Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 10625

To link to this article :

DOI:10.1109/LSP.2013.2296138
URL : http://dx.doi.org/10.1109/LSP.2013.2296138

To cite this version :
Besson, Olivier and Dobigeon, Nicolas and Tourneret, Jean-Yves Joint Bayesian estimation of close subspaces from noisy measurements. (2014) IEEE Signal Processing Letters, vol. 21 (n° 2). pp. 168-171. ISSN 1070-9908

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

Joint Bayesian Estimation of Close Subspaces from Noisy Measurements

Olivier Besson, Senior Member, IEEE, Nicolas Dobigeon, Member, IEEE, and Jean-Yves Tourneret, Senior Member, IEEE

Abstract

In this letter, we consider two sets of observations defined as subspace signals embedded in noise and we wish to analyze the distance between these two subspaces. The latter entails evaluating the angles between the subspaces, an issue reminiscent of the well-known Procrustes problem. A Bayesian approach is investigated where the subspaces of interest are considered as random with a joint prior distribution (namely a Bingham distribution), which allows the closeness of the two subspaces to be parameterized. Within this framework, the minimum mean-square distance estimator of both subspaces is formulated and implemented via a Gibbs sampler. A simpler scheme based on alternative maximum a posteriori estimation is also presented. The new schemes are shown to provide more accurate estimates of the angles between the subspaces, compared to singular value decomposition based independent estimation of the two subspaces.

Index Terms-Bingham distribution, Procrustes problem, subspace estimation.

I. Problem Statement

MODELING signals of interest as belonging to a linear subspace is arguably one of the most encountered approach in engineering applications [1]-[3]. Estimation of such signals in additive white noise is usually conducted via the singular value decomposition which has proven to be very successful in numerous problems, including spectral analysis or direction finding. In this letter, we consider a situation where two independent noisy observations of a subspace signal are available but, due to miscalibration or a change in the observed process, the subspace of interest is slightly different from one observation to the other. More precisely, assume that we observe two $M \times T$ matrices X_{1} and X_{2} given by

$$
\begin{equation*}
X_{k}=H_{k} S_{k}+N_{k} ; \quad k=1,2 \tag{1}
\end{equation*}
$$

where the orthogonal $M \times R$ matrices $H_{k}\left(H_{k}^{T} H_{k}=I_{R}\right)$ span the subspace where the signals of interest lie, S_{k} stands for the matrix of coordinates of the noise-free data within the range space $\mathcal{R}\left(H_{k}\right)$ of H_{k}, and N_{k} denotes an additive white Gaussian noise. Herein, we are interested in recovering the subspaces H_{1},

[^0]H_{2} but, maybe more importantly, to have an indication of the "difference" between these two subspaces. The natural distance between H_{1} and H_{2} is given by $\left[\sum_{r=1}^{R} \theta_{r}^{2}\right]^{1 / 2}$ where θ_{r} are the principal angles between H_{1} and H_{2}, which can be obtained from the singular value decomposition (SVD) $H_{1}^{T} H_{2}=$ $Y \operatorname{diag}\left(\cos \theta_{1}, \ldots, \cos \theta_{R}\right) Z^{T}$. This problem is somehow reminiscent of the orthogonal matrix Procrustes problem [4, p. 601] where one seeks an orthogonal matrix that brings H_{1} close to H_{2} by solving $\min _{Q^{T} Q=I}\left\|H_{2}-H_{1} Q\right\|_{F}$. The solution is well known to be $Q=Y Z^{T}$. The problem here is slightly different as we only have access to X_{1}, X_{2} and not to the subspaces themselves. Moreover, we would like to exploit the fact that H_{1} and H_{2} are close subspaces. In order to embed this knowledge, a Bayesian framework is formulated where H_{1} and H_{2} are treated as random matrices with a joint distribution, as detailed now.

