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ABSTRACT 
 
The well-known conventional Weighted Least Squares 
(WLS) and extended Kalman filter (EKF) are the standard 
estimation methods for positioning with GNSS 
measurements. However, these estimators are not optimal 
when the GNSS measurements become contaminated by 
non-Gaussian errors including multipath (MP) and non-
line-of-sight (NLOS) biases. In this paper, we use 
additional information of the geometric environment 
provided by a 3D model to build-up a robust solution 
against biases which may be summed up from MP and 
NLOS signals in urban environments. We first use a 3D 
city model to predict lower and upper bounds of these 
biases. Then, we integrate this information in the position 
estimation problem. We investigated in two ways of 
making use of this additional information: the first one is 
to consider these biases as additive noise and exploiting 
the bounds to end up with a constrained state estimation by 
WLS or Kalman filter. The second way is to investigate in 
the maximum likelihood estimation of both the MP-NLOS 
bias and the state ending up with a less accurate but 
acceptable solution. Test results using real GPS signal in 
Toulouse show that these estimators capable of improving 
the positioning accuracy compared to the conventional 
WLS if the NLOS bounds are well-chosen. 
 
NOTATION 

 
The notational convention adopted is as follows: italic 
indicates a scalar quantity, as in a; lower case boldface 
indicates a column vector quantity, as in a; upper case 
boldface indicates a matrix quantity, as in A; The n-th row 
and the m-th column element of the matrix A will be 
denoted by mna , or ( ) mn,A . The n-th coordinate of the 

column vector a will be denoted by na or ( )na . The 

matrix/vector transpose conjugate is indicated by a 

superscript Τ as in ΤA . The inverse of a matrix is indicated 

by a superscript 1− as in 1−A . [ ]BA,  denotes the matrix 

resulting from the horizontal concatenation of matrix A
andB . ( )ΤΤ ba , denotes the row vector resulting from the 

horizontal concatenation of row vectors Τa and Τb . mI is 

the identity matrix of orderm . ⊥S denotes the orthogonal 



complement of the subspace S. 1 denotes the column 
vector containing only the value 1. ba denotes the 

scalar product of vector a andb , a denotes the norm of 

the vector a . If Τ= ),,,( 21 Pθθθ Kθ , then 
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INTRODUCTION 
 
Global Navigation Satellite systems (GNSS) have emerged 
as powerful technology for providing the geolocation 
solution essential for a wide range of applications and 
services. The last two decades have seen a growing trend 
towards the use of GNSS for positioning in urban 
environments, because of the steep increase of applications 
relying on geolocation in these environments. However, 
the reliability of these systems can be adversely affected 
under certain conditions in this kind of harsh 
environments. The positioning quality cannot be ensured 
in general when traversing a harsh environment (urban, 
forested or mountainous areas or inside buildings) even for 
the majority of comfort applications requiring few meters 
of accuracy. Indeed, these environments present significant 
challenges for satellites positioning which explains the gap 
between user expectations and requirements from one side 
and the existing technologies from other side. One of the 
greatest raisons of that GNSS performance in harsh urban 
setting is the high density of tall buildings and objects 
blocking the direct line-of-sight (LOS) signal from many 
satellites, which may reduce the visibility of available 
satellites in view. Often, the received signals have poor 
geometry and therefore degrade the position accuracy. 
 
In addition, the density of various obstacles surrounding 
the GNSS receiver leads to receiving reflected and 
diffracted signals from buildings and other objects. This 
situation produces a distortion of the pseudo-range (PR) 
measurements and consequently biases the position 
calculation. There are two types of signals received in 
indirect paths: Multipath (MP) signal if the signal is 
received through both direct line of sight (LOS) and 
indirect path and Non-Line-Of-Sight (NLOS) signal if the 
signal is received only through reflections. Even though 
both the NLOS reception and multipath interference are 
often grouped together as “multipath”, they are actually 
separate phenomena that cause very different ranging 
errors [2]. Therefore, it is important to treat these two 
phenomena separately. To date, several studies have 
attempted to deal with the multipath problem through 
receiver-based techniques such as narrow-correlators [3, 
4]. Whilst mature research works has been carried out on 
MP mitigation in presence of LOS, there are still very little 
scientific investigations to solve the NLOS difficult 
problem. In this paper, we introduce a new robust GNSS 
solution that use the 3D model of the environment to 
bound the NLOS bias and then mitigate its effect in the 
state estimation. This paper is divided into four main 
sections. In the first section, we propose a review of 

