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Abstract This paper introduces a new dictionary learning
strategy based on atoms obtained by translating the composi-
tion of K convolutions with S-sparse kernels of known sup-
port. The dictionary update step associated with this strategy
is a non-convex optimization problem. We propose a practi-
cal formulation of this problem and introduce a Gauss—Seidel
type algorithm referred to as alternative least square algo-
rithm for its resolution. The search space of the proposed
algorithm is of dimension K S, which is typically smaller
than the size of the target atom and much smaller than the
size of the image. Moreover, the complexity of this algorithm
is linear with respect to the image size, allowing larger atoms
to be learned (as opposed to small patches). The conducted
experiments show that we are able to accurately approximate
atoms such as wavelets, curvelets, sinc functions or cosines
for large values of K. The proposed experiments also indicate
that the algorithm generally converges to a global minimum
for large values of K and S.
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1 Introduction
1.1 Problem Formulation

We consider d € N and d-dimensional signals living in a
domain P c 74 (i.e.,d = 1 for 1D signals, d = 2 for 2D
images,...). Typically, P = {0,..., N — l}d, where N € N
is the number of “pixels” along each axis. We consider an
ideal target atom H € R which we want to recover. To fix
ideas, one might think of the target atom as a curvelet in 2D
or an apodized modified discrete cosine in 1D. A weighted
sum u € R¥ of translations of the target atom corrupted by
additive noise is observed. More precisely, we are interested
in measurements defined by

u=axH+Db, (D

where b € R is an additive noise, * stands for the circular
discrete convolution' in dimension d and o« € R” is a code
of known coefficients. A simple example is obtained when
« is a Dirac delta function. In this situation u reduces to a
noisy version of H. Another interesting situation is when «
is a sparse code. This situation turns out to be more favor-
able since, in that case, H is seen several times with different
realizations of the noise. The typical framework we have in
mind includes situations where « is a sparse code, and where
« contains coefficients that have been estimated by dictionary
learning (DL) strategies such as those described in Sect. 1.2.
In such situations, a DL algorithm alternates an estimation of
« and an estimation of H. Of course, « is only approxima-
tively known and the stability of the proposed estimation of
H with respect to the noise affecting « is crucial. Note finally

1" All the signals in R” are extended by periodization to be defined at
any point in Z¢.
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that no assumption or constraint about the code « is required.
However, the performance of an estimator of H from the data
u defined in (1) clearly depends on the conditioning of the
convolution with respect to the value of «.

The problem addressed in this paper consists of both esti-
mating the unknown target atom H and expressing it as a
composition of convolutions of sparse kernels. More pre-
cisely, we consider an integer K > 2 and K convolutions
of sparse kernels (hk)15k§ K € (RP)K . We assume that all
these kernels have less than a fixed number S of non-zero ele-
ments (i.e., that they are at most S-sparse). Furthermore, we
assume that the support of the kernels (i.e., the locations in P
of their non-zero elements) are known or pre-set. Similarly
to the code «, the location of the non-zero elements can be
designed manually or can be estimated by some other means.
For instance, the supports could be obtained by alternating
support and kernel estimations.

In order to manipulate the kernel supports, we define, for
all k € {1, ..., K}, an injective support mapping S* € PS.
The range of the support mapping is defined by

re (Sk) = (SK(1), ..., S5(S)).

The set of constraints on the support of 4* (denoted by
supp (*)) takes the form

supp(hk) Crg(Sk) ,Vkell,...,K}. 2)

For 1D signals, examples of simple support mappings
include S¥(s) = k(s — 1), Vs € {1,..., S}. A similar sup-
port is displayed in Fig. 1 for 2D images. In addition to
the support constraint (2), the convolution of the K kernels
h = (W), <k<K € (RP)K, should approximate the target
atom H,i.e.,
h's-oxn® ~ H.

The motivations for considering such a decomposition are
detailed in Sect. 1.2. They are both to approximate a large tar-
get atom H with a model containing few degrees of freedom
and to obtain target atoms whose manipulation is numerically
efficient. As an illustration, we mention the approximation
of a curvelet target atom by a composition of convolutions
that will receive a specific attention in our experiments (see
Sect. 4.3.1).

Therefore, we propose to solve the following optimization
problem

argming gk [ o x ! s ox B — 3,
subject to  supp (h¥) C rg (8¥),
Vke{l,. ... K}

(Po) :
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Fig. 1 The supports rg (Sk) described by (15), for d = 2, k €
{1,2,3,4} and for ¢ = 1 (i.e., S = 3 x 3). The representation is
shifted so that the origin element of (15) is at the center of each image.
The constraint (2) forces each kernel h* to take the value 0 outside of

rg (Sk)

where ||.||» stands for the usual Euclidean? norm in R . For
instance, in the favorable case where the code « is a Dirac
delta function and b = 0 (noiseless case), the solution of
(Py) approximates the target atom H by a composition of
sparse convolutions. At the other extreme, when the convo-
lution with « is ill-conditioned and the noise is significant,
the solution of (Py) estimates the target atom H and regu-
larizes it according to the composition of sparse convolution
model.

The problem (Pp) is non convex. Thus, depending on the
valuesof K > 2, (5%) <<k € (P5)X,a e RP andu € R”,
it might be difficult or impossible to find a good approxima-
tion of a global minimizer of (Py). The main objective of
this paper is to study if such a problem lends itself to global
optimization. Another important objective is to assess empir-
ically if the computed compositions of convolutions provide
good approximations of some atoms usually encountered in
applications. The current paper gives empirical answers to
these questions. In order to do so, it contains the description
of an algorithm for solving ( Pp) and its performance analysis.

2 R” and RS are endowed with the usual scalar product denoted (., .)
and the usual Euclidean norm denoted || - ||2. We use the same nota-
tion whatever the vector space. We expect that the notation will not be
ambiguous, once in context.
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Before describing the proposed algorithm, we mention
some links between the optimization problem (Pp) and some
known issues in sparse representation.