Let us state our assumptions and our approach to estimating H_{1}, H_{2} and subsequently the principal angles $\theta_{r}, r=1, \cdots, R$. Assuming that the columns of N_{1} and N_{2} are independent and identically Gaussian distributed $N_{k} \sim \mathcal{N}\left(0, \sigma^{2} I\right)$ with σ^{2} known, the likelihood function of X_{k} is given by
$p\left(X_{k} \mid H_{k}, S_{k}\right) \propto \operatorname{etr}\left\{-\frac{1}{2 \sigma^{2}}\left(X_{k}-H_{k} S_{k}\right)^{T}\left(X_{k}-H_{k} S_{k}\right)\right\}$
where \propto means proportional to and etr $\{$.$\} stands for the expo-$ nential of the trace of the matrix between braces. As for S_{k}, we assume that no knowledge about it is available so that its prior distribution is given by $\pi\left(S_{k}\right) \propto 1$. Note that this is an improper prior but, as will be shown shortly, marginalizing with respect to S_{k} results in a proper distribution. Indeed,

$$
\begin{align*}
p\left(X_{k} \mid H_{k}\right) & =\int p\left(X_{k} \mid H_{k}, S_{k}\right) \pi\left(S_{k}\right) d S_{k} \\
& \propto \operatorname{etr}\left\{-\frac{1}{2 \sigma^{2}}\left(X_{k}^{T} X_{k}-X_{k}^{T} H_{k} H_{k}^{T} X_{k}\right)\right\} \tag{3}
\end{align*}
$$

Let us now turn to our assumption regarding H_{1} and H_{2}. We assume that H_{1} is uniformly distributed on the Stiefel manifold [5] and that H_{2}, conditioned on H_{1}, follows a Bingham distribution [5], [6] with parameter matrix $\kappa H_{1} H_{1}^{T}$, i.e.,

$$
\begin{equation*}
\pi\left(H_{2} \mid H_{1}\right)=C\left(\kappa H_{1} H_{1}^{T}\right) \operatorname{etr}\left\{\kappa H_{2}^{T} H_{1} H_{1}^{T} H_{2}\right\} \tag{4}
\end{equation*}
$$

where $C(A)={ }_{1} \quad F_{1}\left(\frac{R}{2}, \frac{N}{2} ; A\right)$ and ${ }_{1} F_{1}(., . ;$.$) is an hyper-$ geometric function of matrix argument [5]. It is known that ${ }_{1} F_{1}(p, q ; A)$ depends only on the non-zero eigenvalues of A : hence $C\left(\kappa H_{1} H_{1}^{T}\right)$ in (4) depends on κ only. The latter rules the prior distribution of the angles between $\mathcal{R}\left(H_{1}\right)$ and $\mathcal{R}\left(H_{2}\right)$: the larger κ the closer $\mathcal{R}\left(H_{1}\right)$ and $\mathcal{R}\left(H_{2}\right)$ [7].

II. SUBSPACE Estimation

Our objective is, given the likelihood function in (3) and the prior in (4), to estimate H_{1}, H_{2} and then deduce the principal angles between them. Towards this end, let us first write the joint posterior distribution of H_{1} and H_{2} as

$$
\begin{align*}
& p\left(H_{1}, H_{2} \mid X_{1}, X_{2}\right) \propto p\left(X_{1}, X_{2} \mid H_{1}, H_{2}\right) \pi\left(H_{2} \mid H_{1}\right) \pi\left(H_{1}\right) \\
& \quad \propto \operatorname{etr}\left\{\frac{1}{2 \sigma^{2}} X_{1}^{T} H_{1} H_{1}^{T} X_{1}+\frac{1}{2 \sigma^{2}} X_{2}^{T} H_{2} H_{2}^{T} X_{2}\right\} \\
& \quad \times \operatorname{etr}\left\{\kappa H_{2}^{T} H_{1} H_{1}^{T} H_{2}\right\} . \tag{5}
\end{align*}
$$

In the sequel we let $\bar{k}=\{1,2\} \backslash k$. The posterior density of H_{k} only is thus

$$
\begin{align*}
& p\left(H_{k} \mid X_{1}, X_{2}\right)=\int p\left(H_{k}, H_{\bar{k}} \mid X_{1}, X_{2}\right) d H_{\bar{k}} \\
& \quad \propto \operatorname{etr}\left\{\frac{1}{2 \sigma^{2}} X_{k}^{T} H_{k} H_{k}^{T} X_{k}\right\} \\
& \quad \times \int \operatorname{etr}\left\{H_{\bar{k}}^{T}\left[\frac{1}{2 \sigma^{2}} X_{\bar{k}} X_{\bar{k}}^{T}+\kappa H_{k} H_{k}^{T}\right] H_{\bar{k}}\right\} d H_{\bar{k}} \\
& \quad \propto C\left(\frac{1}{2 \sigma^{2}} X_{\bar{k}} X_{\bar{k}}^{T}+\kappa H_{k} H_{k}^{T}\right) \operatorname{etr}\left\{\frac{1}{2 \sigma^{2}} X_{k}^{T} H_{k} H_{k}^{T} X_{k}\right\} . \tag{6}
\end{align*}
$$

