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ABSTRACT

In this paper, we propose a hierarchical Bayesian model
approximating the `20 mixed-norm regularization by a mul-
tivariate Bernoulli Laplace prior to solve the EEG inverse
problem by promoting spatial structured sparsity. The pos-
terior distribution of this model is too complex to derive
closed-form expressions of the standard Bayesian estimators.
However, this posterior can be sampled using an MCMC
method and the generated samples can be used to compute
Bayesian estimators of the unknown model parameters. The
proposed MCMC algorithm is based on a partially collapsed
Gibbs sampler and a dual dipole random shift proposal for the
non-zero positions. Note that the proposed method estimates
the brain activity and all other model parameters jointly in
a completely unsupervised framework. The results obtained
on synthetic data with controlled ground truth show the good
performance of the proposed method when compared to the
`21 approach in different scenarios, and its capacity to esti-
mate point-like source activity.

Index Terms— EEG, MCMC, inverse problem, source
localization, structured-sparsity, hierarchical Bayesian model,
`20-norm regularization

1. INTRODUCTION

EEG source localization is an ill-posed inverse problem [1]
that continues to attract a significant amount of interest in the
signal and image processing literature. The problem is classi-
cally addressed using some regularization that enforces real-
istic properties on the solution. Among the proposed regular-
izations, the `0 pseudo-norm is known to estimate correctly
sparse focal brain activity [2]. Unfortunately, the minimiza-
tion of the `0 pseudo-norm is intractable. Thus it is usually
approximated by the convex `1 norm that can be handled more
easily using classical optimization techniques [3] but does not
provide the same solution [2]. In addition, both methods con-
sider each time sample independently which can lead to unre-
alistic solutions [4]. It has been shown that structured sparsity
can provide better results by exploiting the temporal dimen-
sion of the data [5]. Structured sparsity can be enforced for
EEG source localization using mixed-norms such as the `21
norm [4] (also known as group-lasso), which constrains all

the time samples of a dipole to be either completely active or
inactive during the time period. As an alternative to the `21
norm, we introduce a new hierarchical Bayesian model based
on a multivariate Bernoulli Laplacian prior on the dipole ac-
tivity. This paper will show that this prior allows sparser solu-
tions to be obtained. Since the posterior associated with this
prior is intractable, a Markov chain Monte Carlo sampling
technique is used to draw samples of the unknown parame-
ters asymptotically distributed according to this posterior. A
dual dipole random shift proposal is also added in order to im-
prove convergence. The generated samples are then used to
estimate both the brain activity and the model parameters and
hyperparameters in a completely unsupervised framework.

The paper is organized as follows: Section 2 introduces
the source localization problem. The proposed Bayesian
model is defined in Section 3. Section 4 presents the partially
collapsed Gibbs sampler that can generate samples asymp-
totically distributed according to the posterior of this model.
Results obtained with synthetic data are presented in Section
5. Section 6 concludes the paper.

2. PROBLEM STATEMENT

We consider a distributed-source model [1] that has a fixed
number of dipoles on the cortical surface whose orientations
are supposed orthogonal to the cortex.

Y = HX +E (1)

where X ∈ RN×T contains the amplitudes of the N dipoles
for the corresponding T time samples, Y ∈ RM×T contains
the measurements of the M electrodes for these T time sam-
ples, H ∈ RM×N models the propagation of the electromag-
netic field from the sources to the sensors and E ∈ RM×T is
a noise term. The EEG source localization problem consists
of estimating the matrixX from the measurements Y .

3. BAYESIAN MODEL
3.1. Likelihood
It is very classical in the literature to consider an additive
white Gaussian noise with a constant variance σ2

n for the T
considered time instants [1]. Note that when this assumption
does not hold, it is possible to estimate the noise covariance
matrix from the data and to whiten the measurements in a pre-



processing stage [4]. This assumption leads to the likelihood

f(yt|xt, σ2
n) =

(
1

2πσ2
n

)M
2

exp
(
− ||y

t −Hxt||2

2σ2
n

)
(2)

where yt is the tth column of Y and ||.|| denotes the Eu-
clidean norm. Different time samples are assumed to be asso-
ciated with independent noises.