1.2 Motivations

The primary motivation for considering the observation
model (1) comes from DL, which was pioneered by Lewicki
and Sejnowski (2000), Olshausen and Field (1997) and has
received a growing attention during the last ten years. It can
be viewed as a way of representing data using a sparse rep-
resentation. We invite the reader to consult the book written
by Elad (2010) for more details about sparse representations
and DL. Given a set of L irnages3 (ul)lgsL € (RP)L, the
archetype of the DL strategy is to look for a dictionary as the
solution of the following optimization problem

L

argming i), ,_, > IIHe" — I3 + 1l |l

=1
where H is a matrix whose columns have a bounded norm
and form the atoms of the dictionary, A > 0 is a regulariza-
tion parameter and ||.||, is a sparsity-inducing norm such as
the counting function (or £y pseudo-norm) or the usual ¢;
norm. The DL optimization problem is sometimes formu-
lated by imposing a constraint on ||’ ||. The resulting non-
convex problem can be solved (or approximatively solved)
by many methods including the “method of optimal direc-
tion” (MOD) (Engan et al. 1999) and, in a different manner,
by K-SVD (Aharon et al. 2006). To better reflect the distrib-
ution of images, it can also be useful to increase the number
of images and to use an online strategy (Mairal et al. 2010).
Finally, note that an alternative model has been presented
for task driven DL by Mairal et al. (2012). Algorithmically,
all these approaches rely on alternatively updating the codes
(a’ )1<i<r and the dictionary H.

The problem considered in the current paper mimics an
update step of the dictionary. In this context, « is fixed and the
target atom H is a column of the dictionary H. The dictionary
H is made of translations of the target atom H. The main nov-
elty of the proposed approach is to impose the learned atoms
to be a composition of convolutions of sparse kernels. The
interest for such a constraint is that it provides numerically
effective dictionaries and permits to consider larger atoms.
Indeed, the reconstruction operator

R? — RP
ar— axh' x... xhK

and its adjoint can be computed by K convolutions with ker-
nels of size S. As a consequence, the computation of the

3 Usually, DL is applied to small images such as patches extracted from
large images.

reconstruction operator and its adjoint have a computational
complexity of O (K S#P), where #P denotes the cardinality
of the set P. Depending on the support mappings (%) <k<K>
this complexity can be much smaller than a convolution with
a kernel filling the “reachable support”

S = ’pE'P, Ip; erg(Sl),--.,Pkerg<SK)y

K
Zm=4. 3)
k=1

In the latter case, the computational complexity is indeed
equal to O (#S#P) or O (#P log(#P)) if the convolutions
are computed using a Fast Fourier Transform (FFT).

Moreover, when several target atoms are considered, the
convolutions of sparse kernels can be arranged according
to a tree structure to save even more computing resources.
The typical example of an existing dictionary having a simi-
lar structure is the dictionary made of undecimated wavelets
(Starck et al. 2007) or undecimated wavelet packets.

Let us detail an example of a fast transform learning model
that can benefit from the current study. Consider a tree and
associate to each edge ¢ € € of the tree a sparse kernel
h¢ € R and a support mapping S¢ € PS; denote as £ the
set of all the leaves [ of the tree; denote as a' € RP the
coefficients of the leaf [ € £ and as c¢([) the path containing
all the edges linking the root of the tree to leaf [, for every
[ € £. The reconstruction of a code o = (a)cg € (RP)E
with the fast transform defined by the proposed tree can be
defined as

Ho = Za[ % (*ecc(nh®)
leg

where #.c.()h¢ denotes the composition of convolutions

between all the kernels associated with the edges of the path

c(I). The adjoint of H is easily established given this formula.
A DL problem can then be defined as follows:

argmin Y/ [[Ho! — ! |3 + yllot .
subjectto h e (RP)E, (&) e (RP)H)L,
and supp (k%) C rg (S%), Ve € €,
and 1hela < 1,Ve € €.

When L = 1 and the tree only contains one leaf, the dic-
tionary update is exactly the problem we are considering in
this paper (modulo the constraint ||A¢|; < 1). In particu-
lar, it seems impossible to solve the dictionary update of the
above problem if we are not able to solve the problem (Pp).
In other words, solving the problem (Pp) is a step toward fast
transform learning (hence the name of the paper).

To conclude with the motivations, having a numerically
effective scheme for using a dictionary is crucial since the
computational complexity of most algorithms favoring spar-
sity is proportional to the computational complexity of the
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matrix-vector multiplications involving H and its transpose.
In particular, for the DL algorithms alternating a sparse cod-
ing step and a dictionary update step, the sparse coding steps
require less computational resources. These resources are
therefore available for the dictionary update.

1.3 Related Works

Before going ahead, it is interesting to describe the struc-
tures of the dictionaries that have been considered in DL.
Structured and parametric dictionaries have recently been
considered with increasing interest. Interested readers can
find a concise bibliographical note on that subject by
Rubinstein et al. (2010a). In particular, the structures stud-
ied so far include orthobases (Dobigeon and Tourneret
2010) and unions of orthobases (Lesage et al. 2005), trans-
lation invariant dictionaries (Mailhé et al. 2008), con-
catenation of learned and fixed dictionaries (Peyré et al.
2010), dictionaries composed of patches with multiple sizes
(Mairal et al. 2008), dictionaries divided into ordered pieces
(Thiagarajan et al. 2011), structures induced by structured
codes (Jenatton et al. 2010, 2011), and tight frames (Cai
et al. 2014). Other interesting dictionaries are characterized
by several layers. These dictionaries can be constructed as
the composition of a fixed transform and learned dictionar-
ies (Rubinstein et al. 2010b; Ophir et al. 2011). Dictionaries
made of two layers based on a sparsifying transform and a
sampling matrix (both layers can be learned by the algorithm
investigated by Duarte-Carvajalino and Sapiro 2009) have
also been considered. Another attempt requires two layers to
build separable atoms (Rigamonti et al. 2013). To the best
of our knowledge, there only exists a few attempts for build-
ing dictionaries involving an arbitrary number of layers. In
a slightly different context, dictionaries structured by Kro-
necker products have been proposed by Tsiligkaridis et al.
(2013). Interestingly, despite the non-convexity of the cor-
responding energy, it is possible to find some of its global
minima (Wiesel 2012). Finally, dictionaries structured by
wavelet-like trees (similar to one we are targeting in this
paper) using a dictionary update based on a gradient descent
have been studied by Sallee and Olshausen (2002).

When compared to the dictionaries mentioned in this Sec-
tion, the structure of the proposed dictionary aims at obtain-
ing a numerically efficient translation invariant dictionary,
whose elementary atoms H can have large supports. More-
over, the update of the proposed structured dictionary reduces
to a global optimization problem. Surprisingly, the proposed
algorithm provides interesting solutions for relatively large
values of the number of layers K, e.g., K = 10 seems very
reasonable.