The minimum mean-square distance (MMSD) estimator of H_{k} is defined as [7]

$$
\begin{align*}
\hat{H}_{k-\mathrm{MMSD}} & =\arg \min _{\hat{H}_{k}} \mathcal{E}\left\{\left\|\hat{H}_{k} \hat{H}_{k}^{T}-H_{k} H_{k}^{T}\right\|^{2}\right\} \\
& =\mathcal{P}_{R}\left\{\int H_{k} H_{k}^{T} p\left(H_{k} \mid X_{1}, X_{2}\right) d H_{k}\right\} \tag{7}
\end{align*}
$$

where $\mathcal{E}\{$.$\} is the statistical mean and \mathcal{P}_{R}\{\cdot\}$ stands for the R principal eigenvectors of the matrix between braces. From inspection of $p\left(H_{k} \mid X_{1}, X_{2}\right)$, the above integral in (7) does not seem to be tractable. Therefore, we turn to Markov chain MonteCarlo (MCMC) simulation methods to approximate it [8]. However, the distribution in (6) is not obvious to sample. On the contrary, the conditional distribution of $H_{k} \mid H_{\bar{k}}, X_{1}, X_{2}$ belongs to a known family. Indeed, from (5) one has
$p\left(H_{k} \mid H_{\bar{k}}, X_{1}, X_{2}\right) \propto \operatorname{etr}\left\{H_{k}^{T}\left[\frac{1}{2 \sigma^{2}} X_{k} X_{k}^{T}+\kappa H_{\bar{k}} H_{\bar{k}}^{T}\right] H_{k}\right\}$
which is recognized as a Bingham distribution, i.e.,

$$
\begin{equation*}
H_{k} \mid H_{\bar{k}}, X_{1}, X_{2} \sim \mathrm{~B}\left(\frac{1}{2 \sigma^{2}} X_{k} X_{k}^{T}+\kappa H_{\bar{k}} H_{\bar{k}}^{T}\right) \tag{9}
\end{equation*}
$$

This leads us to consider a Gibbs sampling scheme which uses (9) to draw samples asymptotically distributed according to $p\left(H_{k} \mid X_{1}, X_{2}\right)$. An efficient scheme to draw random matrices from a Bingham distribution can be found in [9]. Our Gibbs sampling scheme is summarized in Table I

Once a set of N_{r} matrices $H_{1}(n)$ and $H_{2}(n)$ has been generated, the MMSD estimator of H_{k} can be approximated as

$$
\begin{equation*}
\hat{H}_{k-\mathrm{MMSD}}=\mathcal{P}_{R}\left\{N_{\mathrm{r}}^{-1} \sum_{n=N_{\mathrm{bi}}+1}^{N_{\mathrm{bi}}+N_{\mathrm{r}}} H_{k}(n) H_{k}(n)^{T}\right\} \tag{10}
\end{equation*}
$$

TABLE I
GIBBS SAMPLER FOR ESTIMATION OF H_{1} AND H_{2}
Input: initial value $H_{1}(0)$

```
    for \(n=1, \cdots, N_{\mathrm{bi}}+N_{\mathrm{r}}\) do
        sample \(H_{2}(n)\) from \(\mathrm{B}\left(\frac{1}{2 \sigma^{2}} X_{2} X_{2}^{T}+\kappa H_{1}(n-1) H_{1}(n-1)^{T}\right)\).
        sample \(H_{1}(n)\) from \(\mathrm{B}\left(\frac{1}{2 \sigma^{2}} X_{1} X_{1}^{T}+\kappa H_{2}(n) H_{2}(n)^{T}\right)\).
    end for
Output: sequence of random matrices \(H_{1}(n)\) and \(H_{2}(n)\).
```

