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TéSA/IRIT/INP-ENSEEIHT

Toulouse, France
Email: barbara.pilastre@tesa.prd.fr

Email: jean-yves.tourneret@enseeiht.fr
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Abstract—Spacecraft health monitoring from housekeeping
telemetry data represents one of the main issues in space
operations. Motivated by the success of machine learning or
data driven-based methods in many signal and image processing
applications, some of these methods have been applied to anomaly
detection in housekeeping telemetry via a semi-supervised learn-
ing. This paper studies a new multivariate anomaly detection
algorithm based on a sparse decomposition on a dictionary
of nominal patterns. One originality of the proposed method
is a multivariate framework allowing us to take into account
possible relationships between different telemetry parameters, in
particular through a joint processing of time-series described
by mixed continuous and discrete parameters. The proposed
method is tested with real satellite telemetry and evaluated on
a representative anomaly dataset composed of actual anomalies
that occurred on several operated satellites. The first results
confirm the interest of the proposed method and demonstrate
its competitiveness with respect to the state-of-the-art.

I. INTRODUCTION

A main issue in space operations is to ensure the proper
conduct of the missions by monitoring spacecraft health
and detecting failures as soon as possible. Spacecraft health
monitoring is classically performed by monitoring telemetry
times series using anomaly detection (AD) techniques [1], [2].
Housekeeping telemetry data consists of hundred to thousand
telemetry parameters corresponding to various sensors. Some
of these parameters (such as antenna positions or equipment
operating mode ON/OFF) take few values and can thus be
considered as observations of discrete random variables (after a
possible reparametrisation, e.g., ”ON= 0” and ”OFF= 1”. The
other parameters (such as temperature, pressure, voltage etc...)
are observations of continuous variables. As a consequence, the
whole set of telemetry data can be considered as a multivariate
time-series of mixed discrete and continuous data.

Motivated by the success of machine learning (ML) or
data driven-based methods in signal and image processing,
some AD methods have been investigated for housekeeping
telemetry via a semi-supervised learning. In a first step re-
ferred to as learning, the algorithm builds a reference model
from past telemetry data describing only nominal (also called
normal) operation of the spacecraft. In a second step referred
to as detection, an appropriate comparison to the reference
model allows the detection of potential anomalies affecting
most recent data. ML-based methods for AD in housekeeping
telemetry can be divided in two categories depending on
the kind of data processed by the algorithms, i.e., univariate

Fig. 1. Examples of univariate and multivariate anomalies (blue boxes)

or multivariate time-series. Univariate AD methods handle
each telemetry parameter independently and detect univariate
anomalies corresponding to abnormal behaviour (never seen
before) of an individual parameter. Examples of univariate
anomalies are displayed in Fig. 1 (see examples 1, 2, 3, 5 and
6 in the red boxes). The ML-based techniques investigated in
this framework are based on powerful algorithms that include
the one-class support vector machine [3], nearest neighbour
techniques [4]–[6] or neural networks [7]. These solutions
allowed spacecraft health monitoring to be significantly im-
proved. However, by definition these methods do not take into
account possible relationships between different parameters,
which makes it difficult (say impossible) to detect multivariate
or contextual anomalies corresponding to changes in these
relationships. Examples of multivariate anomalies affecting
real telemetry data are displayed in Fig. 1 (examples 4 and
7 in the red boxes). Detecting anomalies in these time-series
requires to handle several telemetry time-series jointly in
order to facilitate the detection of multivariate anomalies. This
framework has been recently investigated in [8]–[10].

This paper studies a new multivariate AD method for
mixed telemetry data based on a sparse decomposition on
a dictionary of nominal patterns. Inspired by [11], the idea
of the proposed method is to build a dictionary of nominal
patterns and to decompose most recent data into this dictionary
in order to detect potential anomalies from residues of the
sparse decomposition. The paper is organized as follows.



Section II introduces the proposed AD method for mixed
telemetry data based on a sparse decomposition. Section III
evaluates its performance via a comparison with three state-
of-the-art methods that are tested on a representative dataset
with available ground-truth. Conclusion and future works are
reported in Section IV.

II. DETECTING ANOMALIES IN MIXED DATA USING A
SPARSE DECOMPOSITION

This section focuses on the detection step and assumes that
the dictionary of nominal patterns has been learned using past
telemetry describing only normal operation of the spacecraft.
Learning a dictionary with discrete and continuous atoms is an
interesting and challenging problem which will be considered
in future work.

A. Preprocessing

The preprocessing is divided into two steps: 1) segmenting
the telemetry times-series into overlapping windows of fixed
size w with a shift δ as illustrated in Fig. 2, and 2) vectorizing
the resulting matrices by concatenating their lines. A mixed
vector y ∈ RN obtained after this preprocessing is divided
into K blocks, i.e., y = [yT

1 , ...,y
T
K ]T where yk ∈ Rw, k =

1, ...,K is the kth block of y associated with the kth parameter,
K is the number of telemetry parameters and w is the number
of samples of the time window (sample size).