It is interesting to mention that the decomposition of H
as a convolution of K kernels makes the problem similar to
the design of filter-banks that has received a considerable
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attention in the wavelet community. For instance, filters
defined as convolutions of high-pass and low-pass kernels
with perfect reconstruction properties have been studied in
Delsarte et al. (1992) and Macq and Mertes (1993). These
filters are determined by maximizing an appropriate cod-
ing gain for image compression applications. Other methods
for designing FIR and IIR filters are also mentioned in the
review paper (Lu and Antoniou 2000) (based on weighted
least-squares or on a minimax approach). Finally, we would
like to point out that the filters resulting from our algorithm
can vary from scale to scale, as for for the “non-stationary”
wavelet transform (Uhl 1996) or wavelet-packets (Cohen and
Séré 1996). The main novelty of the proposed work is that our
filters are constructed as a composition of convolutions with
sparse kernels, which cannot be obtained with the existing
methods.

1.4 Paper Organization

The paper is organized as follows. Section 1 formulates the
proposed dictionary update and provides motivations with
references to previous works. A more practical problem for-
mulation is introduced in Sect. 2. Section 3 presents an algo-
rithm for approximating a dictionary atom as a composition
of convolutions, in order to build a fast transform. The algo-
rithm is based on an alternating least squares strategy whose
steps are detailed carefully. Simulation results illustrating the
performance of the proposed algorithm and its convergence
properties are provided in Sects. 4 and 5. Conclusions and
future work are reported in Sect. 6.

2 Reformulating (Py)

The problem (Pp) is not very tractable because it has many
stationary points. Denote as h = (hk)lfkf x € (RP)K the
sequence of kernels and as E the objective function of (Py)

E() =|axh' s« xh — u|3.

The gradient of E is

0E oE
VE (h) = ( (h), .. (h)) ,

ant " 9hK
where E?Tb;‘ denotes the partial differential of the energy func-
tion E, for any k € {1, ..., K}. The latter can be calculated

easily, leading to

0E Tk 1 K
o W =205 @xhx e h® —w), )

where

H =asxh' s s hF Vs p* oo w K 3)
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and where the operator - is defined for any 4 € R” as

hy=h_,, VpeP. 6)
Note that the notation H* has been used instead of H*(h) to
improve readability.

As soon as iF1 = hk2 = 0 for two distinct values of k; and
ko € {1,...,K}, we have H* = 0, forall k € {1, ..., K},
and thus
oE
ahk
As a consequence, nothing prevents a minimization algo-
rithm solving (Pp) to get stuck at one of these stationary
points, although it is usually not a global minimizer of (Pyp).

Furthermore, Vh € (RP)X and V(i) 1<k<x € RX, if we
set Hle e = Hle IA*|> and define g such that Vk €

k
{1,...,K},gk=”}i’W,wehave

(h)=0 Vkel{l,...K}.

E[Gugnsiek | = E ),
while, for any k € {1, ..., K},

0E 1 0F k
W (h) = E Tg" [(ng )15k§1<]~

This results in an unbalanced situation where the partial
differentials and the gradient are large along directions of
small kernels. These kernels are therefore favoured which
does not seem justified.

To address the two issues mentioned above and reduce
the number of irrelevant stationary points, we propose to
include an additional constraint for the norms of the kernels
Wk e RP, Vk € {1,..., K}. More precisely, we consider
a norm-to-one constraint ||2*, = 1, Vk € {1,..., K} and
introduce an additional scaling factor . > 0, to scale the
result according to the target atom. To simplify notations, we
write

D=1h=(")1z=x € R Vke{l,.... K},

|h¥]l2 = 1 and supp (hk) crg (Sk)]
and define the following optimization problem
(Py): argminy_gpep Ao s h' s % h® — u|l.

Letus now analyze the properties of the optimization prob-
lem (P;).

Proposition 1 (Existence of a solution) For any
(u, o, ($1212k) € (R x RP x (PHK), if

VheD, axh'sx...xhK £0, (7

then the problem (P1) has a minimizer.

This property relies on the regularity of the objective func-
tion and the compacity/coercivity of the problem. Its proof
is detailed in Appendix.

Note that there might be refined alternatives to the condi-
tion (7). However, the investigation of the tightest condition
for the existence of a minimizer of (Py) is clearly not the sub-
ject of this paper. Concerning the existence of a solution, note
that the objective function of (Py) is not necessarily coercive,
e.g., it is not coercive if there exists h € (RP)X such that
axh!x. .. xh® = 0.In this situation, a minimizing sequence
might be such that raxhls. . xhE and (h5), <k<k haveaccu-
mulation points whereas o 2! % ... % hX and A go towards 0
and infinity. Note finally that we typically expect the condi-
tion (7) to hold as soon as the supports (Sk)lkaK e (PHK
and supp («) are sufficiently localized. In our experiments,
we have never encountered a situation where a %2 ! x. .. xh X
equals zero.

We also have:

Proposition 2 ((P;) is equivalent to (Ppy)) Let (u,c,
(8 1<k<k) € (RP x RP x (P5)X) be such that (7) holds.
For any (A,h) € R x (RP)K, we consider the kernels
g = (g")1zu<k € RP)X defined by

g'=rhland g" =n*, vke{2,...,K). (8)

The following statements hold:

1. if(x,h) e R x RPYK isa stationary point of (Py) and
A > 0 then g is a stationary point of (Py).

2. if(A,h) e Rx RPYK isa global minimizer of (Py) then
g is a global minimizer of (Py).

The proof relies on the homogeneity of the problems
(Py) and (Py). The proof of the proposition is detailed in
Appendix.

To conclude this part, it is interesting to mention some
structural properties of problem (P;). The objective function
of (Py) is a polynomial of degree 2K . Thus, it is infinitely
differentiable and non-negative. The objective function of
(Py) is non-convex. However, for any k € {1, ..., K}, the
objective function of (Py) is marginally quadratic and convex
with respect to /¥, Finally, D is a smooth but non convex set.
Itis not difficult to check that the following mapping provides
an orthogonal projection onto D:

R — D
(W)1<k<k > A1k
where
e 'ilhgg% I g5yl 0
Tglrg(sk) , otherwise,
where 1, (g is the characteristic function of rg (Sk).

@ Springer
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3 The Alternating Least Squares Algorithm
3.1 Principle of the Algorithm

The objective function in (P;) being non-convex, there is in
general no guarantee to find a global or a local minimum
of (P1). However, it makes sense to build a method find-
ing a stationary point of (P;). Also, because the considered
problem has similarities with the best rank 1 approxima-
tion of tensors, we have considered an algorithm inspired
from a well known algorithm solving this tensor problem:
The alternating least squares (ALS) algorithm (De Lathauwer
et al. 2000). This ALS algorithm alternates minimizations
with respect to the kernels hk Yk € {1, ..., K}. Theresulting
algorithm is often referred to as a “Gauss—Seidel” or “block
coordinate descent”. Although our convergence analysis will
not rely on these results let us mention that some convergence
properties of these algorithms have been studied in Luo and
Tseng (1992), Grippo and Sciandrone (2000), Razaviyayn et
al. (2013), Attouch et al. (2013). As we will see, the ALS
algorithm takes advantage of the fact that, when all the ker-
nels but one are fixed, the objective function is a quadratic
function of this latter kernel. As a consequence, every step of
the algorithm will have a closed form solution and thus has
a low complexity.

