become more challenging (i.e., when

undersampling is necessary or when the Optical Path Difference varies depending on the position). If the problem can be modeled as a linear inverse problem,

sparse representation-based methods can be used with these spectrometers to estimate ISRFs. The proposed method is not specific to any instrument and can

be applied to any instrument for which the problem can be formulated as a linear inverse problem.
4Data available at https://www.aerisdata.fr/en/projects/thermodynamical-initial-guess-retrieval-tigr/
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be found on the CNES website. 5 A particularity of this mission is that the shapes of the ISRFs are strongly dependent on the

scene observed by the instrument, which will be discussed in Sect. 5.3.3.

Figure 3. Principle design of the MicroCarb instrument reproduced from (Castelnau et al., 2019).

5 Results and discussion

5.1 Numerical experiments and performance evaluation190

The performance of the different ISRF estimation methods is evaluated in terms of ISRF estimation quality and residual

between the spectral measurements and their estimates. The quality of ISRF estimation can be quantified by the normalized

absolute error between the ISRF and its estimate:

El =

N/2∑
n=−N/2

|Il(n∆)− Îl(n∆)|.

Note that for the instruments studied here, the ISRFs are assumed to be normalized to unit area. The residual between the

spectral measurements and their estimates is defined for each λl by:

ρl = ||sl − rlÎ l||22,

and summarized for an entire band in terms of the average residual:

ρ=
1

Nλ

Nλ∑
l=1

ρl.

In the MicroCarb mission, the ISRFs are considered to be well estimated when their normalized errors satisfy El < 1% for each

wavelength. The performance of 1% on the ISRF knowledge is an objective of the MicroCarb mission in order to provide an
5see CNES website: https://microcarb.cnes.fr/en
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accurate determination of CO2 concentrations. The 1% requirement accounts for uncertainty, acquisition noise of ISRFs and

interpolation, and is used as a target in this work. The proposed SPIRIT method is compared to the parametric methods based

on Gaussian and Super-Gaussian models. The parameters of these models are estimated using the non-linear least squares195

algorithm based on the Nelder-Mead optimization algorithm (Lagarias et al., 1998) (MATLAB function fminsearch). This

iterative algorithm requires an initialisation and a stopping criterion. For the initialization of the Gaussian model, the mean

µG0
was set to the sample mean of the ISRFs, the Full Width at Half Maximum (FWHM) was used for the standard deviation

σG0
and the amplitude was initialized as AG0

= (2πσG0
)−1/2. For the Super-Gaussian model, the initialization was defined

as µSG0
= µG0

, kSG0
= 2, wSG0

=
√
2σG0

and ASG0
=

kSG0

2wSG0
Γ(1/kSG0

) where Γ is the gamma function. The algorithm was200

stopped after a maximum number of iterations equal to 20000. The dictionary used by SPIRIT was constructed using an SVD

of a collection of approximately 10% of the total number of ISRFs within the band of interest, or estimated using the K-

SVD algorithm initialized with this collection. In our experiments, we used ND = 25. Two different sparse coding methods

based on LASSO (Tibshirani, 1996) and OMP are investigated after dictionary construction. The first method uses a MATLAB

implementation of LASSO with a parameter µ > 0 adjusted to obtain a desired number of atoms. The non zero coefficients205

obtained with LASSO were re-estimated in order to reduce the shrinking bias inherent to this method (Zhang and Huang,

2008). The implementations of the OMP and LASSO algorithms are summarized in Appendices A3 and A4.

5.2 ISRF estimation performance

5.2.1 ISRF estimation for the MicroCarb mission

An example of ISRF simulated for the MicroCarb mission, and the estimates obtained with the different methods, are displayed210

in Fig. 4. The results clearly illustrate the advantage of using SPIRIT for ISRF estimation, which leads to normalized estimation

errors of less than 1%, significantly below those obtained using the parametric estimation methods. A comparison between the

different sparse approximations (OMP, LASSO) and dictionaries (SVD, K-SVD) that can be used by SPIRIT shows that OMP

works better than LASSO for this example. Also, using the K-SVD algorithm does not significantly improve the results with

respect to SVD, although it has significantly higher computational complexity.215

The spectral measurements displayed in Fig. 5 were simulated by the CNES for the B1 wavelength range (758.4-768.9 nm).