3.2. Priors
3.2.1. Dipole amplitudesX

The weighted `20 pseudo norm of a matrix X with rows
x1, ...,xN is defined by

||X||20 = #{i :
√
vi||xi||2 6= 0} (3)

where #S is the cardinal of the set S and vi = ||hi||2 (hi

being the i-th column of the operator H) is a weight used to
compensate for the depth-weighting effect as explained in [1,
3]. We propose to approximate the `0 norm using a Bernoulli
distribution via a multivariate Bernoulli Laplace prior for each
row xi ofX , i.e., by considering the following prior

f(xi|zi, a, σ2
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||xi||2

)
if zi = 1

(4)
where a is a hyperparameter that controls the amplitudes of
the non-zero rows of X and z ∈ {0, 1}N is a vector indicat-
ing which rows of X are non-zero. The elements of z are
assigned a Bernoulli prior with parameter ω ∈ [0, 1]

zi|ω ∼ B (zi|ω) . (5)

Note that the prior of xi defined in (4) contains two differ-
ent parts: the Dirac delta function δ(.) that promotes sparsity
by ensuring absence of activity and the multivariate Laplace
distribution that adjusts the amplitudes of the non-zero rows.
Setting ω = 0 reduces to X whereas ω = 1 corresponds to
the `21-mixed norm regularization introduced in the Bayesian
formulation of the group-lasso. To be able to sample effi-
cently from the posterior distribution of the model parame-
ters, it is interesting to introduce a latent variable τ2i for each
row xi as in [6]. More precisely, the joint prior distribution
of (τ2i ,xi) can be defined as

f(τ2i |a) =G
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τ2i

∣∣∣T + 1

2
,
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)
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where G and N denote the gamma and normal distributions.
Indeed, the prior distribution specified above is such that the
marginal distribution of xi is (4) [6].

3.2.2. Noise variance σ2
n

The noise variance σ2
n is assigned a Jeffrey’s prior

f(σ2
n) ∝

1

σ2
n

1R+(σ2
n) (8)

where 1R+(ξ) = 1 if ξ ∈ R+ and 0 otherwise. Motivations
for using this prior can be found in [7].

3.3. Hyperparameter priors
In the `21 norm based approach, the regularization parameter
makes a compromise between the sparsity of the solution and
the fidelity to the measurements. In the proposed Bayesian
model, this compromise is adjusted by two hyperparameters:
(1) ω that determines the proportion of the rows ofX that are
non-zero and (2) a that controls the amplitudes of the non-
zero rows of X . We will denote the hyperparameter vector
by φ = {ω, a}. To make our algorithm capable of estimating
the values of ω and a from the data, we need to assign priors
to these hyperparameters (usually called hyperpriors).

A conjugate gamma prior is chosen for a for simplicity

f(a|α, β) = G
(
a
∣∣∣α, β) (9)

with α = β = 1. This choice of (α, β) corresponds to a vague
hyperprior for a.

A non-informative uniform prior on [0, 1] is used for ω
f(ω) = U(ω|0, 1). (10)

also reflecting the absence of knowledge for this parameter.

3.4. Posterior distribution
Using the priors and hyperpriors defined in Section 3.2 and
3.3, the posterior distribution of the proposed Bayesian model
can be derived as follows
f(θ,z, τ 2,φ|Y ) ∝ f(Y |θ)f(θ|z, τ 2)f(z, τ 2|φ)f(φ)

(11)
where f(Y |θ) has been defined in (2) and

f(θ|z, τ 2) ∝ 1

σ2
n

N∏
i=1

f(xi|zi, τ2i , σ2
n)

f(z, τ 2|φ) =
N∏
i=1

f(zi|ω)f(τ2i |a)

f(φ) = f(a|α, β)f(ω).

4. A PARTIALLY COLLAPSED GIBBS SAMPLER

The Bayesian estimators of the unknown model parameters
σ2
n,X, z, a, τ 2, ω are clearly difficult to express in closed

form using (11). Thus, we propose to draw samples from the
posterior distribution (11) and use these samples to estimate
the model parameters and hyperparameters using a partially
collapsed Gibbs sampler which samples the variables zi and
xi jointly. The corresponding conditional distributions are
detailed in the following sections.

4.1. Conditional distributions
The conditional distributions of the different parameters and
hyperparameters are provided in Table 1, where G, GIG, N ,
B, IG and Be stand for the gamma, generalized inverse Gaus-
sian, normal, Bernoulli, inverse gamma and beta distributions



respectively (for the definition of the GIG distribution, see
[6]).
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Table 1: Conditional distributions f(τ2i |xi, σ2
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We denote by X−i the matrix X with its i-th row set to
zero and
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4.2. Dual dipole random shift proposal
In practice, the Gibbs sampler can get trapped in local max-
ima of the target distribution, especially when the indicator
variables zi have to be sampled. This problem has been re-
ported in several works such as [8] and has been observed
for the proposed partially collapsed Gibbs sampler. To solve
this problem, after each sampling iteration, a new value of z
can be proposed in order to escape from a possible local maxi-
mum. This value is accepted or rejected using the Metropolis-
Hastings acceptance ratio to keep the same target distribution.