Using a better minimization algorithm might help to
reduce the time required for the optimization. Among the
alternating strategies, we can think of proximal Gauss—Seidel
strategy (see Attouch et al. 2010) or proximal alternating
linerarized minimization (see Bolte et al. 2013) or finally a
variant (see Chouzenoux et al. 2013). Also, gradient descent
or quasi-Newton algorithms might provide good convergence
rates. Finally, the reader can find standard results on all the
issues related to optimization in Bertsekas (2003).

More precisely, for any k € {l,..., K}, we propose
to (alternatively) solve the following least squares (LS)
problems

argmin, -, cgp Ao s h' s s pE
shox B+ o hK — w3,

subject to supp (h) C rg (Sk)

and ||hll> = 1.

(Py) :

where the kernels (h];/) pep are fixed V&' # k. The result-
ing alternating least square (ALS) algorithm is described in
Algorithm 1.

3.2 Resolution of (Py)

Before studying the existence of a minimizer of (Py), let
us rewrite the problem (P) in a simpler form. Since the
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Algorithm 1: ALS algorithm

Input:
u: target measurements;
«: known coefficients;
(S")lkaK: supports of the kernels (hk)1§k5K~
Qutput:
A and Kkernels (hk)lkaK such that Ak ...« hK ~ H.
begin
Initialize the kernels (h%), <k<K:

while not converged do
L fork=1,..,Kdo

L Update 1 and h* with a minimizer of (Py).

end

embedding from RS in rg (S¥) ¢ R” and the operator

RP — RP

hi—s axhl s x B Vs s kA s 5Bk,

are linear, their composition can be described by a matrix-
vector product Crh, where the vector h € RS and Cy is a
(#P) x S matrix. (The matrix C will be detailed in Sect. 3.3.)

A solution of (Py) can therefore be constructed by embed-
ding in rg (Sk) C RP a solution of the equivalent problem
(still denoted (Py), for simplicity)

: 2
argming - pcrs 1A Ckh — ull3

(PO ubject to Rl = 1.

where we consider that u# has been vectorized. In order to
solve this problem, we define

(P)): argming,ps [[Ckh — ull3.

The problem (P}) is a LS problem which has a minimizer
h* € RS. Moreover, the gradient of its objective function is

clCeh —u).

Finally, by computing a stationary point of the problem (P}),
we obtain:

= (cfceyiclu, ©)
where (CkT Co)' is the pseudo-inverse of CkT Ck. Setting

n* . %
e - 1A%l # 0,
. k_ | ot
A=1h"ll2 and h" = [ L1, otherwise

75

(10)

where 1 € RS is a vector of ones. It is easy to check that we
always have 2* = Ah*. One can also show that any (u, g) €
R x RS satisfying the constraints of (Py) is such that:

IACkh* — ul3 = | Ckh* — ul3,
< ICk(ug) — ull3 = |uCrg — ull3.
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As a consequence, (Py) has a minimizer defined by (9) and
(10). Moreover, note that if (1’, &) is a solution of (Py), we
can easily check that 4’ is a minimizer of (P]). The latter
being unique when Cy is full column rank, we know that the
solution of (Py) is unique under that same condition.
Altogether, we obtain the update rule by embedding in
rg (S¥) c R” the solution described by (9) and (10). In order
to apply these formulas, the main computational difficulties
are to compute CkT u, CkT C and the pseudo-inverse of CkT Ck.
These computations are the subject of the next paragraph.

3.3 Computing C{ u and C} C¢

Considering Dirac delta functions for 4 € RS and the linear-
ity of Cy, we obtain for any & € RS

N
(Cl)p =D Hi_q s VpeP
s=1

where H¥ is defined in (5). In other words, each column of Cj
is a vectorization of (H;_Sk(s))pep. For any p’ € P, denote
as 7,/ the translation operator such that (t,v), = v,—p,
Y(v, p) € R” x P. Using this notation, the sth column of
Cy is a vectorization of T ) H k. Therefore, the sth line of
C/[ is the transpose of a vectorization of Tg wH k. We finally
have

(Clv)s = (T HE v), Yo e R7. (11)

Note that the computational complexity for computing
H* is O((K — 1)S#P). Once H* has been computed, the
cost for computing (CkTu)S is O#P),Vs € {1,...,S}, and
therefore the cost for computing C kT uis O (S#P). Altogether,
we obtain a complexity O (K S#P).

We can immediately deduce the form of C kT Ck. Indeed,
each of its column is obtained by applying (11) in which
we replace v by the column vector g H k. for some s” €
{1, ..., S}. Therefore the coefficient of CkT Cy, at the location
(s,s) e{l,...,S)?is

(C{Ck)S,S/ = (Tsk(S)Hk, Tsk(s/)Hk>. (12)

This Gram matrix is symmetric, positive semidefinite and of
size § x S. Once H* has been computed, the computational
complexity for computing CkT Cy is O(S*#P). The compu-
tation of its pseudo-inverse is a well studied problem and is a
step of the algorithm that can be optimized. An off-the-shelf
implementation using a singular value decomposition (SVD)
typically requires O(S>) operations.

Algorithm 2 summarizes all the steps required for the
proposed ALS algorithm. The overall computational com-
plexity is typically O((K + S)K S#P) per iteration of the

while loop.* It can be reasonably applied in situations where
K S(K +5S§) isnot to large. The most demanding case consid-
ered in the experiments described in this paper corresponds
to KS? = 6250 (corresponding to K = 10 and § = 25). In
order to choose the number of iterations in the while loop,
we have used the relative difference between the values of
the objective function of (Py) for two consecutive iterations.
When this difference is lower than 10™#, we consider that we
have reached a stationary point, and the algorithm stops.

Algorithm 2: Detailed ALS algorithm

Input:

u: target measurements;

«: known coefficients;

(Sk)lkaK: supports of the kernels (hk)lsksK.