Results show that, for the MicroCarb spectrometer, the use of the Super-Gauss parameterization reduces the residual error and

ISRF approximation errors compared with the Gaussian model. SPIRIT yields significantly better results, with ISRF approxi-

mation errors below 1%, and of the order of 0.1% for certain wavelengths. LASSO leads to overall less accurate approximations

of the ISRFs than OMP, at significantly higher computational cost, and the use of OMP is overall and consistently beneficial.220

Sum of two generalized Gaussians. ISRFs can also be modeled using other parametric models, such as the sum of two

generalized Gaussians with different shifted center wavelengths, although this has not yet been reported in the literature. As

displayed in Fig. 6, this novel parametric approach yields enhanced outcomes as compared to the use of Gaussian and Super-

Gaussian models. However, the performance is still not competitive with respect to sparse representation-based methods and
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Figure 4. Example of a simulated ISRF for the MicroCarb mission and its estimates using parametric methods and SPIRIT.

necessitates more parameters to estimate. A more detailed study of such more complex parametric models is left for future225

work.

5.2.2 ISRF estimation for the Orbiting Carbon Observatory 2 (OCO-2) spectrometer

This section studies the applicability of the proposed method to the Orbiting Carbon Observatory 2 (OCO-2) spectrometer.

The OCO-2 spectrometer is used in a NASA Earth observing satellite mission that was launched in July 2014. This mission is

dedicated to the study of atmospheric carbon dioxyde and oxygen and aims at characterizing the global CO2 seasonal cycles230

and to quantify the sources and sinks of carbon. OCO-2 is composed of three high spectral resolution imaging spectrometers

for narrow spectral ranges. The characterization of ISRFs for this spectrometer is highly challenging and crucial due to this

high spectral resolution. The ISRFs are measured for each pixel using a tunable diode laser during pre-flight calibration (Lee

et al., 2017), and the results are stored in a look-up table. The data used in this article can be downloaded on the NASA data

website EarthDATA (OCO-2 Science Team / Gunson and Eldering, 2019) 6. The product considered in this study is the OCO-2235

Level 1B Version 11r for science acquired in March 2023 and the fourth footprint is used. Specification on the data product can

be found in (Crisp et al., 2021). Some of the ISRFs are declared as unvalid due to radiometric, spatial, spectral or polarization

problems (and are thus not considered for ISRF estimation). The ISRFs associated with bad pixels have not been considered in

our experiments, resulting in a number of ISRFs lower than the number of pixels. To identify the ISRFs at the missing nominal

wavelengths λl, a linear interpolation between two specified nominal wavelengths λa and λb with known ISRFs was employed.240

The resulting interpolated ISRF is defined by:

Il =
λl −λa

λb −λa
Ib +

λb −λl

λb −λa
Ia. (9)

6Data available at https://disc.gsfc.nasa.gov/datacollection/OCO2_L1B_Calibration_11r.html.

11



759 760 761 762 763 764 765 766 767 768

 [nm]

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 i
n
te

n
s
it
y

Measurements MicroCarb (band B1)

Measured

Gauss

Super-Gauss

OMP via SVD

OMP via K_SVD

LASSO via SVD

LASSO via K_SVD

(a)

759 760 761 762 763 764 765 766 767 768

 [nm]

-8

-6

-4

-2

lo
g
 1

0
 e

rr
o
r

Differences between normalized measured spectrum and the reconstructions - MicroCarb (band B1)

(b)

759 760 761 762 763 764 765 766 767 768

 [nm]

-2

-1

0

1

2

lo
g
1
0
 r

e
s
id

u
a
ls

Residuals 
l
 obtained for each observation window - MicroCarb (band B1)

Gauss
 = 69.20

Super-Gauss
 = 0.39

OMP_K-SVD
 = 0.20

OMP_SVD
 = 0.20 LASSO_SVD

 = 0.34

LASSO_K-SVD
 = 0.60

(c)

759 760 761 762 763 764 765 766 767 768

 [nm]

-4

-3

-2

-1

0

lo
g
1
0
 e

rr
o
r

ISRF approximation error - MicroCarb (band B1)

762.2 762.6

-0.792
-0.79

-0.788
-0.786
-0.784
-0.782

762.2 762.6

-1.705

-1.7

-1.695

-1.69

(d)

1 2 3 4 5 6 7 8 9 10

Atoms

-3

-2.5

-2

-1.5

-1

-0.5

lo
g
1
0
 e

rr
o
r

Mean ISRF approximation error -  MicroCarb (band B1)

(e)

Figure 5. Illustrations of a) the measured spectrum reconstruction, b) the difference between the measured spectrum and the reconstructed

ones, c) the residuals ρl for each wavelengths, d) the ISRF approximation error versus the wavelength and e) the mean ISRF approximation

error versus the number of selected atoms for different methods (Gauss, Super-Gauss, OMP, LASSO, SVD and K-SVD) and for the band B1

of the MicroCarb instrument.