TABLE II
Iterative MAP estimation of H_{1} and H_{2}

```
Input: initial value \(H_{1}(0)\)
    1: for \(n=1, \cdots, N_{\mathrm{it}}\) do
        evaluate \(H_{2}(n)=\mathcal{P}_{R}\left\{\frac{1}{2 \sigma^{2}} X_{2} X_{2}^{T}+\kappa H_{1}(n-1) H_{1}(n-1)^{T}\right\}\).
        evaluate \(H_{1}(n)=\mathcal{P}_{R}\left\{\frac{1}{2 \sigma^{2}} X_{1} X_{1}^{T}+\kappa H_{2}(n) H_{2}(n)^{T}\right\}\).
    4: end for
Output: \(\hat{H}_{k-\mathrm{MAP}}=H_{k}\left(N_{\mathrm{it}}\right)\).
```

We should point out that the scheme of Table I is computationally intensive, due to the need to generate matrices from a Bingham distribution, and that it may be prohibitive in largescale problems when M is large. In such cases, one might turn to simpler estimators.

An alternative and possibly more computationally efficient approach would entail considering maximum a posteriori (MAP) estimation. However, the joint MAP estimation of H_{1} and H_{2} from $p\left(H_{1}, H_{2} \mid X_{1}, X_{2}\right)$ in (5) does not appear tractable. It is in fact customary in this case to consider iterative alternate maximization of $p\left(H_{1}, H_{2} \mid X_{1}, X_{2}\right)$, i..e, maximize it first with respect to H_{1} holding H_{2} fixed, and then with respect to H_{2} holding H_{1} fixed. Convergence of this method to the global maximum is yet to be proven, although we did not experiment problems in our simulations. At each step, the MAP estimation of one matrix, conditioned on the other one, is simple as

$$
\begin{align*}
\hat{H}_{k-\mathrm{MAP}} \mid H_{\bar{k}} & =\arg \max _{H_{k}} p\left(H_{k} \mid H_{\bar{k}}, X_{1}, X_{2}\right) \\
& =\mathcal{P}_{R}\left\{\frac{1}{2 \sigma^{2}} X_{k} X_{k}^{T}+\kappa H_{\bar{k}} H_{\bar{k}}^{T}\right\} \tag{11}
\end{align*}
$$

Note that (11) is also the MMSD estimator of H_{k} given $H_{\bar{k}}$ since, if $H \sim \mathrm{~B}(A)$, the MMSD estimator of H is simply $\mathcal{P}_{R}\{A\}$ [7]. Therefore we propose the scheme of Table II which we refer to as iterative MAP (iMAP).

Remark 1. (Estimation by Regularization): We have decided in this work to embed the knowledge that $\mathcal{R}\left(H_{1}\right)$ is close to $\mathcal{R}\left(H_{2}\right)$ in a prior distribution. An alternative would be to consider regularized maximum likelihood estimation (MLE). Such an approach would amount to consider the following optimization problem:

$$
\begin{align*}
\min _{H_{1}, H_{2}, S_{1}, S_{2}} & -\log p\left(X_{1}, X_{2} \mid H_{1}, H_{2}, S_{1}, S_{2}\right) \\
& +\mu\left\|H_{1} H_{1}^{T}-H_{2} H_{2}^{T}\right\|_{F}^{2} \tag{12}
\end{align*}
$$

Solving for S_{1}, S_{2} and concentrating the criterion, one ends up with minimizing

$$
\begin{align*}
J\left(H_{1}, H_{2}\right) & =\operatorname{Tr}\left\{\frac{1}{2 \sigma^{2}} X_{1}^{T} H_{1} H_{1}^{T} X_{1}\right\} \\
& +\operatorname{Tr}\left\{\frac{1}{2 \sigma^{2}} X_{2}^{T} H_{2} H_{2}^{T} X_{2}\right\}+\operatorname{Tr}\left\{2 \mu H_{2}^{T} H_{1} H_{1}^{T} H_{2}\right\} \tag{13}
\end{align*}
$$

From observation of (5) this is tantamount to maximizing $p\left(H_{1}, H_{2} \mid X_{1}, X_{2}\right)$ with the regularization parameter 2μ playing a similar role as κ. However, there are two differences. First, in a Bayesian setting κ can be fixed by looking at the prior distribution of the angles between $\mathcal{R}\left(H_{1}\right)$ and $\mathcal{R}\left(H_{2}\right)$ and making it match our prior knowledge. Second, the Bayesian framework enables one to consider an MMSD estimator while the frequentist approach bears much resemblance with a maximum a posteriori estimator.