studies on using 3D model to mitigate the NLOS 
phenomenon. Our contributions to bound the NLOS bias 
using the 3D model and then mitigate it in the state 
estimate will be detailed in section 2. In section 3, we 
show the results of comparison between our methods and 
other existing works using real GPS data collected in 
Toulouse (South-West of France). Performances are 
compared with an iterative Least Square [13]. Finally, 
some conclusions are summarized in the fourth section. 
 
EXISTING METHODS 
 
One of the current main challenges in the use of GNSS for 
positioning in urban environments is the MP and NLOS 
bias present in the PR measurements. These biases induce 
biased position estimation with several meters of PR errors 
in some harsh environments [5]. In order to improve the 
performance of satellite navigation in these environments, 
many of existing techniques aim to model these 
degradations and mitigate their effects at the level of signal 
processing, measurements or position domain [6].  
 
Since the conventional least squares method is not robust 
to bias errors [7], some studies have focused on making 
the estimation more robust to these outliers by minimizing 
other residual functional instead of the sum of squares of 
residuals used in the least squares solution such as the M-
estimation techniques [6]-[12] and the Robust Extended 
Kalman Filtering [9, 11, 13, 14]. Although these estimators 
enhance the positioning performance and mitigate the 
effects of outliers present in measurements, a high number 
of biased measurements compared to reliable 
measurements lead to large positioning errors. This fact 
limits the use of robust methods without additional 
information in urban and deep urban environments when 
the majority of the available signals are contaminated with 
bias errors. A standard approach for dealing with this 
problem consists of enhancing the positioning robustness 
in the measurement domain by detecting and rejecting bad 
observables using RAIM methods or statistical tests [15, 
16]. However RAIM methods assume the availability of at 
least five reliable measurements and at most one faulty 
pseudorange. To address the problem of identifying the 
contaminated measurements among the healthy 
measurements, [2] gives a survey on distinguishing NLOS 
measurements from LOS measurements. Some of the 
proposed methods investigate the use of an additional 
hardware allowing the NLOS-LOS signal distinction. 
Without using additional hardware, [2] proposes others 
criteria of distinction such as elevation angle selection, 
C/N0 selection and consistency checking [17]. Once 
NLOS measurements are identified, they can be either 
discarded [18], weighted [19] or used in a way which 
improves performances [20, 21, 22]. 
 
In urban and deep urban canyons characterized by reduced 
visibility and a lack of measurements, discarding all the 
faulty measurements will lead to not having a PVT 
solution since we need at least four measurements for the 
position estimation. So, recent studies have focused on 



using constructively these NLOS observables to improve 
the measurements model [20-22]. One way of doing this is 
to predict the NLOS bias via aiding information from a 3D 
city model and then correct it in the PR measurements. 3D 
models used jointly with a GNSS simulator characterize 
on-the-fly the measurements errors in urban environments. 
With an initial position input, these models simulate the 
GNSS propagation in representative type of environments 
(e.g. open sky, urban and deep urban) and provide the user 
with several types of information such as the number and 
the characteristics of reflections, additional PR biases… 
The quality and reliability of the simulated signals and 
errors depend on how much close is the a priori input 
position to the actual position to be estimated. Refs [21] 
and [22] have used the 3D model to predict PR errors and 
use it constructively on the estimation step. To manage the 
problem of the vicinity between the input point in the 3D 
model and the unknown position to be estimated, some 
studies opt to use a grid of input points in the zone of 
interest. The estimation of the position is then provided by 
comparison between the observations present in the 
receiver level and one of the information provided by the 
3D model such as the sky visibility [1], the delay 
information [23], the PR measurements [24, 25] and the 
position consistency [2]. Other approaches combine a 
simplified 3D model of the environment with a 
probabilistic method to enhance performances [26, 27].   
 