B. Anomaly Detection Using a Sparse Decomposition

Recent years have witnessed a growing interest for sparse
decomposition in many signal and image processing applica-
tions [12]–[14] and especially for AD [11], [15], [16]. Inspired
by [11], the proposed AD strategy decomposes a test signal
with mixed components as a sum of 1) a nominal signal
expressed as a linear combination of few columns (called
atoms) of a known dictionary, 2) a possible anomaly signal
and 3) an additive noise such as

y = Φx+ e+ b (1)

where y ∈ RN is the test signal, Φ ∈ RN×2L is a block-
diagonal dictionary of nominal patterns (see (2) for detail)
previously learned using past normal telemetry data, x ∈ R2L

is a sparse vector of coefficients, e ∈ RN is an anomaly signal
(e = 0 in absence of anomaly and e 6= 0 in presence of
anomaly) and b ∈ RN is an additive noise. Note that the
anomaly detection can be formalised as a hypothesis test on
vector e (Hypothesis H0: e = 0 against alternative H1: e 6= 0).
The originality of the proposed method lies in handling mixed
discrete and continuous telemetry time-series in order to take
into account relationships between parameters and to detect
univariate and multivariate anomalies. To this end, the pro-
posed method considers a block diagonal dictionary, with two
blocks denoted as ΦD ∈ RND×L and ΦC ∈ RNC×L respec-
tively composed of discrete and continuous atoms, and applies
two distinct strategies depending on whether data are discrete
or continuous. Note that the first block ΦD (dictionary of dis-
crete nominal patterns) and the second block ΦC (dictionary of
continuous nominal patterns) have been learned jointly in order
to take into account possible correlations between the different
time-series, especially between discrete and continuous ones.
Note that the lth discrete atom of the discrete dictionary ΦD

Fig. 2. Segmentation of telemetry time-series into overlapping windows

and the lth continuous atom of the continuous dictionary ΦC
are composed of discrete and continuous behaviours observed
in the same multivariate atom. The signals y, x, e and
b are divided into discrete and continuous counterparts de-
noted as yD, eD, bD ∈ RND and xD ∈ RL, and yC, eC, bC ∈
RNC and xC ∈ RL, leading to the following decomposition[

yD
yC

]
=

[
ΦD 0
0 ΦC

] [
xD
xC

]
+

[
eD
eC

]
+

[
bD
bC

]
. (2)

The proposed method processes discrete data in a first step, by
estimating the vector xD of the discrete sparse decomposition
and the discrete anomaly signal eD. The output of this first
step is then used to select the atoms preserving the existing
relationships between discrete and continuous parameters and
detect multivariate anomalies. The continuous approximation is
performed in a second step by using the selected atoms. Given
the applied preprocessing, the anomaly signals eD and eC are
respectively divided into KD and KC groups corresponding to
the numbers of discrete and continuous parameters, i.e., eD =
[eTD,1, ..., e

T
D,KD

]T and eC = [eTC,1, ..., e
T
C,KC

]T . The discrete
and continuous sparse representations are described below.

1) Discrete Sparse Decomposition: In order to detect po-
tential anomalies in the discrete signal yD we propose to solve
the following problem

arg min
xD∈B,eD∈RND

‖ yD −ΦDxD − eD ‖22 +bD

KD∑
k=1

‖eD,k‖2 (3)

where ‖eD,k‖2, k = 1, ...,KD is the Euclidean norm, eD, k
corresponds to the kth time-series of eD associated with the
kth discrete parameter and bD is a regularization parameter that
controls the level of sparsity of eD. The model imposes two
distinct sparsity for xD and eD. The sparsity of eD is ensured
by the last term and reflects the fact that anomalies are rare
and affect few parameters at the same time. The vector xD
is constrained to belong to B, where B is the canonical or



natural basis of RL, i.e., B = {εl, l = 1, · · · , L}, where εl
is the lth canonical vector (whose components equal 0 except
its lth one equal to 1). The discrete sparse decomposition is
a combinatorial problem which solves for each discrete atom
φD,l, l = 1, ..., L (with L the number of atoms in ΦD) the
following problem

êD,l = arg min
eD,l

‖yD − φD,l − eD,l‖22 + bD

KD∑
k=1

‖eD,k‖2. (4)

The solution of the optimization problem (4) is classically
obtained using the shrinkage operator [17] êD,l = TbD(hD)
with

[TbD(h)]k =

{
‖hk‖2−bD
‖hk‖2 hk if ‖hk‖2 > bD

0 otherwise
(5)

where hD = yD−φD,l hk is the kth part of hD associated with
the kth time-series for k = 1, ...,KD. The discrete anomaly
detection looks for the anomaly vectors êD,l, l = 1, ..., L
resulting from the discrete sparse decomposition that are equal
to 0 and builds a subset M defined as

M = {l ∈ {1, · · · , L}| ‖êD,l‖2 = 0}. (6)

The subset M contains the values of l associated with the
discrete atoms φD,l that are the closest to yD. An anomaly on
the discrete signal is declared if M is empty.