Remark 2. (Alternative Prior Modeling): Instead of considering a Bingham distribution as prior for $\pi\left(H_{2} \mid H_{1}\right)$ a von Mises-Fisher (vMF) distribution [6] defined as

$$
\begin{equation*}
\pi\left(H_{2} \mid H_{1}\right) \propto \operatorname{etr}\left\{c H_{2}^{T} H_{1}\right\} \tag{14}
\end{equation*}
$$

might have been used. Under this hypothesis, it is straightforward to show that the conditional posterior distribution $p\left(H_{k} \mid H_{\bar{k}}, X_{1}, X_{2}\right)$ is now Bingham von Mises-Fisher (BMF). The Gibbs sampling scheme needs to be adapted to these new distributions. However, for a BMF distribution, there does not exist a closed-form expression for the MAP estimator which means that the iterative scheme of Algorithm II cannot be extended.

Remark 3. (Extension to More than 2 Subspaces): Let us consider a situation where $K>2$ data matrices $X_{k}=H_{k} S_{k}+$ N_{k} are available, so that their joint distribution, conditioned on $H_{1 \cdots K}$ can be written as
$p\left(X_{1 \cdots K} \mid H_{1 \cdots K}\right) \propto \operatorname{etr}\left\{-\frac{1}{2 \sigma^{2}} \sum_{k=1}^{K}\left(X_{k}^{T} X_{k}-X_{k}^{T} H_{k} H_{k}^{T} X_{k}\right)\right\}$.

Let us still assume that H_{1} is uniformly distributed on the Stiefel manifold and that for $k>2, H_{k} \mid H_{k-1} \sim \mathrm{~B}\left(\kappa_{k} H_{k-1} H_{k-1}^{T}\right)$. Then the joint posterior distribution of $H_{1 \cdots K}$ writes

$$
\begin{align*}
& p\left(H_{1 \cdots K} \mid X_{1 \cdots K}\right) \propto \operatorname{etr}\left\{\frac{1}{2 \sigma^{2}} \sum_{k=1}^{K} X_{k}^{T} H_{k} H_{k}^{T} X_{k}\right\} \\
& \quad \times \operatorname{etr}\left\{\sum_{k=2}^{K} \kappa_{k} H_{k}^{T} H_{k-1} H_{k-1}^{T} H_{k}\right\} . \tag{16}
\end{align*}
$$

It ensues that the conditional posterior distribution of H_{k} is given by

$$
\begin{align*}
& H_{1} \mid H_{2 \cdots K}, X_{1 \cdots K} \sim \mathrm{~B}\left(\frac{1}{2 \sigma^{2}} X_{1} X_{1}^{T}+\kappa_{2} H_{2} H_{2}^{T}\right) \tag{17a}\\
& H_{k} \mid H_{-k}, X_{1 \cdots K} \sim \mathrm{~B}\left(\frac{1}{\sigma^{2}} X_{k} X_{k}^{T}+\kappa_{k} H_{k-1} H_{k-1}^{T}\right) \tag{17b}
\end{align*}
$$

Fig. 1. Performance of the estimators versus T. $\kappa=40$ and $\mathrm{SNR}=0 \mathrm{~dB}$. (a) $M S D\left(\hat{H}_{1}, H_{1}\right)$, (b) $M S D\left(\hat{H}_{2}, H_{2}\right)$, (c), mean and std of $\hat{\theta}_{1}$, (d), mean and std of $\hat{\theta}_{2}$.

The Gibbs sampling scheme of Table I as well as the iterative MAP algorithm of Table II can be straightforwardly modified so as to account for this more general setting.

Fig. 2. Performance of the estimators versus SNR. $\kappa=40$ and $T=6$. (a) $M S D\left(\hat{H}_{1}, H_{1}\right)$, (b) $M S D\left(\hat{H}_{2}, H_{2}\right)$, (c), mean and std of $\hat{\theta}_{1}$, (d), mean and std of $\hat{\theta}_{2}$.