Note that the number Nλ of wavelengths after interpolation may differ from the number of pixels of the instrument, which

occurs if the ISRFs associated with the first and/or last pixels are missing. The ISRFs used for the experiments come from the

O2A-band of OCO-2 with Nλ = 859 ISRFs and a sample size N = 895. Fig. 7 displays an example of ISRF from the OCO-2245

dataset. A visual comparison with Fig. 5 shows that the ISRF shapes can differ significantly depending on the considered

wavelength and the instrument. This observation suggests that the dictionary must be adapted to the spectrometer. Another

interesting observation is that although the Super-Gaussian distribution should theoretically always provide a better fit than

the Gaussian distribution, it is not systematically the case in practice because of convergence issues for the iterative methods

used to solve the nonlinear least squares problem for parameter estimation. Specifically, the model parameters are estimated250

using a simplex-based optimization method (MATLAB function fminsearch) that aims at minimizin the residuals between the

measured and estimated spectra, which does not always converge to a better solution for the Super Gaussian model than for the

Gaussian model.
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Figure 6. Results obtained using the different methods with a dictionary constructed using 103 ISRFs from the band B1 for the sparse

representation-based methods.
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Figure 7. Example of an ISRF retrieved for the OCO-2 mission and its estimates using parametric methods and SPIRIT.

Fig. 8 displays performance results for the OCO-2 measurements obtained using the data for the O2 band (757-772 nm).

The measured spectrum is reconstructed with the proposed sparse representation methods for K = 5 atoms chosen using a255

dictionary constructed using SVD or K-SVD. The results indicate that the Super-Gaussian model delivers slightly better results

than the Gaussian model in terms of residual error and mean ISRF approximation error. However, for the smaller wavelengths

of the band, the ISRF approximation errors are slightly larger with the Super-Gaussian model, as already observed in Fig. 7

for a single ISRF. Both parametric models yield close to 10% ISRF approximation errors. The proposed sparse representation

approach again yields far better ISRF approximations and measurement fits, with the best results obtained using OMP and260

SVD.

13



760 762 764 766 768 770

 [nm]

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 i
n
te

n
s
it
y

Measurements OCO-2 (O
2
A-band)

Measured

Gauss

Super-Gauss

OMP via SVD

OMP via K_SVD

LASSO via SVD

LASSO via K_SVD

(a)

760 762 764 766 768 770

 [nm]

-8

-6

-4

-2

lo
g
1
0
 e

rr
o
r

Differences between normalized measured spectrum and the reconstructions - OCO-2 (O
2
A-band)

(b)

760 762 764 766 768 770

 [nm]

-2

-1

0

1

2

lo
g
1
0
 r

e
s
id

u
a
ls

Residuals 
l
 obtained for each observation window - OCO-2 (O

2
A-band)

Gauss
 = 45.07

OMP_SVD
 = 1.11

Super_Gauss
 = 37.32

OMP_K-SVD
 = 1.13

LASSO_SVD
 = 1.14

LASSO_K-SVD
 = 1.13

(c)

760 762 764 766 768 770

 [nm]

-2.5

-2

-1.5

-1

lo
g
1
0
 e

rr
o
r

ISRF approximation error - OCO-2 (O
2
A-band)

(d)

1 2 3 4 5 6 7 8 9 10

Atoms

-2

-1.5

-1

-0.5

lo
g
1
0
 e

rr
o
r

Mean ISRF approximation error - OCO-2 (O
2
A-band)

7 7.5 8

-1.11

-1.105

-1.1

-1.095

(e)

Figure 8. Illustrations of a) the measured spectrum reconstruction, b) the difference between the measured spectrum and the reconstructed

ones, c) the residuals ρl for each wavelength, d) the ISRF approximation error versus the wavelength and e) the mean ISRF approximation

error versus the number of selected atoms using different methods (Gauss, Super-Gauss, OMP and LASSO with SVD or K-SVD) for the

O2A-band of the OCO-2 instrument.