2) Continuous Sparse Decomposition: In order to detect
potential anomalies in the continuous signal yC we propose to
solve the following problem

min
xC,eC

1

2
‖yC−ΦMxC−eC‖22 +aC‖xC‖1 + bC

KC∑
k=1

‖eC,k‖2 (7)

where ‖x‖1 =
∑

n |xn| is the `1 norm of x, eC,k corresponds
to the kth time-series of eC associated with the kth continuous
parameter with k = 1, ...,KC, aC and bC are regularization
parameters that control the level of sparsity of the coefficient
vector xC and the anomaly signal eC, respectively. The dictio-
nary ΦM is composed of the continuous atoms φC,l for l ∈M.
The subsetM allows the selection of representative continuous
atoms and the preservation of relationships between discrete
and continuous parameters and the detection of multivariate
anomalies. For that reason the sparse subproblem in recovering
discrete values is first dealt with, rather than the other way
around. Note that (7) considers two distinct sparsity constraints
for the coefficient vector xC and the anomaly signal eC. This
formulation reflects the fact that a nominal continuous signal
can be well approximated by a linear combination of few atoms
of the dictionary (sparsity of xC) and that anomalies are rare
and affect few parameters at the same time (sparsity of eC).

Problem (7) can be solved with the alternating direction
method of multipliers (ADMM) [17] by adding an auxiliary
variable z

min
xC,eC,z

1

2
‖yC−ΦMxC−eC‖22 +aC‖z‖1 + bC

KC∑
k=1

‖eC,k‖2 (8)

and the constraint z = xC. Note that, contrary to Problem (7),
the first and second terms of (8) are decoupled, which allows
an easier estimation of the vector xC. The ADMM algorithm
associated with (8) minimizes the following augmented La-
grangian

LA(xC, z, eC,m, µ) =
1

2
‖yC −ΦMxC − eC‖22 + aC‖z‖1

+bC

KC∑
k=1

‖eC,k‖2 + mT
C (z− xC) +

µC

2
‖z− xC‖22 (9)

where mC is a Lagrange multiplier and µC is a regularization
parameter controlling the level of deviation between z and xC.
The ADMM algorithm is iterative and alternatively estimates
xC, z, eC and mC. More details about the update equations of
the different variables at the kth iteration are provided [11].

C. Anomaly score

The proposed method defines an anomaly score assigned
to each test signal y such as

a(y) =

{
−1 if M = ∅
‖ êC ‖2 otherwise.

(10)

The anomaly score is used to detect possible anomaly in y
using the following rule

anomaly detected if
{
a(y) = −1 (Discrete AD)

a(y) > SPFA (Continuous AD)
(11)

where SPFA > 0 is a threshold depending on the probability
of false alarm of the anomaly detector (which has to be
adjusted by the user). This threshold can be determined using
receiver operating characteristic (ROC) curves if a ground-truth
is available.

D. Shift Invariant Option

The proposed method has a shift-invariant (SI) option
allowing new discrete atoms to be created by shifting of
τ lags each atoms of ΦD, with τ ∈ {−τmax,−(τmax −
1), ...,−1, 0, 1, ..., τmax − 1, τmax}. This shift invariant option
was proposed in some recent works including [18]. The
maximum shift τmax has to be fixed by the user, in order
to have an acceptable computation cost and a good detection
performance. Experimental results showed the usefulness of
the SI option notably for discrete time-series, which will be
illustrated in our experiments.

III. EXPERIMENTAL RESULTS

The proposed multivariate Anomaly Detection method
based on a sparse decomposition and DICTionary learning
[19] was evaluated on a representative anomaly dataset com-
posed of actual anomalies that occurred on several operated
satellites and compared to three state-of-the-art methods. In
the first experiment, we consider a simple dataset composed
of KD = 3 discrete and KC = 7 continuous parameters
with available ground-truth. The dictionary was learnt using
two months of telemetry describing nominal behaviours of
parameters, which represents 30000 training signals obtained
after applying the preprocessing with the following parameters
δ = 5 and w = 50. Unfortunately, there is no dictionary
learning method appropriate to mixed discrete and continuous
data. Our dictionary was built as follows: 1) set a number of
desired atoms (L = 2000 in our simulations), 2) initialize
a continuous dictionary with L continuous training signals
randomly selected in the training set, 3) each continuous
training signal of the learning dataset is decomposed into
the initial dictionary by solving (1) with e = 0, which is
the well-known Lasso problem [20], 4) select the L training