The main challenge of using 3D models in the positioning 
problem is the choice of the input position and the 
reliability of the 3D model itself which is only a 
deterministic approximation of the reality. An input point 
not sufficiently close to the unknown position to be 
estimated may induce large positioning errors. Besides, 
although the 3D simulator are becoming more and more 
reliable, they contain a certain level of inaccuracy due to 
the impossibility of modeling the real-time moving objects 
in the receiver environment (cars, pedestrians, tracks,…) 
and some immovable but variable objects such as trees 
with different texture from Spring to Autumn. In addition, 
it is obvious that the predicted bias and errors from the 3D 
propagation model cannot be instantaneous and accurate. 
Therefore, we propose in this paper an original solution to 
handle this inaccuracy and this chicken and eggs problem 
between the input position choice and the fix to compute. 
Instead of using the exact value of the output bias provided 
by the 3D model, as it was classically done in previous 
studies, we will just use upper and lower bounds of these 
biases. We seek to study the problem of positioning with 
NLOS GNSS pseudoranges (PR) in urban canyons by 
using a 3D city model to predict the most appropriate 
bounds of the measurement bias. The idea is to predict 
lower and upper bounds of the each PR bias and integrate 
this information as additional inequality constraints in the 
position estimation problem. The resulting problem is 
more realistic in reduced satellites visibility scenarios than 
trying the instantaneous values. First, we define a grid of 
position candidates as input to the 3D model simulator 
SPRING provided by the French space agency CNES [28] 

to obtain PR NLOS bias values for each satellite in 
visibility. We select only the maximum and minimum  
values of the bias for each satellite to define an admissible 
range of the measurements NLOS bias. We use these 
bounds to formalize the position estimation as an 
inequality constrained problem as it will be detailed in the 
next section. The final navigation solution is obtained via 
an iterative least-square solution with improved integrity 
and robustness as it will be shown in the results and 
analysis section. 
 
ROBUST GNSS NAVIGATION 
 
The following nonlinear measurement equation formulates 
the satellite positioning problem at each time step: 

vb1xhr +++= − NLOSMPcb)(                    (1) 

where: x  is the state vector containing the values of the 
three coordinates of the user position to be estimated [M, 
1], r  is the PR measurements vector [N,1] with N>M. 

)(xh is the true distance between the satellite position and 

the receiver position, cb is the clock bias which is common 

between all the satellites, NLOSMP−b is the measurement 

bias included in the measured pseudoranges and which is 
caused basically by MP and NLOS signals in urban 
environments [N, 1], v is the measurement noise supposed 
to be a zero-mean Gaussian white noise characterized by a 
covariance matrixR . 
Let reword this problem by gathering the two bias errors

NLOSMPcb −+= b1b providing the following measurements 

model: 
vbxhr ++= )( . 

 
We seek to estimatex by the conditional maximum 
likelihood estimator which minimizes the observation 
probability density function (pdf) of the conditional 
Gaussian observation model [29]: 
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where ),( bxrJ is the cost function or the likelihood 

function to be minimized to estimate bothx andb . This is 
a batch estimation method but the proposed scheme could 
be applied similarly to iterative estimation methods like 
the iterative WLS and Kalman filter. 
 The above cost function can be written as: 
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Since the function )(xh is nonlinear, this problem cannot 

be resolved analytically in general. To overcome this 
limitation, we can linearize this problem about a known 
reference point0x . The first order of Taylor expansion of 

the function )(xh is equal to: 
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This reference point0x should be close enough to the true 

receiver positionx . Practically speaking, we define 0x  as 

the estimated receiver position at the previous time step. 
If we define a linearized PR measurement vectory equal to