Output:

(hk)lskSK: convolution kernels such that 2! ...« hX ~ H.

begin

Initialize the kernels ((h’;) peP)1<k<K;

while not converged do

fork=1,..., K do

Compute H* according to (5)
O((K — 1)S#P)

Compute CkT Cy and CkTu according

to (12) and (11);
oS+ 1)S#P)

Compute 7* according to (9);
0(S?)

Update i* and A according to (10) ;
o(S)

end

3.4 Convergence of the Algorithm

Before stating the convergence result, let us give a few nota-
tions.

First, notice that the result of an iteration of the for loop in
Algorithm 2 only depends on the initial kernels h € D and
not on the initial scaling factor A. If we consider an initial
conditionh € D of the for loop in Algorithm 2, we denote the
initial condition of the kth iteration by Ty (h). For instance,
we have T1(h) = h. We also denote the scaling factor and
the kernels resulting from the whole for loop by 7' (h). More
precisely, denoting as (A", h"),,cn the sequence generated by
Algorithm 2, we have foralln € N

()\n-&-l’ hil+1) — T(hn)

4 In the practical situations we are interested in, #P >> § and S3 can
be neglected when compared to (K + S)S#P.
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Proposition 3 (Convergence of Algorithm 2) For any (u, o,
(S 14<k) € (RP x RP x (PHK), if

axh's. . xh® £0, VhenD, (13)
then the following statements hold:

1. The sequence generated by Algorithm 2 is bounded and
its limit points are in R x D. The value of the objective
function is the same for all these limit points.

2. For any limit point (A*,h*) € R x D, if for all k €
{1, ..., K}, the matrix Cy, generated using Ty, (h*) is full
column rank and CkTu # 0, then (\*, h*) = T'(h*) and
(\*, h*) is a stationary point of the problem (Py).

The proof relies on the fact that the objective function is
coercive, smooth, that each iteration of the algorithm is areg-
ular mapping that makes the value of the objective function
decrease. It also exploits the fact that every problem ( Py) has
a unique solution. The detailed proof of the proposition is
given in Appendix.

3.5 Initialization of the Algorithm and Restart

First, it is interesting to note that the ALS algorithm does
not need any initialization for A. Moreover, the initial ker-
nel values (hk)1§k§ k must satisfy the constraints and there-
fore belong to D. When the problem (P;) has a global min-
imizer, we denote by I C D the non-empty convergence set
such that the ALS algorithm converges to a global minimizer
when it has been initialized with an element of I. Surpris-
ingly, after running intensively the ALS algorithm, it appears
that in many situations I is actually large. In order to illus-
trate this aspect, we have chosen a simple initialization. It
consists of initializing our algorithm by drawing a random
variable uniformly distributed in D. This is easily achieved
(Muller 1959) by using®

h* = L, with  h ~ N5(0, Id),
1712

where N5 (0, Id) is the centered normal distribution in RS.
Our experiments will show that P (h € I) is often signifi-
cantly smaller than 1 when h is uniformly distributed in D.
Moreover, an advantage of this random initialization is that
we can use a “restart” strategy to explore D. More precisely,
we propose to run the ALS algorithm R times, for R € N,
and to return the result for which the objective function is the
smallest. The probability that such a strategy fails to provide
a global minimizer is equal to the probability that none of the

> For simplicity, in the formula below, we do not mention the mapping
of RS into R” necessary to build 4.
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R independent initializations belong to I, i.e.,
PP (not global) = [P (h ¢ I)1R

which decays rapidly to 0, when PP (h € I) is not negligible.
For instance, to guarantee

P (not global) < ¢

for ¢ > 0, we must take

log(¢)

R>R,= ——F—- ——.
log (P (h ¢ 1))

(14)

Note that the number of restarts does not increase signifi-
cantly when ¢ decreases. However, when P (h € I) is small
(or negligible) we have

__ —log(e)
Phel)

&

The proposed “restart” strategy is therefore only reasonable
when PP (h € ) is not too small.

4 Approximation Experiments
4.1 Simulation Scenario

Our first goal is to empirically assess the ability of a com-
position of convolutions to approximate a given target atom
H € RP. We are also interested in observing the influence
of the number of kernels K and of the size of the kernels
on the approximation error. In order to do so, this section
presents results obtained for several 1D and 2D target atoms
H (i.e.,d = 1 or 2) that have been selected from dictionaries
commonly used in signal and image processing.

For all the experiments in Sect. 4, we consider a size N €
N, adimensiond € {1,2}andtake P = {0, ..., N—1}¢. We
consider a target atom H € R”, a code « € R” and a zero
mean Gaussian noise b € R of variance 2. Throughout
these experiments, we explore parameters upto K = 11 and
S = 25. Moreover, for a dimensiond € {1, 2} and a size ¢ €
N, we always consider the support mappings (S¥);<x<x €
(P$)K such that forall k € {1, ..., K}

re (Sk) —k{—c,....0,.... ) (15)

For example with two 2D kernels /' and 4% and a size ¢ = 1,
their support mappings are set to rg (Sl) = {-1,0,1} x
{—1,0,1} and rg (S?) = {-2,0,2} x {—2,0,2}, which
means that both kernels have S = 9 authorized non-zero
elements.

Note that centering these support mappings on p = 0 is
possible because of the periodization of RP. Figure 1 shows
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an example of support mapping obtained for K = 4,d = 2
andc = 1.

It is not difficult to show (for instance, by induction) that
the reachable support defined in (3) associated with the sup-
port mappings defined in (15) is:

3=|§_ck,...,§ck]

k=1 k=1
[ KK+ KK +1))?
={—c 5 R 3 .

d

To continue with the previous example, the convolution
of h! with h? can reach the set S = {—3, ..., 3}%, which
contains 49 pixels. Therefore, the width of S is given by
K (K + 1)c and its size (Iength or area) is (K (K + 1)¢)?.
Note that the size of S is usually much smaller than the size
of the search space, equal to K (2¢ + 1)?. The ratio between
these two quantities corresponds to a “compression ratio”
when describing the atom with convolution kernels. This
ratio behaves like X ;‘:1 when both ¢ and K grow. Table 1
shows the compression ratio for a few values of (K, ¢) and
d € {1, 2}. The gain is clearly more interesting when increas-
ing K compared to increasing c.

For most experiments, the support of H is contained into
S. When it is the case, we provide an indicator for the ability
of the composition of convolutions to reduce the search space
while filling the target atom’s support. This indicator G is the
ratio between the size of the effective support of H and the
size of the actual search space using the K S-sparse kernels,
ie.,

G — Tsuppeft(H)
T KQc+ 1A

where
suppopr(H) = {p € P||Hy| > 10~ (max ep |H,,|)} .