In this work, we have implemented dual dipole random
shift proposals which consist of moving up to two indicators
within their neighborhoods (defined as the operator columns
that have a correlation with the dipole column higher than γ).
The parameter γ ∈ [0, 1] tunes the neighborhood size (γ =
0 corresponds to a neighborhood containing all the dipoles
and γ = 1 corresponds to an empty neighborhood). In our
experiments, we have used the value γ = 0.8 that has been
adjusted by cross validation.

5. EXPERIMENTAL VALIDATION

This section aims at comparing the proposed method with the
weighted `21 approach. The EEG source localization problem
considered in our experiments uses the Stok three-shell head
model with 41 electrodes and a source space of 212 dipoles
uniformly distributed in the cortex surface. Synthetic damped

(a) Ground truth

(b) Proposed method

(c) Weighted `21-norm

Fig. 1: Typical brain activity localization (SNR = −3dB).

sinusoidal excitations with frequencies between 5 and 20Hz
were assigned to the active dipoles dipoles. These excitations
are 500ms long (a period in which the dipole activity is known
to be stationary) and sampled at 200Hz, resulting in T = 100.
The regularization parameter of the weighted `21 norm was
set according to the uncertainty principle.

Two different kind of simulations were run, the first one
has a fixed amount of active dipoles in the ground truth and a
variable level of SNR whereas the second one presents a fixed
level of SNR with a variable amount of active dipoles.

For the first kind of simulations three dipoles were active
in the ground truth. For high SNR values (20dB or more),
both methods are able to correctly detect the dipole loca-
tions and estimate their activation waveforms. However, as
the SNR decreases, the proposed method outperforms the
approach based on the `21 norm. A representative example
is illustrated in Figs. 1 and 2 (obtained for SNR = −3dB).
As we can see in this particular case, the proposed algorithm
based on a structured sparsity prior manages to recover cor-
rectly the three activations while concentrating each of the
activations in only one dipole. In comparison, the `21 norm
only recovers two activations and spreads some of the activity
between neighboring dipoles. One can also see that the wave-
forms recovered by the proposed method are much closer to
the original excitations than those obtained with the `21 norm
(note the presence of a bias with the latter). This result can
be explained by the fact that the `1 norm tends to overpenal-
ize large amplitudes whereas the selected prior penalizes all
non-zero coefficients equally.
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Fig. 2: Ground truth and typical estimated time waveforms with SNR = -3dB.

For the second kind of simulations, the SNR was set to
30dB while the amount of active dipoles in the ground truth
(denoted by P ) was varied from 1 to 7. Fifty different active
dipole localizations were used for each value of P . After each
simulation run, the P dipoles with highest estimated activity
were considered to be active. The recovery rate (defined as the
probability of detecting an active dipole in its correct location)
for both methods is shown in Table 2. The proposed method
is able to detect up to 5 active dipoles with a near perfect
recovery rate while the performance of the `21 norm method
starts decreasing at P = 3.

It is important to note that the price to pay with the pro-
posed method is its computational complexity. One simu-
lation of the previous examples was processed in 6 seconds
with a modern Xeon CPU E3-1240 @ 3.4GHz processor (us-
ing a Matlab implementation with MEX files written in C)
against 104 milliseconds for the `21 mixed norm. However,
also note that the `21 norm approach requires running the al-
gorithm multiple times to adjust the regularization parameter
by cross-validation.

1 - 2 3 4 5 6 7
PM 100% 100% 100% 98.8% 84.0% 65.1%
`21 100% 97.3% 93.5% 78.8% 61.7% 49.1%

Table 2: Recovery rate as a function of P for the proposed
method and the weighted `21 norm (computed with 50 Monte
Carlo runs).

6. CONCLUSION

This paper introduced a new hierarchical Bayesian model for
EEG source localization promoting structured sparsity using
a multivariate Bernoulli Laplacian prior. A partially collapsed
Gibbs sampler was developed to draw samples from its pos-
terior distribution. A specific Metropolis-Hastings move
(called dual dipole random shift) was also introduced in order

to speed up the algorithm convergence. The generated sam-
ples were used to estimate the source activity and the model
hyperparameters jointly in an unsupervised framework. The
resulting algorithm was compared to the `21 mixed norm
regularization showing promising results for synthetic data
composed by point-like source activations. More precisely,
the proposed method showed better detection results and a
better recovery of the activation waveforms for small SNRs,
while avoiding the amplitude underestimation observed with
the `21 approach. In addition, the proposed method presented
a better recovery rate for different amounts of active dipoles.
The method is currently being applied to real data and is
already showing promising results which will be published in
the near future. Future work will try to generalize the method
to practical cases whereH is only partially known.
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