))(( 000 xHxhry −−= then the problem (1) can be 

formulated by the following linear measurement equation: 
 

 vb1xHy +++= −NLOSMPcb0                 (5) 

 
It is important to note that the new position to be estimated 
is a position related to the reference point 0x which may 

be chosen as the previous position estimation. Since the 
clock bias is the same for all the satellites then this 
problem can be restated as: 
 

vbsAy ++= −NLOSMP0                    (6) 

where [ ]1HA 00 = and ( )cb,ΤΤ = xs . Then, the cost 

function used in the maximum likelihood estimator to 
estimate s will be equal to: 

)()(),(

),(

0
1

0

2
0 1

NLOSMPNLOSMP

NLOSMP

J

J

−
−Τ

−

−

−−−−≈

−−≈ −

bsAyRbsAybsr

bsAybsr
R

(7) 
Without having any information on the MP and NLOS 
measurement bias, the estimate of state vectors will be 
biased. To compensate for the effect of MP/NLOS, we 
need some geometric information about the propagation 
paths of received signals. Therefore, we propose to use a 
3D city model combined with a GNSS simulator to obtain 
a feasible range set of the MP-NLOS bias error. The 
propagation calculation uses ray-tracing methods. We 
assume that at every time step the measurement bias

NLOSMP−b is bounded, meaning that: 

 
( ) nnNLOSMPnNn )()(,,,2,1 ubl ≤≤=∀ −K             

(8) 

where [ ]Τ= Nlll ,,, 21 Kl is the lower bound of the bias and 

[ ]Τ= Nuuu ,,, 21 Ku is the upper bound of the bias.  

 
The computation of these two bounds at every time step 
using a 3D city model will be detailed in the third section.  
We propose two solutions to exploit this additional 
information on the MP-NLOS bias. In the first part, we 
will use it directly in the position estimation problem to 
end up with a constrained least squares solution. In the 
second part, we will reformulate the problem and start by 

estimating the additional bias and then exploit this 
estimation to correct the estimation of the state vector.   
 
 
Constrained Least Squares 

Substituting the linear equation (6) on the NLOS bounding 
inequalities (8), we will obtain:  
 

( ) nnNLOSMPnnNn )()()(,,,2,1 0 ubvsAyl ≤=−−≤=∀ −K

(9) 
This leads to:  

( ) ( ) ( ) ( ) ( ) ( )nnnnnnnNn vlysAvuy −−≤≤−−=∀ )(,,,2,1 0K

(10) 
 
When the measurement noise is a zero-mean white 
Gaussian noise, ( )nv lies between n3σ−  and n3σ  with a 

probability of 99.73% where nσ  is the measurement noise 

variance for the measurement from the nth satellite. This 
assumption allows us to obtain final bounds of )( 0sA : 

sup0inf csAc ≤≤                            (11) 

where [ ]NNN uyuy σσ 3,,3 111inf −−−−= Kc is the lower 

bound and [ ]NNN lyly σσ 3,,3 111sup +−+−= Kc is the 

upper bound. 
 
In this method, we consider the bias as a noise component 
which will not be estimated by the maximum likelihood 
estimator. If the MP-NLOS bias will be removed from the 
expression of the cost function in (7), then it must be taken 
into account in the covariance matrix noise to improve the 
estimation of the state vectors . This means that the MP-
NLOS bias will be considered –for now at this step- as a 
measurement noise and then the total measurement noise 
will be equal to: 

vbn += −NLOSMP  

 
The bias NLOSMP−b lies between the NLOS bias lower 

boundl and the NLOS bias upper boundu . Since the 
values of the bias vector are unknown, we assume that 
every MP-NLOS bias value ( )nNLOSMPb −  has a Gaussian 

distribution with a mean value equal to 
2

nn lu +
and a 

standard deviation equal to 
6

nn lu −
.These mean and 

standard deviation values are chosen to ensure that 99.73% 
of the bias values are within the interval [ ]nn ul ,  as shown 

in the following figure: 
 