5.2.3 Conclusions

Overall, the conclusions from these experiments are as follows. First, the Super-Gaussian parameterization often yields better

performance than the Gaussian one, corroborating the results reported in (Beirle et al., 2017). However, the normalized ISRF

approximation errors obtained with these parametric methods are consistently larger than 1%, for both instruments and for265

all wavelengths. In contrast, the proposed SPIRIT approach based on sparse approximations of ISRFs in a suitable dictionary

yields significantly better results. This result is due to the fact that the ISRF shapes depend strongly on the spectrometer and

can vary across wavelengths, which cannot be accommodated easily with a simple parametric model. On the contrary, decom-

positions in appropriate dictionaries that depend on the spectrometer and the chosen wavelength offer sufficient flexibility for

all use cases considered in this paper. Regarding the estimation algorithms, SVD overall provides an estimation performance270

close to K-SVD and OMP leads to better estimation than LASSO. There is no theoretical reason for OMP to provide better per-
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formance than LASSO. However, it is important to note that the OMP and LASSO algorithms address two distinct problems:

the OMP algorithm provides an approximate solution to the problem with an ℓ0 penalty and the LASSO algorithm solves the

relaxed problem using an ℓ1 regularization. Certain limitations of the LASSO algorithm have been highlighted in numerous

publications including (Tibshirani, 1996), and may also be at the origin of our observation. The results overall suggest the use275

of SVD for building the dictionary and OMP for ISRF estimation.

The proposed methods can also be applied to other instruments, such as Avantes, GOME-2, OMI and TROPOMI used in

(Beirle et al., 2017). Results obtained with these instruments are available in the supplementary material (El Haouari et al.,

2024) and lead to similar conclusions.

5.3 Robustness analysis and ablation study280

5.3.1 Robustness to additive noise

Monte Carlo simulations were conducted to study the robustness of the different ISRF estimation methods to the presence of

measurement noise. Independent white Gaussian noise was added to the spectral measurements with several signal to noise

ratio (SNR) levels to take into account thermal noise and spatial binning: Spatial binning involves the arbitrary division of the

imaged area on Earth into distinct field of views (FOVs) (e.g., three FOVs for MicroCarb). The measured spectrum for each285

FOV is obtained as an average of the measured spectra within that FOV. 7 Table 1 reports the obtained residual approximation

errors and the normalized average ISRF approximation errors for the two instruments MicroCarb and OCO-2. Approximation

errors less than < 1% are highlighted in italic. These results show that the proposed sparse representations meet this target for

SNRs larger than 20dB. Moreover, OMP is found to be more robust to noise than LASSO and yields overall best results. The

parametric models again lead to large errors. It is interesting to note that these errors do not vary significantly with the noise290

level. This indicates that errors due to model misfit are larger than those induced by the noise degradations. To conclude, OMP

combined with SVD provides the overall best results for ISRF estimation, also in the presence of additive noise.

5.3.2 Sensitivity to parameter tuning for SPIRIT

The proposed approach requires the choice of a small number of parameters, namely the size of the sliding window Nobs, the

size of the dictionary ND and the number of atoms K. The choice of K has been studied above and the best results were295

obtained for K ≈ 4− 5 for both instruments, see Figs. 5 and 8 and the corresponding discussions in Section 5.2.2. Here, we

further study the impact of Nobs and ND on the ISRF approximation errors. To this end, Figs. 9 and 10 show the approximation

errors (in log10 scale) as a function of Nobs for the Gaussian and Super-Gaussian parameterizations, and as functions of

(Nobs,ND) for SPIRIT. Results are reported for the two instruments OCO-2 and MicroCarb and averaged for all ISRFs. The

ISRF estimation errors decrease as Nobs increases, as expected. However, this decrease is more important for SPIRIT (e.g., for300

Nobs = 80, the mean ISRF errors for Gauss and Super-Gauss are equal to 16.27%, 2.04%, whereas they are equal to 0.29%

7In the case of the MicroCarb mission, the binning represents a compromise between the objective of achieving a good signal-to-noise ratio (SNR) and

maintaining a suitable ground grid, which has a resolution of 13.5 km in ACT and 9 km along the track.

