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ABSTRACT

The well-known conventional Weighted Least Squares
(WLS) and extended Kalman filter (EKF) are the diad
estimation methods for positioning with GNSS
measurements. However, these estimators are niohapt
when the GNSS measurements become contaminated by
non-Gaussian errors including multipath (MP) andh-no
line-of-sight (NLOS) biases. In this paper, we use
additional information of the geometric environment
provided by a 3D model to build-up a robust solutio
against biases which may be summed up from MP and
NLOS signals in urban environments. We first useéDa
city model to predict lower and upper bounds ofséhe
biases. Then, we integrate this information in plsition
estimation problem. We investigated in two ways of
making use of this additional information: the fimme is

to consider these biases as additive noise andiérpl

the bounds to end up with a constrained state astimby
WLS or Kalman filter. The second way is to inveatigyin

the maximum likelihood estimation of both the MP-QI&
bias and the state ending up with a less accurate b
acceptable solution. Test results using real GBBakiin
Toulouse show that these estimators capable ofoviny

the positioning accuracy compared to the conveation
WLS if the NLOS bounds are well-chosen.

NOTATION

The notational convention adopted is as followalidt
indicates a scalar quantity, as an lower case boldface
indicates a column vector quantity, asanupper case
boldface indicates a matrix quantity, asAinThe n-th row
and the m-th column element of the matAxwill be
denoted bya,,or (A),,. The n-th coordinate of the
column vectora will be denoted byanor(a)n. The
matrix/vector transpose conjugate is indicated by a
superscriptT as inAT. The inverse of a matrix is indicated
by a superscript_las inAL, [A, B] denotes the matrix
resulting from the horizontal concatenation of rxatA

andB . (aT, bT)denotes the row vector resulting from the
horizontal concatenation of row vectoes andb™ . |, is

the identity matrix of ordam . S" denotes the orthogonal



complement of the subspac®. ldenotes the column
vector containing only the value ]<.a|b> denotes the

scalar product of vectoaandb, [ denotes the norm of

the vector a. If 0=(0.,6,,...65)", then
0_ 0 0 oy
00 06,'06," 06,

INTRODUCTION

Global Navigation Satellite systems (GNSS) havergpt:
as powerful technology for providing the geolocatio
solution essential for a wide range of applicati@ml
services. The last two decades have seen a grdrénd
towards the use of GNSS for positioning in urban
environments, because of the steep increase atapphs
relying on geolocation in these environments. Havev
the reliability of these systems can be adversébced
under certain conditions in this kind of harsh
environments. The positioning quality cannot beuesd
in general when traversing a harsh environmentagurb
forested or mountainous areas or inside buildiegeh for
the majority of comfort applications requiring fewneters
of accuracy. Indeed, these environments presemnifisant
challenges for satellites positioning which expathe gap
between user expectations and requirements fronsidiee
and the existing technologies from other side. Ohthe
greatest raisons of that GNSS performance in hansan
setting is the high density of tall buildings anbjexts
blocking the direct line-of-sight (LOS) signal fromany
satellites, which may reduce the visibility of dabile
satellites in view. Often, the received signals ehgoor
geometry and therefore degrade the position acgurac

In addition, the density of various obstacles sumrbng

the GNSS receiver leads to receiving reflected and
diffracted signals from buildings and other objeckhis
situation produces a distortion of the pseudo-rafRjR)
measurements and consequently biases the position
calculation. There are two types of signals reative
indirect paths: Multipath (MP) signal if the signa
received through both direct line of sight (LOS)dan
indirect path and Non-Line-Of-Sight (NLOS) signgthe
signal is received only through reflections. Evénugh
both the NLOS reception and multipath interfereace
often grouped together as “multipath”, they areualty
separate phenomena that cause very different r@ngin
errors [2]. Therefore, it is important to treat ¢hetwo
phenomena separately. To date, several studies have
attempted to deal with the multipath problem thioug
receiver-based techniques such as narrow-correld8r
4]. Whilst mature research works has been carrigdon

MP mitigation in presence of LOS, there are s#ltylittle
scientific investigations to solve the NLOS diffitu
problem. In this paper, we introduce a new robusiSS
solution that use the 3D model of the environment t
bound the NLOS bias and then mitigate its effecthia
state estimation. This paper is divided into fouaim
sections. In the first section, we propose a revigw

studies on using 3D model to mitigate the NLOS
phenomenon. Our contributions to bound the NLOS bia
using the 3D model and then mitigate it in the estat
estimate will be detailed in section 2. In secti®nwe
show the results of comparison between our methods
other existing works using real GPS data colledied
Toulouse (South-West of France). Performances are
compared with an iterative Least Square [13]. Hmal
some conclusions are summarized in the fourthaecti

EXISTING METHODS

One of the current main challenges in the use o0§6for
positioning in urban environments is the MP and LO
bias present in the PR measurements. These birathasei
biased position estimation with several metersRfefrors

in some harsh environments [5]. In order to impréve
performance of satellite navigation in these envinents,
many of existing techniques aim to model these
degradations and mitigate their effects at thellef/signal
processing, measurements or position domain [6].