 



 
Figure 1: MP-NLOS bias Probability Density function 

 
Since the MP-NLOS bias and the measurement noise are 
independent, the total noise n  will have a Gaussian 
distribution with a covariance matrix equal to: 
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The mean value of the nth coordinate of the total 

measurement noise ( )nn  will be equal to 
2

nn lu +
 since the 

measurement noisev is a zero-mean noise. This mean 
value must be subtracted from the PR measurement vector
y when estimating the state vector. Then, the corrected PR 

measurement will be noted cy  such that:
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It is worthy to note that some previous works subtract an 
estimated non-zero mean value from the pseudoranges 
before the PVT computation when detected as a non-zero 
jump in the mean values using a chi-square based 
statistical test of residuals.  However, again a reliable 
residual test assumes that the PVT is accurate enough to be 
able to detect a jump in the measurements. In this work, 
we are interested to scenario where most or all the 
pseudormanges are contaminated by MP or NLOS errors. 
 
Finally, the constrained least square solution of the 
problem (6) is: 
 








≤≤

−−=−= −Τ
−

sup0inf

0
1

0
2

0 )()(minargminargˆ 1

csAc

sAyRsAysAys
sRs

tosubject

cbcc
b

(13) 
 
 

This problem is equivalent to the following constrained 
quadratic system: 
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(14) 
This quadratic problem can be resolved using the Matlab 
routine quadprog. This estimator will be referred as the 
Constrained Iterative Least Squares (CILS). 
 
 
Maximum likelihood estimation of the State and Bias 
vectors 

Let us define the following scalar product related to the 
matrixR : 

cRacaca
R

1
1,, −Τ=ℜ∈∀ −

N           (15) 

The corresponding norm is then: 
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We can define the orthogonal projection on0A with regard 

to this scalar product: 
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Let ⊥
0A be the vector subspace orthogonal to0A with regard 

to the scalar product (15). The orthogonal projection on 
this subspace is equal to:  
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Lower bound ln Standard deviation = (un-ln)/6 
 

Upper bound un 

Mean value = (un+ln)/2 



Let us express now the cost function in (7): 
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The state estimate is then equal to: 
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The maximum likelihood state estimation is equal to the 
least squares solution by considering the PR measurement 
corrected by the MP-NLOS bias. This state estimation can 
be seen as a sum of a bias free-estimate computed as if no 
MP and NLOS bias were present and a bias-correction 
term. Without knowing the MP-NLOS bias value, the 
estimation of the state vector will be inaccurate. Then, we 
propose to estimate this bias to use in the correction of the 
state estimation using equation (20). 
The MP-NLOS bias NLOSMP−b  can be estimated by 

minimizing the cost function regard to NLOSMP−b : 
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Let us define yy A
R
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By using the same method of resolution as in (20), we get:  
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we can conclude that what we have estimated is in fact the 
orthogonal projection of NLOSMP−b on the vector subspace

⊥
0A  since by is the orthogonal projection of y  on this 

subspace then we have 
⊥

−
=−

0ˆ Abb
NLOSMPNLOSMP . We can only 

estimate (N-M) components of the bias vector NLOSMP−b

which is equals to the dimension of the subspace⊥
0A  

where M denotes the size of the state vector and N is the 
number of PR measurements. To correctly estimate the 
bias, we have to estimate the other component of the MP-

NLOS bias 0Ab
NLOSMP−

. 

To overcome this problem, we propose to use the NLOS 
bounding information. The upper and lower bounds on 
each MP-NLOS bias component define a region Β  of the 

space Nℜ where the best estimate of the bias could be. 