The role of the effective support is to realistically account for
the energy localization in H. We will provide some values
of G for the tests presented in this section.

(K(K+1)e)?

Kt for various K and c in

Table 1 Compression ratio
dimensiond = 1 andd = 2

Compression ratio K =3 K =4 K=6 K =10

d=1 c = l(s=3 0.67 1.00 1.67 3.00
¢ =2(5=5) 0.80 1.20 2.00 3.60
¢ =3(5=7) 0.86 1.29 2.14 3.86

d=2 ¢ = l(s=9) 1.33 4.00 16.67 90.00
¢ = 2(s=25) 1.92 5.76 24.00 129.60
¢ = 3(5=49) 2.20 6.61 27.55 148.78

For each experiment, the quantities N,d, H,«, 0, K, c and
the number R of restarts are provided. Given these quantities,
we compute u according to (1). Then, Algorithm 2 is run for
a given number R of restarts and the result with the smallest
objective function value is kept. The result of this process is
denoted as (A, (hk)lkaK) € R x D in what follows.

Given a result (A, (hk)1§k5 k) € R x D, we evaluate the
quality of the approximation of H by Ah! % - .- % hX using
the peak-signal-to-noise ratio (PSNR). Moreover, in order to
consider that the size of the support of H can be much smaller
than #P, the PSNR is normalized according to the size of the
effective support of H. More precisely, it is defined by

2
PSNRy = 101 _—
H o810 (MSEH)
where r = max,cp(Hp) — min,cp(Hp) is the dynamic

range of the atom H and the mean-square-error (MSE) is
defined by:

[ARY % - % hK — H|3
# suppegr(H)

MSEy = (16)

Note that the usual PSNR and MSE are normalised by the
whole image size #P instead of # suppefr(H). The normal-
ization defined in (16) is motivated by the nature of most
atoms studied in this section: though their support may span
over the whole set P, most of their energy is concentrated in
a small region.

Note that in noisy settings, PSNR values are provided
in addition to the noise variance . These PSNR values
inform us on the degradation between « * H and u, and
cannot be compared to the values of PSNR g, which concern
the reconstructed atom only. The only exception is the first
experiment, of paragraph 4.2.1, where the code « is a Dirac
delta function.

We also provide a figure of merit reflecting both the qual-
ity of the convergence and the level of regularization induced
by the composition of convolutions. The Normalized Recon-
struction Error (NRE) is defined as

e % hl %% B — |3
= 3 . (17)
lllly
When NRE is large, either the convergence has not been
reached or the values of K and S are too small to obtain a
good approximation of H. When it is small, the algorithm has
converged to a stationary point close to a global minimum
and the values of K and S provide a good approximation of
u. Note that this last property can be a problem when u is
contaminated by a strong noise.
Finally, in order to assess the additional difficulty induced
by the convolution with the code «, we provide a measure
of conditioning. Indeed, recovering H from u can be a badly
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conditioned problem (see (1)) yielding instabilities. For every
experiment where « is not a Dirac delta function, a histogram
of the values of the modulus of its Fourier transform |a| is
used to measure conditioning. The greater the range over
which these values span, the worse the conditioning. The
case of a sparse « seems to be the best compromise between
conditioning and redundancy, the latter being crucial to get
a stable approximation of H in the presence of noise.

Note that NRE can be small whatever the conditioning
because the value of the denominator in (17) depends on «.
For this reason, PSNR g is still the most relevant indicator of
the success of the algorithm.

4.2 1D Targets
4.2.1 Apodized Modified Discrete Cosine

The modified discrete cosine transform (MDCT) has been
successfully used in several signal processing applications
such as audio coding (Painter and Spanias 2000). The aim
of the proposed experiment is to approximate an apodized
modified discrete cosine (MDC) with a composition of con-
volutions. In order to do so, we apply the inverse MDCT to a
Dirac delta function located at a given frequency, in a signal
of size 512 (i.e., d = 1). We then apodize the MDC using
the sine window (w)o<p<255 defined by:

0 it pefo,...,127)
wp = { sin [7 C20 i pe (128,383,
0 it pei(384,...,512)

This type of window is, for instance, used in MDCT
analysis for time-domain aliasing cancellation (Princen and
Bradley 1986).

Figures 2 and 3 show examples of target atoms H obtained
for frequencies 10Hz and 100Hz. The code « used in this
experiment is a Dirac delta function located at p = 256.
In this simple, noiseless case, u equals H. As for all sim-
ulations conducted in this section, the kernel supports have
been defined according to (15). We have used R = 50 restarts
because the simulation is very fast.

Moreover, we have considered 5 < K < 1land5< S =
2c+1 < 11, corresponding to the values of PSNR g reported
in Table 2. One can see that the higher K and S, the better the
approximation of H. This result is expected since increasing
these parameters confers more flexibility to describe the tar-
get atom H, leading to a lower resulting objective function
value (after algorithm convergence), which is inversely pro-
portional to PSNRy. Note that values of PSNRy above 50
dB are obtained in many cases.

The approximations obtained for frequencies 10 and 100,
both with K =9, § = 2c¢ + 1 = 9, are depicted in Figs. 2
and 3, respectively. More precisely, each figure shows the
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Table 2 MDC approximation for frequency 100 Hz: PSNRy for
several values of K and ¢

PSNRy (dB) K=5 K=7 K=9 K =11
c=2 14.43 17.32 23.81 38.26
c=3 16.23 23.02 46.24 51.48
c=4 18.45 34.84 54.32 54.33
c=5 21.60 53.70 54.82 55.73
0.02
0.015 - 1
0.01
0.005
0
-0.005 |- E
-0.01 |-
-0.015 i
—— Composition of Convolution?
) ) ) o Targetu
002 150 200 250 300 350 400

Fig. 2 Approximation of an apodized frequency 10 MDC by the
convolution of K = 9 kernels of sparsity S = 9 (PSNRy = 58.88 dB)

0.02

0.015 - B

0.01

0.005 - B

-0.005 -

-0.01 -

-0.015 - o
—— Composition of Convolution:
0.02 ‘ ‘ ‘ o Targetu

150 200 250 300 350 400

Fig. 3 Approximation of an apodized frequency 100 MDC by the
convolution of K = 9 kernels of sparsity S = 9 (PSNRy = 54.32 dB)

approximation Ak! - - - % hX and the atom H. Note that the
resulting approximations are very accurate, and G = %69 =
3.16.