15



Table 1. Mean residual and approximation errors for different SNRs and different methods (Gauss (G), Super-Gauss (SG), OMP and LASSO,

SVD and K-SVD).

Mean ISRF approximation error (%) Residual error

Instrument / SNR G SG OMP OMP LASSO LASSO G SG OMP OMP LASSO LASSO

SVD K-SVD SVD K-SVD SVD K-SVD SVD K-SVD

20 dB 16.28 3.39 4.58 4.37 14.38 14.23 185.5 116.4 112.3 112.4 112.7 112.9

MicroCarb 40 dB 16.27 2.04 0.54 0.56 2.05 2.37 70.2 1.56 1.32 1.32 1.53 1.70

band B1 55 dB 16.27 2.03 0.29 0.33 1.33 1.66 69.21 0.43 0.23 0.24 0.38 0.61

80 dB 16.27 2.03 0.28 0.32 1.27 1.68 69.2 0.39 0.20 0.20 0.34 0.60

20 dB 8.11 8.10 4.50 3.98 6.58 5.82 174.6 165.1 121.2 122.0 120.8 121.8

OCO-2 40 dB 8.04 7.80 0.79 0.74 1.12 0.96 46.35 38.60 2.33 2.35 2.34 2.35

band 1 55 dB 8.03 7.79 0.54 0.56 0.84 0.76 45.11 37.36 1.15 1.17 1.18 1.16

80 dB 8.03 7.79 0.52 0.55 0.83 0.73 45.07 37.32 1.11 1.13 1.14 1.13

for OMP/SVD, 0.33% for OMP/K-SVD, 1.23% for LASSO/SVD and 1.40% for LASSO/K-SVD) showing the interest of

exploiting sparsity for ISRF estimation. The results in Figs. 9 and 10 also indicate that it is beneficial to use dictionaries of

modest size, since the ISRF estimation errors increase for large dictionaries (ND ≤ 100 for OMP and ND ≤ 25 for LASSO).

Based on this observation, ND = 25 was used in all the experiments.305

5.3.3 Robustness to ISRF changes

The ISRFs considered in the previous sections were obtained from uniform scenes referred to as “ISRF IN” for the MicroCarb

mission. However these ISRFs can change depending on the scene observed by the instrument.

ISRFs for non-uniform scenes. The design of the MicroCarb instrument makes the ISRF sensitive to the slit illumination

during the integration time. Such dependence on the scene can impact a multitude of instruments. 8 Eight different scenes of310

the Earth’s surface that are directly observed by the spectrometer’s slit and subsequently recorded by the instrument’s detector

during the integration period are considered and are displayed in Fig. 12. These images were obtained in the ACT direction

and each image was divided along the ACT direction into three equal parts, resulting in three defined FOVs, labeled as FOV1,

FOV2 and FOV3. The spatial pixels in each FOV are averaged to increase the spectral SNR. This binning and averaging step

allows three measured spectra per imaged area to be determined, whose ISRFs have to be estimated. Figure 11 shows ISRFs315

from uniform scenes (left) randomly selected out of the 1024 ISRFs, and ISRFs from non-uniform scenes (right), randomly

selected from the total set of eight scenes and three FOVs, highlighting the differences in ISRF shapes depending on the scene:

8It can be possible to defocus the instrument in order to avoid this dependence on the slit illumination. However, the introduction of a defocus can potentially

compromise the precision of the instrument, and thus it was ultimately decided to exclude this option for the MicroCarb instrument.
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Figure 9. Mean approximation errors for OCO-2 and the different estimation methods (Gauss, Super-Gauss, OMP and LASSO with SVD or

K-SVD) versus the number of observations Nobs and the dictionary size ND for K = 5.

The ISRFs can be more asymmetric for non uniform scenes and are thus harder to estimate. 9 It is interesting to note that the

ISRF of a desert scene is very similar to the ISRF of a uniform scene, contrary to the ISRF of a horizontal coast profil, which

makes the slit blinded during one third of the integration time and leads to an asymmetric left-distorted ISRF, which is harder320

to estimate.