Then, we seek to find a point NLOSMP−b̂ on this region Β  

that have an orthogonal projection on the vector subspace 
⊥
0A verifying the equation (22). The final estimate of the 

bias would be: 
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(24) 
Authors of [30] estimate the bias in a similar way to our 
proposed method but the final estimate is not the same. In 

[30] the bias estimate is on the vector subspace⊥
0A and this 

estimate is not necessarily equals to the bias component on 

the subspace ⊥
0A , because of the added box constraintsΒ . 

Then, the bias estimate in [30] is not the maximum 
likelihood estimate of the MP-NLOS bias NLOSMP−b which 

means that this estimate will no longer be asymptotically 
(at high bias to noise ratio) efficient. But the additional 
information on the bias error which is the bounds allows 



limiting this degradation. But in our method, we seek to 
estimate firstly the component of the bias in the vector 

subspace ⊥
0A and then we look into the box constraintsΒ to 

find the vector that have a component in the subspace ⊥
0A

equals to the estimated one. If several points are found, 
then the final point will be the average of all these points. 
Since the problem (24) is difficult to solve, we have 
chosen to estimate the MP-NLOS bias as a solution of the 
constrained system composed of the minimization problem 
(22) and the box constraints Β . 
 
Once the MP-NLOS bias is estimated, we use equation 
(20) to estimate the state vector by adding the bias-
correction term to the bias-free term computed with the PR 
measurements as if no bias exists. Then, this estimation is 
called Iterative Least Squares with Bias Correction 
(ILSBC). 
 
NLOS bias bounding using 3D model 

In this section, we will explain the strategy used to predict 
the most appropriate bounds of the measurement bias at 
each time step. The choice of the most suitable range set of 
the bias error is important for better estimation of the 
NLOS bias kb where k indicates the time step. Since theses 

bounds are not known and highly dependent on the 
environment, we suggest in our work to use a 3D city 
model to predict lower and upper bounds of the each PR 
bias and integrate this information as additional inequality 
constraints in the position estimation problem as shown in 
the previous section. 
 
We distinguish between two kinds of 3D models: ones 
providing pure geometrical information on the building 
and street sizes [1, 26] and others more informative 
providing also simulated GNSS signals at any input 
position and time [21, 22, 31]. In our study, we have used 
the software simulator SPRING provided by the French 
space agency CNES-Toulouse [28] to estimate the feasible 
range set of the bias errors. SPRING is a full software 
simulator that models the pseudo-range measurement and 
calculates the PVT solution considering the 3D 
environment of the receiver antenna. At each time step, the 
3D model is applied in a set of inputs points that allows the 
calculation of the bias error on each received signal. In this 
work, we integrate the bound of this geometric information 
to improve the PVT solution. As the estimation of the 
NLOS bias bounds must be accurate enough, the inputs 
points used in the 3D model to obtain these bounds must 
be carefully chosen. To make this prediction of the bounds 
more accurate, we have used the following process to 
select the input points at each time step: 
- The initial point is generated using a conventional GNSS 
solution (WLS or EKF): a search area around this point is 
defined as a square area centered on this solution and 
covering the area included in the available 3D city model. 
The size of this search area is defined according to the 

environment and the integrity of the provided conventional 
GNSS solution. 
- Elimination of indoor points from the defined search area 
because this method is applied to outdoor urban 
positioning. This step is achieved by a pre-processing of 
the search area in the 3D city model. 
- Defining a number of random grid points in the search 
area that satisfy the same visibility condition. By visibility 
condition we mean that the received signals at each 
defined grid point has to be similar to the received signals 
by the receiver. A random grid points will give a better 
bounds prediction than a distributed grid points. The 
number of points used at each time step will be fixed 
depending on the computational cost and the size of the 
search area.  