The same experiment has been conducted for the fre-
quency 100 with K =9, S =2c+1 =9and R = 25
restarts, with an additive white Gaussian noise of variance
o2 € [107°,107%]. Figure 4 shows PSNRy; as a function of
the noise variance. Note that PSNR g is always higher than
the PSNR between u and o % H.® This means that the model
(Py) reduces noise when u is a noisy apodized MDC. This

6 In this case the comparison is relevant, because « is a Dirac delta
function.
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15

——PSNRy, (composition of convolutions)|
——PSNR (noisy atom)
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PSNR,,

4

10° 10° 10°

sigma2

Fig. 4 PSNRy for the approximation of the apodized frequency 100
MDC by the convolution of K = 9 kernels of sparsity S = 9, for
107¢ < 62 < 1073 (blue curve). The green curve is the PSNR between
u and o x H (Color figure online)

denoising would be further improved with a sparse code «
containing several non-zero coefficients.

4.2.2 Sinc Function

This experiment aims at approximating the sinc function used
to perform a linear zoom (Whittaker 1915). The sinc inter-
polation has been successfully approximated with splines
(Aldroubi et al. 1992). Though the spline interpolation can be
interpreted as a composition of convolutions, we use different
kernel supports. The zoom factor is Z = 3 and the signal is of
size 128. We therefore haved = 1 and N = 3 x 128 = 384.
The target atom H is a sinc function obtained by computing
the inverse Fourier transform of the characteristic function of
a centered interval of length N /3. The signal to be zoomed
corresponds to the first 128 values of the 128th column of
the Barbara image.

The code o has been built by upsampling this signal by
a factor Z = 3 (see Fig. 5). This upsampling has been per-
formed by inserting 2 zeros between every couple of neigh-
bors in the initial signal. We are obviously not in a case where
« is sparse. Moreover, the histogram of its Fourier transform
displayed in Fig. 6 shows that the convolution with « is not
very well conditioned. Indeed, the ratio between the highest
Fourier coefficient and the lowest is 728.

The signal u has been constructed according to (1) for
different noise levels. Moreover, as for all experiments in
this section, kernel supports have been set according to (15).

First, we have considered K =9andc =4 (ie., S =9)
and run R = 50 restarts of Algorithm 2 for noiseless and
noisy signals (o2 = 5). Figures 7 and 8 shows the target sinc
atom H and the approximation A s h' % --- % hX for the
noiseless and noisy cases. In the noiseless case (Fig. 7), we
see that the resulting composition of convolutions A s !
... % hX is a good approximation of the sinc function. In
the noisy case (Fig. 8), the approximation is less accurate,

200 -
180 -
160
140
120 fneee
100 -
80 =@ es
60 -
40 -
20 -

0 i N ; i i i
0 50 100 150 200 250 300 350

Fig. 5 Code « used in the the approximation of a 1D sinc function
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50 - 1
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Fig. 6 Histogram of |&|, the modulus of the Fourier transform of the
code
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Fig. 7 Approximation of a noiseless 1D sinc function with (K, ¢) =
(9,4). The target sinc atom H and the composition of convolutions
AR s oo x K PSNRy = 44.47 dB

which is expected since there is no regularization and the
convolution with « is ill-conditioned.

The same experiment has been run for K € {3,5,7, 9}
and c € {1,2,3} (i.e. S € {3,5,7}), R = 50, for both cases
02 = 0 and 62 = 5. In the latter case, the PSNR between u
and o * H is 28.20 dB.
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0.35

——True atom

o ~——— Composition of convolutions|

Table 4 Sinc approximation: NRE for 6> = 5 (R = 50)

NRE x 1073 K=3 K=5 K=17 K=9
025 | g
02 c=1 5.0 4.6 4.1 4.1
c=2 3.5 3.5 3.4 3.4
0.15
c=3 3.5 3.4 3.3 3.2
0.1
0.05
o - Table 5 Sinc approximation: PSNRy for 6> = 0 (R = 50)
oos| PSNRy (dB) K=3 K=5 K=17 K=9
0.1 ‘ ‘ : c=1 31.46 33.91 32.89 33.79
0 50 100 150 200 250 300 350 400
c=2 37.59 38.95 39.29 39.49
Fig. 8 Approximation of a noisy (6> = 5) 1D sinc function with c=3 39.14 41.86 41.93 42.07
(K, c) =(9,4). The target sinc atom H and the composition of convo-
lutions k' - -- % hX. PSNRy = 35.68 dB
Table 6 Sinc approximation: NRE for 6> = 0 (R = 50)
Table 3 Sinc approximation: PSNR for 62 = 5 (R = 50) NRE x 1073 K =3 K =5 K=17 K=9
PSNRy (dB) K =3 K =5 K =17 K=9 c=1 2.0 1.2 1.2 1.1
c=1 31.66 33.14 34.53 3577 ¢=2 03 0.2 02 0.2
c=2 37.34 38.03 37.32 3667 ¢=3 02 0.1 0.1 0.1
c=3 37.69 37.61 36.63 36.82
Tables 4 and 6 show, for the same experiments, the conver-
40 — gence criterion defined in (17). We observe that increasing
" [=Fety K and c improves the criterion NRE, even in the noisy case,
% which is expected because of the conditioning of the convo-
* 30| 1 lution with «. This simulation shows that it is possible to have
» ‘ a good reconstruction of the signal u with a poor approxi-
0 ® Noise vari 10 15 mation of the atom H when the convolution with « is poorly
oise variance .
55 X107 conditioned.
'5 —NREy Finally, it is interesting to test the stability of the proposed
w 45 model to an imperfect knowledge of «. For this purpose, a
zZ . _ Gaussian noise b, ~ N (0, a(f) has been added to the code
35 o used to solve (P;) (u is still built with a noiseless «). We
3 s 10 15 have set K = 9 and ¢ = 3, i.e.,, S = 7, and have run the

Noise variance

Fig. 9 Evolution of PSNRy and NRE, for the sinc target atom, with
respect to the noise variance o2 forK=9,c=3

Tables 3 and 5 contain the values of PSNRy obtained
for these parameters. In the noisy case (Table 3), PSNRy is
only a little smaller than that of the noiseless case (Table 5),
which suggests that the method is robust to noise. To confirm
this, a single case (K = 9, ¢ = 3) is run for an increasing
noise variance 0 < o> < 20. Figure 9 shows that when the
noise variance increases (and PSNR between u and o « H
decreases), PSNR g decreases at the same rate.

Moreover, in the presence of noise, increasing parameters
K ans S does not clearly improve PSNRy. This is due to
the lack of regularization, when K and c are large. We do not
observe this phenomenon in Table 5, which contains PSNR g
results for the noiseless case.
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algorithm for several noise levels 0 < a(f < 15. Figure 10
shows that PSNR y is stable with respect to alf, even though
NRE tends to increase with 0‘3. This suggest that the model
is robust to an imperfect knowledge of «.