Estimation performance. This section studies the performance of SPIRIT for estimating non uniform scene ISRFs for the

first band (band B1) of the MicroCarb spectrometer. Two cases are considered: estimation using the original dictionary learned

from examples of uniform ISRFs (ISRF IN), and estimation after modification of this dictionary to account for the diversity

of ISRFs. Specifically, the second dictionary is constructed from from a set of 103 ISRFs IN (one out of ten) and of 3 ISRFs325

Scene (out of 24). The second dictionary is then composed of ND = 25 new atoms obtained by SVD from this collection of

representative ISRFs. Results obtained using SPIRIT with OMP are displayed in Fig. 13. In the first case (dictionary learnt

from uniform ISRFs, Fig. 13 top row), the resulting normalized ISRF errors exceed 1 % for several scenes and FOVs, pointing

to the fact that the dictionary is not well adapted for representing ISRFs for non-uniform scenes. The results obtained using

9In practice, there is no information available regarding the non-uniformity of a given scene from the measured spectra. It is only during the inversion

process, when estimating the ISRFs, that it becomes apparent (by looking at the measured spectra and the associated residuals) that the ISRFs have been

modified. For a given reference spectrum, non-uniform scenes are generated using asymmetric ISRFs, see (Pittet et al., 2019) for more details.
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Figure 10. Mean approximation errors for MicroCarb and the different estimation methods (Gauss, Super-Gauss, OMP and LASSO with

SVD or K-SVD) versus the number of observations Nobs and the dictionary size ND for K = 4.

the second dictionary are presented in the bottom part of Fig. 13. Using only three additional examples of ISRFs Scene in the330

dictionary allows ISRF estimation errors to be again smaller than 1%. Note that the lowest approximation errors are obtained

in most cases using K = 3 to K = 6 atoms from the dictionary, as before. To conclude, these results show that the proposed

method can easily adapt to more complex ISRF shapes by considering more diverse ISRF examples in the dictionary estimation

step.

5.3.4 Robustness to pixel errors335

Instrumental errors within a single pixel l can distort the shape of the ISRF of this pixel, leading to the creation of an outlier.

This section investigates the impact of such outliers on ISRF estimation. To simulate this scenario, an ISRF from the OCO-2

instrument was inserted in pixel l = 500 of the band B1 of MicroCarb data, simulating an outlier in this pixel. The initial

ISRF of the 500th band of Microcarb and its new version are displayed in Fig. 14 (see black and red curves respectively).

The corresponding estimation results, compared to those from the previous study without outliers, are displayed in Fig. 15.340

These results demonstrate that the presence of an erroneous ISRF in the sliding window leads to an increase in estimation

errors for the windows containing the outlier since the ISRF estimation becomes more challenging. However, the results also
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Figure 11. Examples of ISRFs from uniform scenes (ISRF IN - left) and from different non-uniform scenes displayed in Fig. 12 and FOVs

(ISRF scene - right) (MicroCarb band B1).
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Figure 12. Eight types of scenes (left) with the corresponding ISRFs (FOV 2) (right) for the MicroCarb instrument.

indicate that the outlier ISRF could be first identified by inspecting the residuals between the measured spectrum and the ISRF

reconstructions and then not considered for ISRF estimation.

5.3.5 Impact of uncertainties about the reference spectra and reference ISRFs345

This section analyzes the impact of uncertainties about the ISRFs used to build the dictionary or about the reference spectrum

on the ISRF estimation performance.

Uncertainties about the ISRFs. To evaluate the impact of uncertainties affecting the ISRFs, Gaussian noise is added to

one-third of the ISRFs used to construct the dictionary, with SNR = 40dB and SNR = 60dB . The noisy ISRFs are then made

positive by taking their absolute values and normalized to have a unit area. The results, displayed in the left part of Fig. 16350
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Figure 13. ISRF estimation errors for ISRFs Scene obtained using a dictionary of uniform ISRFs (top) and mixed ISRFs (bottom).
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Figure 15. Residuals (left) and ISRF estimation errors (right) obtained in presence of pixel errors for the MicroCarb spectrometer using the

different methods (Gauss, Super-Gauss, SVD/KSVD and OMP/LASSO).

20



(using K = 4 atoms for the plot in the top row), show that as noise increases, better results are achieved with smaller values

of K in the presence of noise with an increase in ISRF estimation errors. However, the estimation is relatively robust to the

presence of noise affecting ISRFs used to build the dictionary since approximation errors remain below 1% on average for both

noise levels.