We obtain then a set of K points distributed randomly in 
the search area. For each of these points, the 3D city model 
will be applied to estimate the NLOS bias at this point for 
each received signal. Thus, for each point of the K grid 
points, we can define a NLOS bias vector: 
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Then the predicted bias bounds will be equal to:
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bound vector andu is the upper bound vector. 
The inaccuracy of bias estimation using a 3D model 
simulator can be taken into account by adding a small 
variance, indicative of 3D modeling errors, to the lower 
and upper bounds prediction so that the final bounds 
prediction became: 

( ) Nnif ,,1K=−= σll and ( ) Nnif ,,1K=+= αuu . 

 
RESULTS AND ANALYSIS 
 
To assess the performance of the proposed positioning 
algorithms of GNSS, preliminary results are obtained from 
measurements collected in the ISAE-SUPAERO campus. 
The recorded GPS L1 C/A code PR measurements contain 
3500 epochs. The data for the experiments were collected 
along the trajectory displayed in figure (2) of ISAE-
SUPAERO campus. The recorded data corresponds to 
open sky conditions. In addition, we have eliminated the 
initial bias that exists in measurements. To do this, we 
have used the reference receiver positions and the 



assumption that the highest elevation satellite corresponds 
to a line of sight (LOS) situation or to a weak MP-NLOS 
bias. The PR difference between the satellite with the 
highest elevation angle and other satellites allows us to 
have an approximate prediction of the initial bias present 
in measurements by neglecting measurements noise terms. 
In this section, we have manually introduced artificial 
biases and bounds prediction, but further results with 3D 
model bias prediction using SPRING [28] in downtown of 
Toulouse will be presented in next studies. 
 

 
Figure 2: Trajectory for data collection in ISAE-

SUPAERO campus [32] 

We added artificial values of bias to some PR 
measurements to test the performances of our methods. 
First, we have considered only four signals among the 
eight received signals from the satellites in view during the 
measurement campaign. This scenario is more interesting 
to study because it corresponds to limited received signals 
as in urban canyons areas. We have added additional bias 
to these four signals. We have introduced biases between 
the epoch time 400 and the epoch time 2100. We have 
added a random bias between 0 meters and 40 meters to 

the first PR measurement, a fixed bias of 60 meters to the 
second PR measurement, a random bias between 100 
meters and 110 meters to the third PR measurement and a 
random bias between 20 meters and 30 meters to the fourth 
PR measurement. We have introduced the following upper 
and lower bounds between the epoch time 400 and the 

epoch time 1800: 
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We have introduced faulty bounds between the epoch time 
1800 and the epoch time 2100 to analyze the effect of bad 
bounding on the performances of the proposed methods. 
Finally, we used the UBLOX 4T receiver and a SPAN 
Novatel system including a DGPS receiver tightly 
integrated with an IMU-FSAS (from iMAR). We consider 
the trajectory provided by the Novatel receiver as the 
reference trajectory for comparison with our algorithms. 
We will compare our methods to the Iterative Least Square 
(ILS) [33]. The ILS argues that the state estimate at the 
epoch time k depends on the state estimate at the previous 
epoch time following this equation: 

110
1

0
1

0
1

0 )()( −−
−Τ−−Τ +−= kkk ssAyRAARAs  

 
The following figures show the result of position 
estimation errors for the three methods: ILS, Constrained 
ILS and ILS with Bias correction. The results are shown in 
the north and east directions. 
 

 

Faulty NLOS bounds Good NLOS bounds 

Bias Added to healthy PR Measurements 



 
Figure 3: North Positioning error (top) and East Positioning error (bottom) 

 
These figures show that the proposed two methods give 
the same performances as the ILS when there is no MP-
NLOS bias in the PR measurements. They give less 
positioning errors when there are errors in the 
measurements as shown in the north and east positioning 
error in the time interval [400, 1800]. However the time 
interval [1800, 2100] shows that bad NLOS bounds can 
lead to bad performances for both methods. But, in 
general, the proposed methods handle well the problem of 

the bias added in the PR measurements. To highlight this 
result, we compute the median, the 5th percentile, the 95th 
percentile and the maximum value of the positioning error 
in each ENU direction and for all estimators. In the 
following table, we have introduced the good NLOS 
bounds for the time interval [1800, 2100]:  
 