III. NUMERICAL ILLUSTRATIONS

Let us now give some illustrative examples about the estimators developed above. We consider a scenario with $M=8$ and
$R=2$. The two algorithms described above (referred to as GS and iMAP in the figures, respectively) will be compared to a conventional SVD-based approach where H_{k} is estimated from the R dominant left singular vectors of the data matrix X_{k}. For each algorithm, the angles between H_{1} and H_{2} will be estimated from the singular value decomposition of $\hat{H}_{1}^{T} \hat{H}_{2}$, where \hat{H}_{1}, \hat{H}_{2} stand for one of the three estimates mentioned previously. Two criteria will be used to assess the performance of the estimators. First, the MSD between \hat{H}_{k} and H_{k} will be used: this gives an idea of how accurately each subspace individually is estimated. Next, since the difference between H_{1} and H_{2} is of utmost importance, we will also pay attention to the mean and standard deviation of $\hat{\theta}_{r}$ as these angles characterize how H_{2} has been moved apart from H_{1}.

In all simulations the entries of S_{1} and S_{2} were generated as i.i.d. $\mathcal{N}(0,1)$. The subspaces H_{1} and H_{2} were fixed and the true angles between them are equal to 10° and 25° respectively. Note that the subspaces H_{1} and H_{2} are not generated according to the prior distributions assumed above. The signal to noise ratio (SNR) is defined as SNR $=\sigma^{-2} M^{-1} R$. For the Bayesian estimators, we set $N_{\text {bi }}=10, N_{\mathrm{r}}=200$ and $N_{\text {it }}=50$. In Fig. 1 we plot the performance versus T, for $\kappa=40$, while Fig. 2 studies the performance versus SNR. The following observations can be made:

- The Bayesian estimates of the individual subspaces outperform the SVD-based estimates, especially for a small number of snapshots or a low SNR. When SNR increases however, the SVD-based estimates produce accurate estimates of each subspace.
- The SVD-based estimator does not accurately estimate the angles between H_{1} and H_{2}, unless SNR is large. In contrast, the Bayesian estimators provide a rather accurate estimation of θ_{r}.
- The Gibbs sampler is seen to perform better that the iMAP estimator, at the price of a larger computational cost however.

References

[1] L. L. Scharf, Statistical Signal Processing: Detection, Estimation and Time Series Analysis. Reading, MA, USA: Addison Wesley, 1991.
[2] L. Scharf, "The SVD and reduced rank signal processing," Signal Process., vol. 25, no. 2, pp. 113-133, Nov. 1991.
[3] A. Van der Veen, E. Deprettere, and A. Swindlehurst, "Subspace-based signal analysis using Singular Value Decomposition," Proc. IEEE, vol. 81, no. 9, pp. 1277-1308, Sep. 1993.
[4] G. Golub and C. V. Loan, Matrix Computations, 3rd ed. Baltimore, MD, USA: John Hopkins Univ. Press, 1996.
[5] Y. Chikuse, Statistics on Special Manifolds. New York, NY, USA: Springer Verlag, 2003.
[6] K. V. Mardia and P. E. Jupp, Directional Statistics. New York, NY, USA: Wiley , 1999.
[7] O. Besson, N. Dobigeon, and J.-Y. Tourneret, "Minimum mean square distance estimation of a subspace," IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5709-5720, Dec. 2011.
[8] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed. ed. New York, NY, USA: Springer Verlag, 2004.
[9] P. D. Hoff, "Simulation of the matrix Bingham-von Mises-Fisher distribution, with applications to multivariate and relational data," J. Comput. Graph. Statist., vol. 18, no. 2, pp. 438-456, Jun. 2009.

[^0]: Manuscript received October 01, 2013; revised December 04, 2013; accepted December 17, 2013. Date of current version December 26, 2013. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Ba-Tuong Vo.
 O. Besson is with the ISAE, Department Electronics Optronics Signal, University of Toulouse, 31055 Toulouse, France (e-mail: olivier.besson@isae.fr).
 N. Dobigeon and J.-Y. Tourneret are with the IRIT/ENSEEIHT, University of Toulouse, 31071 Toulouse, France (e-mail: nicolas.dobigeon@enseeiht.fr;jeanyves.tourneret@enseeiht.fr).