Uncertainties about the reference spectrum. In a second experiment, Gaussian noise is added to the reference spectrum,355

with SNR = 20dB, SNR = 40dB and SNR = 60dB. The results are shown in the right part of Fig. 16 (using K = 4 atoms for

the plot in the top row). Using a reference spectrum corrupted by additive noise has clearly a smaller impact on estimation

performance, when compared to degradations affecting ISRFs used to build the dictionary. Note that high noise levels (SNR =

20 dB) are necessary to significantly increase ISRF estimation errors, probably because of an averaging effect when computing

spectral measurement by convolution of the reference spectrum with the ISRF.360

Overall, these results indicate that the proposed method is robust to uncertainties in both the ISRFs and the reference

spectrum, with ISRF approximation errors remaining below 1% for realistic SNR levels.
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Figure 16. Results obtained using SVD and OMP for the different scenarios of noisy ISRFs in the construction of the dictionary (left) and

noisy reference spectra (right) for the band B1 of MicroCarb.

6 Conclusions

This paper studied a new method for estimating the instrument spectral response functions (ISRFs) of spectrometers. This

method is based on a sparse decomposition of the ISRFs into a dictionary of basis functions called atoms. The proposed365

method can be applied to a large variety of instruments as long as the ISRF estimation problem can be formulated as a linear

inverse problem with a sufficient number of measurements (either because the ISRFs do not vary much in a small observation

window, in the spectral or spatial domains, or because observations from several reference spectra can be obtained for the same

ISRF). The method also requires that a sufficient amount and variety of reference ISRFs have been identified and characterized

on the ground to construct the dictionary. We recommend to use the SVD algorithm to build the dictionary using representatives370

ISRFs and the orthogonal matching pursuit (OMP) algorithm to decompose the ISRFs into this dictionary. The performance

of these algorithms is excellent at the price of a very modest computational cost, which suggests its practicality for in-flight
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scenarios. Another interesting property of the proposed estimation method is that it is not impacted significantly by the shapes

of the ISRFs to be estimated, allowing accurate estimations for different types of scenes. Numerical experiments presented in

this paper also showed that the ISRFs of MicroCarb and OCO-2 spectrometers can be estimated with approximation errors375

smaller than 1%, which is very promising. Other results available in the supplementary material confirm this conclusion for

other spectrometers such as Avantes, GOME-2, OMI and TROPOMI.

Future work includes the consideration of radiometric and spectral errors (such as straylight, residual errors of calibration,

temporal drifts or spectral shifts) that can degrade the performance of ISRF estimation. These errors are expected to affect

more significantly some specific wavelengths, which suggests to investigate specific algorithms jointly correcting the errors380

and estimating the ISRFs. The resulting problem is more challenging since there are non-linear relationships between the

spectrometer measurements and these radiometric and spectral errors. Another interesting prospect is to analyze the potential

interest of other methods, e.g., based on Gaussian mixtures or machine learning algorithms, for error correction and ISRF

estimation. Finally, it would be interesting to assess more extensively the impact of potential uncertainties about the reference

spectra or the ISRFs used to build the dictionary.385

Code and data availability. The results obtained with the proposed method for the instruments Avantes, GOME-2, OMI and TROPOMI are

provided in the Supplement (El Haouari et al., 2024). More details on the data and code used in this study are available upon request from

the corresponding author.

Appendix A: Algorithms

Appendix A describes the algorithm used to create the matrix of reference spectra, the OMP algorithm and the K-SVD algo-390

rithm. The LASSO algorithm was implemented using the Matlab function lasso.m. The method used to select the hyperparam-

eter µ is also presented.

A1 Reference spectrum matrix

The algorithm takes as an input the reference spectrum as a vector, the corresponding wavelengths λr, the wavelengths associ-

ated with the measured spectrum λ and the wavelengths associated with the ISRF ∆ introduced in Section 2.395

A2 Construction of the dictionary

This appendix describes the construction of the dictionary Φ that will be used in the sparse representation-based algorithms

K-SVD, LASSO and OMP.
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Algorithm A1 Generation of the reference spectrum matrix.

Input: Reference spectrum r, wavelengths of r denoted as λr , wavelengths of the measured spectrum λ, ISRF wavelength ∆

Output: Reference spectrum matrix for all wavelengths R.