Finally, it is important to note that all the kernels used in
these 1D experiments have the same support. Despite this
constraint, the optimized kernels approximate very differ-
ent target atoms such as MDC at frequency 10 and 100
and a sinc function. This shows that the proposed model
based on compositions of convolutions is reasonably rich and
versatile.

4.3 2D Targets
4.3.1 Curvelet

The aim of this experiment is to approximate a curvelet atom
H in an image (i.e.,d = 2) of size N x N with N = 128.
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Fig. 10 Evolution of PSNRy, for the sinc target atom, with respect to
the noise variance o, on the code o, for K =9 ,¢ =3

The curvelet is obtained by applying the inverse curvelet
transform to a Dirac delta function, using the MCALAB
toolbox (Fadili et al. 2010). The code « corresponds to a
Dirac delta function located at the barycenter of the curvelet.
Once again, the support mapping is the one described in (15),
with either ¢ = 1 or ¢ = 2. Note that this support mapping
does not take the anisotropy of the curvelet into account.
This is an unfavorable situation. All values of K satisfying
3 < K < 11 have been tested. We consider a noiseless case
so that u is a simple translation of H. We have used R = 10
restarts.

Figure 11 shows the target atom H and Ah' % - - s hK,
for K = 7 and ¢ = 2. For these parameters, the size
ratio between the effective support of the curvelet and the
actual search space is G = 42.72. We observe that, although
PSNRy = 44.30 dB, the accuracy of the approximation is
not the same in different parts of the image. In particular, the
tails of curvelet are not properly captured.

Table 7 contains the values of PSNRy for various val-
ues of K and c. In this experiment, we were expecting that
increasing K and S would improve the accuracy. It is not
exactly what we observe in Table 7. For § = 5 x 5, increasing
K beyond a certain value actually makes PSNRy decrease.
This result can be explained by a lack of convergence, as is
confirmed in Table 8. This problem could easily be corrected
by an initialization exploiting the results obtained for smaller
values of K and c.

Finally, Fig. 12 shows the kernels (hk)lfks x computed
for K = 7 and § = 5 x 5. We can observe that many ker-
nel coefficients are close to zero, i.e., only the coefficients
along the main direction of the curvelet have significant val-
ues. It is obvious that the simple isotropic dilation of the sup-
ports defined by (15) is not appropriate for this curvelet. This
raises the question of the adaptation of the support mappings
(Sk )1<k<k to the atom’s geometry.

Fig. 11 Curvelet approximation with K = 7 and § = 5 x 5.
Comparison between Ak' ... % h” (top) and the target curvelet atom
H (bottom). We have PSNRy = 44.30

Table 7 Curvelet approximation: PSNRy for several values of K and

N

PSNRy (dB) K=3 K=5 K=7 K=9 K=11
§S=3x3 33.06 3655 3652 3722 37.01
S=5x5 39.99 4581 4430 4074  38.05

Table 8 Curvelet approximation: NRE for several values of K and ¢

NRE K=3 K=5 K =17 K=9 K =11
c=1 1.99 0.89 0.90 0.76 0.80
c=2 0.40 0.11 0.15 0.34 0.63
4.3.2 Cosine

The aim of this experiment is to approximate an atom repre-
senting a 2D cosine function in an image of size 64 x 64 (i.e.,
d = 2and N = 64). In the context of image processing, such
an atom can be seen as a large local cosine or a Fourier atom.
Both are widely used in image processing. The interest of
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kernel h, kernel h, kernel hy
kernel h, kernel hg kernel hg
1
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Fig. 12 Curvelet approximation for K = 7 and § = 5 x 5. Zoom on
the computed kernels (hk)15k57. The colormap is flattened around 0 to
highlight the higher coefficients

this atom is that it covers the whole image and is of a rather
large support. Beside, patches of this size are difficult to han-
dle with existing DL strategies. The considered atom is given
by

(p.(2.5))

H, =cos | 2w
p=cos (2222

),Vp €{0,...,63}%.

The code « is a sparse vector whose support elements are
randomly chosen. More precisely, for all p € P, there is
a probability 10~! that o p 7 0. The values of the non-zero
elements are then set according to the centered normal distri-
bution A/(0, 1). In other words, for a given p, the elements of
code &, are assumed to be independent and identically dis-
tributed according to a Bernoulli-Gaussian distribution, that
has been widely used in sparse signal and image deconvolu-
tion (Champagnat et al. 1996; Kail et al. 2012; Quinsac et al.
2011). Therefore, u contains a few weighted translations of
the cosine atom H,” which should result in a better approxi-
mation of H using Algorithm 2. Figures 13 and 14 show the
code and the histogram of its Fourier transform. Note that the
ratio between the largest and the smallest Fourier coefficients
(in modulus) is 91, which corresponds to a reasonable con-
ditioning. The target u is built with additive Gaussian noise

7" A sum of cosines of same frequency and different phases will yield a
cosine of unchanged frequency.
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Fig. 13 Cosine experiment: code «
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Fig. 14 Cosine experiment: modulus of the Fourier transform of the
code |&|

of variance o2 = 0.5, which corresponds to a normalized
PSNR g between o * H and u of 22.08.

The support mapping is the same as for the previous
experiment (see 15) with, either ¢ = 1 (§ = 3 x 3) or
¢ =2 (S =5 x 5). Different Values of K have been tested
in the range 3 < K < 11, each time with R = 15 restarts.

Tables 9 and 10 provide the PSNRy and NRE indica-
tors in the studied range of parameters. In this experiment,
we expect to obtain a somewhat regularized atom thanks to
the repetitions induced by the sparse (and reasonably con-
ditioned) code «r. We observe in Table 9 that PSNR g rises
above 30 if parameters K and S are large enough. Even for
K = 9 and ¢ = 2, the ratio between the number of vari-
ables describing the kernels and the size of the cosine is
G = 96§1<>5<>6<§ = 18.20. Table 10 shows a steady improvement
of NRE when K and c increase.

Figures 15 and 16 show the cosine image u, its approxima-
tion Aax h! % xhX  the actual atom H and Akl % - .- x hK,
for K = 7 and ¢ = 2. The results obtained here are quite
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Table 9 2D cosine approximation: PSNR g

PSNRy(dB) K=3 K=5 K=7 K=9 K=11
c=1 11.79 12.27 13.81 25.15 30.09
c=2 11.94 15.97 41.44 38.94 39.82
Table 10 2D cosine