Fig. 3. Anomaly scores returned by OCSVM (a), MPPCAD (b), NOS-
TRADAMUS (c) and ADDICT (d) for each test signals of the anomaly dataset
with ground-truth marked by blue background.

signals with the biggest residuals ‖ yC−ΦxC ‖. This process
was repeated 100 times and the L training signals most often
selected during the different iterations were selected as atoms
of the dictionary. The ADDICT algorithm was evaluated on a
representative anomaly dataset composed of 1000 test signals
including 90 known anomalies. Note that the anomalies were
located in 7 time periods displayed in Fig. 1 (in the red boxes).
Three state-of-the-art methods were evaluated on this dataset

• the NOSTRADAMUS algorithm [3]. It is a univari-
ate algorithm based on the one-class support vector
machine (OC-SVM) algorithm with an appropriate
preprocessing

• the multivariate OC-SVM algorithm [21] with the
ADDICT preprocessing

• the mixture of probabilistic principal component anal-
ysers and categorical distribution (MPPCAD) algo-
rithm [9], which is a multivariate anomaly detection
method based on probabilistic clustering and dimen-
sionality reduction. The idea behind MPCCAD is to
approximate the joint distribution of the continuous
variables by a mixture of Gaussian distributions and
the joint distribution of discrete variables by a mixture
of categorical distributions.

Fig. 3 shows the anomaly scores (in blue) returned by OC-
SVM (a), MPPCAD (b), NOSTRADAMUS (c) and ADDICT
(d) for each signal of the anomaly dataset with ground-truth
marked by red backgrounds and hyperparameters of baseline
approaches are tuned by cross validation. Anomaly periods
(red backgrounds) are numbered and displayed in Fig. 1. Some
anomalies are well detected by all the methods. This includes
anomalies #2, #4 and #5 for which high scores are returned
for each method. On the other hand, some anomalies such
as the ones affecting discrete parameters (see anomalies #1
and #3) are more difficult to detect. These anomalies are
not detected by OC-SVM and MPPCAD. They are detected
by ADDICT when the shift-invariance option is activated,
which shows the importance of this option. Finally, note
that the multivariate anomaly #7 is well detected by all
the multivariate methods, namely OC-SVM, MPPCAD and
ADDICT. This anomaly is not detected by NOSTRADAMUS
which is a univariate AD method handling the different times
series separately.

Fig. 4. ROC curves of OC-SVM, NOSTRADAMUS, MPPCAD and ADDICT
for the anomaly dataset.

TABLE I. VALUES OF PD AND PFA FOR OCSVM, MPPCAD,
NOSTRADAMUS AND ADDICT.

Method Threshold PD PFA
MPPCAD 13 55% 8%
OC-SVM 0.0016 80% 7%

NOSTRADAMUS 29 77.26% 6%
ADDICT (τmax = 0) 5.2 80% 6.16%
ADDICT (τmax = 5) 5.4 85.56% 3.3%

In order to quantify the detection performance of each
method, Fig. 4 displays the receiver operational characteris-
tics (ROCs) expressing the probability of detection PD as a
function of the probability of false alarm PFA. Quantitative
results are are also summarized in Table I, which reports
the values of PD and PFA satisfying the best compromise
for spacecraft health monitoring (PFA < 10%), for which
the control of false alarms is a major issue (since all false
anomalies are checked by a human operator). In view of these
results, NOSTRADAMUS, OC-SVM and ADDICT are more
competitive with almost 80% of detections for less than 10%
of false alarms. MPPCAD returns few false alarms but an
important proportion of anomalies from the anomaly dataset
are not detected. These non-detections can be partly explained
by the MPPCAD preprocessing which segments telemetry
time-series into windows of size w = 1. Indeed, the detection
of anomalies #1, #4 or #6 for example, clearly requires
longer time windows to be considered.

IV. CONCLUSION

This paper presented a new anomaly detection method for
mixed (discrete and continuous) telemetry time-series based
on a sparse decomposition on a dictionary of nominal patterns.
The first results showed that the proposed method can detect all
kinds of anomalies (i.e., univariate and multivariate anomalies)
and is competitive with respect to the state-of-the-art. In
addition, our experiments showed the importance of the shift-
invariant option that allowed a significant reduction of the
false alarm rate. For future works, it is important to evaluate
the method in an operating context including hundreds to
thousands telemetry parameters. Furthermore, we would like
to investigate an online extension of the ADDICT algorithm,
allowing user feedback to be integrated, in order to update the
model and improve detection performance.
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