1: for l = 1, ...,Nλ do

2: λl = λ(l)

3: λresp = λl +∆

4: R(l, :) = interp(λr,r,λresp)

5: end for

6: return R

Algorithm A2 Construction of the dictionary.

Input: Matrix of selected ISRFs I , size of the dictionary Nobs

Output: Dictionary of ISRFs Φ.

1: [U ,Γ,V ∗] = SVD(I)

2: Φ= V (:,1 :Nobs)

3: return Φ

A3 OMP algorithm

Appendix A3 describes the OMP algorithm used to find the sparse representation of the ISRF I l of interest using K non-zero400

coefficients in the dictionary Φ from the measured spectrum sl and the reference spectrum matrix Rl contained in the sliding

window.

Algorithm A3 Orthogonal Matching Pursuit (OMP) algorithm.

Input: Measured spectrum sl, reference spectrum matrix Rl, dictionary of ISRFs Φ, sparsity parameter K

Output: Sparse vector αl.

1: Ψl =RlΦ

2: U1 = sl

3: for k = 1, ...,K do

4: Find Ψγk ∈Ψl that maximize the scalar product |⟨Uk,Ψγk/||Ψγk ||⟩|
5: Find [αγ1 , ...,αγk ] ∈αl that solves argminα ||Uk −

∑k
k′=1αγk′Ψγk′ ||22

6: Uk+1 = sl −
∑k

k′=1αγk′Ψγk′

7: end for

8: return αl

A4 LASSO algorithm

The MATLAB function lasso.m is used to find the sparse representation of the ISRF I l in the dictionary Φ using K non-

zero coefficients, from the measured spectrum sl and the reference spectrum matrix Rl associated with the sliding window.405
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A dichotomic search is used to obtain the sparsity parameter µ that leads to a given number non-zero coefficients K. The

associated algorithm is described in Algorithm A4.

Algorithm A4 LASSO algorithm.

Input: Measured spectrum sl, reference spectrum matrix Rl, dictionary of ISRFs Φ, sparsity parameter K, mininimum value of the LASSO sparsity

parameter µmin, maximum value of the LASSO sparsity parameter µmax

Output: Sparse vector αl.

1: Ψl =RlΦ

2: αresp = lasso(Ψl,sl, ’lambda’,µmax, ’Alpha’,1)

3: while sparsity( αresp) ̸=K do

4: µ= µmin+µmax
2

5: αresp = lasso(Ψl,sl, ’lambda’,µ, ’Alpha’,1)

6: if sparsity(αresp) <K then

7: µmax = µ

8: else

9: µmin = µ

10: end if

11: end while

12: Find the non-zero components in αresp to form the vector [γ1, ...,γK ]

13: Re-estimate the non-zero sparse coefficients: Find [αγ1 , ...,αγk ] ∈αl that solves argminα ||sl −
∑k

k′=1αγk′Ψγk′ ||22
14: return αl

A5 K-SVD algorithm

The K-SVD algorithm of (Aharon et al., 2006) is described in Algorithm A5. At each step, the dictionary is updated by

changing its columns separately and sequentially, and applying K singular value decompositions (SVDs) on the appropriate410

error matrix Ej .
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Algorithm A5 Construction of the dictionary using the K-SVD algorithm.

Input: Matrix of selected ISRFs I , number of selected ISRFs L, size of the dictionary Nobs, Dictionary Φ obtained using SVD in Algorithm (2), sparsity

parameter K

Output: New dictionary of ISRFs Φ.

1: while not convergence do

2: Sparse coding step: xl = OMP(Il,Φ,K) ∀ l = 1, ...,L

3: Dictionary update:

4: for j = 1, ...,Nobs do

5: Define the group of examples that uses the j-th colum of the dictionary j, wj = {l|1≤ l ≤N,xj
T (l) ̸= 0}

6: Compute the overall representation error matrix, Ej = I −
∑

i̸=j ϕix
i
T

7: Build ER
j from Ej using the columns corresponding to wj

8: SVD decomposition [U ,Γ,V ∗] = SVD(ER
j )

9: Update the dictionary column ϕj as the first column of U and the vector xj
R as the first column of V Γ(1,1).

10: end for

11: end while

12: return Φ

different wavelengths. Moreover, we express our gratitude to Steffen Beirle from the Max Planck Institute for Chemistry(MPI-C) for helpful

discussions and for providing some ISRF data.
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