 
 

Table 1 : Performance evaluation of the three estimators 

 North Direction East Direction 
Median 

Positioning 
error [m] 

5th 
percentile 

[m] 

95th 
percentile 

[m] 

Maximum 
Positioning 
error [m] 

median 
Positioning 
error [m] 

5th 
percentile 

[m] 

95th 
percentile 

[m] 

Maximum 
Positioning 
error [m] 

Iterative Least 
Squares (ILS) 

71.47e-06    43.25e-06    85.20    91.10 8.63e-06   -13.60e-08    83.46 89.33 

Constrained 
Iterative Least 
Squares (CILS) 

45.09e-06    -8.91    10.09 15.87 -2.56e-09    -8.87 6.42 14.51 

Iterative Least 
Squares with 
Bias Correction 
(ILSBC) 

44.98e-06        -13.14 5.79 19.72 2.67e-06      -22.07e-08 17.18 23.17 

 Up direction 
Median 

Positioning error [m] 
5th percentile [m] 95th percentile [m] Maximum 

Positioning error [m] 
Iterative Least 
Squares (ILS) 

-223.36e-06       -87.18 62.09e-06   111.44 

Constrained 
Iterative Least 
Squares (CILS) 

40.78e-06       -25.59 27.32    49.48 

Iterative Least 
Squares with 
Bias Correction 
(LSBC) 

41.63e-06   -16.73    36.05    57.97 

Bias Added to healthy PR Measurements 

Good NLOS bounds Faulty NLOS bounds 



 
It can be seen that the CILS and the ILSBC improve the 
positioning accuracy by being robust to the bias introduced 
into the PR measurements. These estimators give better 
performances than the conventional Iterative Least 
Squares. Despite this performance-improvement, the use 
of theses estimators lead to erroneous results when the bias 
bounding is faulty which means that these methods are 
very depending on good lower and upper bounds 
prediction. We can notice also that the size of the NLOS 
bias constraints have few influence on the performance of 
the solution estimation, even though more narrow and 
accurate bounds lead to better performances especially for 
the CILS estimator, but the most critical condition is that 
the true bias value must be within the lower and upper 
bounds used in the estimation. 
 
CONCLUSIONS AND FUTUR WORKS 
 
The purpose of this paper is to study the problem of 
positioning with NLOS GNSS pseudoranges in urban 
canyons by using a 3D city model to find the most 
appropriate bounds of the measurement bias and 
introducing these bounds in the state estimation to render 
the conventional least squares more robust to both MP and 
NLOS phenomena. In this work, we use firstly the 3D 
model simulator SPRING provided by the French Space 
Agency CNES to obtain an admissible range of the NLOS 
bias for each satellite in visibility. Then, we integrate this 
additional information in the state estimation ending with a 
constrained problem if we consider the bias as an additive 
noise or a maximum likelihood estimation of the state and 
the bias if not. Based on the obtained results, the two 
proposed methods seem to outperform the conventional 
Iterative Least Squares when a bias measurement occurs.  
 
The current results show that the two proposed estimators 
are very sensitive to the quality of the predicted bounds. 
Faulty lower and upper bounds may lead to erroneous 
results as shown in the previous section. The steady 
improvement of the reliability of 3D models simulators 
may limit the damage of bad feasible bounds estimation. 
But generally speaking, these estimators provide an 
autonomous robust navigation solution for MP/NLOS 
mitigation purposes in urban environments even without 
enough redundancy of satellites in visibility.  
 
The performance-improvement shown in the results 
section encourages us to more investigate in our methods 
and to validate them in deep urban environments. Besides, 
we will investigate on more accurate estimation of the bias 
bounds since they are crucial information for good position 
estimation. More studies will be carried out to resolve the 
problem (22) and to get better estimate of the bias in the 
sense of maximum likelihood estimation. 
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