Since the conventional least squares method isaimitst

to bias errors [7], some studies have focused okinga
the estimation more robust to these outliers byimiing
other residual functional instead of the sum ofasga of
residuals used in the least squares solution ssitheaM-
estimation techniques [6]-[12] and the Robust Eaézh
Kalman Filtering [9, 11, 13, 14]. Although thes¢imators
enhance the positioning performance and mitigage th
effects of outliers present in measurements, a highber

of biased measurements compared to reliable
measurements lead to large positioning errors. Tdas
limits the use of robust methods without additional
information in urban and deep urban environmenterwh
the majority of the available signals are contangdawith
bias errors. A standard approach for dealing wiils t
problem consists of enhancing the positioning rtiess

in the measurement domain by detecting and repptiaad
observables using RAIM methods or statistical t¢5s
16]. However RAIM methods assume the availabilityab
least five reliable measurements and at most ookyfa
pseudorange. To address the problem of identifyirey
contaminated measurements among the healthy
measurements, [2] gives a survey on distinguisNh@®S
measurements from LOS measurements. Some of the
proposed methods investigate the use of an addition
hardware allowing the NLOS-LOS signal distinction.
Without using additional hardware, [2] proposeseosh
criteria of distinction such as elevation angleesgbn,
C/NO selection and consistency checking [17]. Once
NLOS measurements are identified, they can be reithe
discarded [18], weighted [19] or used in a way Whic
improves performances [20, 21, 22].

In urban and deep urban canyons characterizeddugeel
visibility and a lack of measurements, discarditigtize
faulty measurements will lead to not having a PVT
solution since we need at least four measurementthé
position estimation. So, recent studies have fatuse



using constructively these NLOS observables to awer
the measurements model [20-22]. One way of doirgish
to predict the NLOS bias via aiding informationrfr@a 3D
city model and then correct it in the PR measurémeb
models used jointly with a GNSS simulator charazer
on-the-fly the measurements errors in urban enwemts.
With an initial position input, these models simaldahe
GNSS propagation in representative type of enviremts
(e.g. open sky, urban and deep urban) and prohleger
with several types of information such as the nunarel
the characteristics of reflections, additional Pigses...
The quality and reliability of the simulated signednd
errors depend on how much close is the a priorutinp
position to the actual position to be estimatedfsH21]
and [22] have used the 3D model to predict PR sraod
use it constructively on the estimation step. Toage the
problem of the vicinity between the input pointtive 3D
model and the unknown position to be estimated,esom
studies opt to use a grid of input points in theeof
interest. The estimation of the position is theovited by
comparison between the observations present in the
receiver level and one of the information providgdthe
3D model such as the sky visibility [1], the delay
information [23], the PR measurements [24, 25] #nel
position consistency [2]. Other approaches combine
simplified 3D model of the environment with a
probabilistic method to enhance performances [2§, 2

The main challenge of using 3D models in the positig
problem is the choice of the input position and the
reliability of the 3D model itself which is only a
deterministic approximation of the reality. An inmpint
not sufficiently close to the unknown position t@® b
estimated may induce large positioning errors. @Esi
although the 3D simulator are becoming more andemor
reliable, they contain a certain level of inaccyrace to
the impossibility of modeling the real-time moviobjects

in the receiver environment (cars, pedestriangksa..)
and some immovable but variable objects such ass tre
with different texture from Spring to Autumn. Indition,

it is obvious that the predicted bias and errcosnfthe 3D
propagation model cannot be instantaneous and aecur
Therefore, we propose in this paper an originaltsm to
handle this inaccuracy and this chicken and eggblem
between the input position choice and the fix tapate.
Instead of using the exact value of the output prasided

by the 3D model, as it was classically done in ey
studies, we will just use upper and lower boundshete
biases. We seek to study the problem of positiomiith
NLOS GNSS pseudoranges (PR) in urban canyons by
using a 3D city model to predict the most apprdpria
bounds of the measurement bias. The idea is toigbred
lower and upper bounds of the each PR bias andratte
this information as additional inequality consttaiim the
position estimation problem. The resulting problésn
more realistic in reduced satellites visibility sagios than
trying the instantaneous values. First, we defirgria of
position candidates as input to the 3D model sitoula
SPRING provided by the French space agency CNEE [28

to obtain PR NLOS bias values for each satellite in
visibility. We select only the maximum and minimum

values of the bias for each satellite to defin@dmissible
range of the measurements NLOS bias. We use these
bounds to formalize the position estimation as an
inequality constrained problem as it will be degdiin the

next section. The final navigation solution is aiéa via

an iterative least-square solution with improvetegnity

and robustness as it will be shown in the resuttd a
analysis section.

ROBUST GNSSNAVIGATION

The following nonlinear measurement equation foatas
the satellite positioning problem at each time step

r=h(x)+1b; +byp_nios +V @
where: x is the state vector containing the values of the
three coordinates of the user position to be estichfM,
1], r is the PR measurements vector [N,1] with N>M.
h(x) is the true distance between the satellite postiaah
the receiver position, is the clock bias which is common
between all the satellited)yp_nLosiS the measurement
bias included in the measured pseudoranges ancighic
caused basically by MP and NLOS signals in urban
environments [N, 1]vis the measurement noise supposed
to be a zero-mean Gaussian white noise charaaiebiza
covariance matriR .
Let reword this problem by gathering the two biamies
b =1b, +bp_nLosProviding the following measurements
model:

r=h(x)+b+v.

We seek to estimaieby the conditional maximum
likelihood estimator which minimizes the observatio
probability density function (pdf) of the conditiain
Gaussian observation model [29]:

X = argmin{J (r|x, b)} = arg{w = 0} , (2)

WhereJ(r|x,b) is the cost function or the likelihood

function to be minimized to estimate batandb . This is
a batch estimation method but the proposed schemrd c
be applied similarly to iterative estimation metholike
the iterative WLS and Kalman filter.

The above cost function can be written as:

3(rx,b) =|r =h(x) = b5
=(r -h(x)-b)"R™(r —h(x)-b)

3)

Since the functionh(x)is nonlinear, this problem cannot

be resolved analytically in general. To overcomés th
limitation, we can linearize this problem about @own
reference point,. The first order of Taylor expansion of

the functionh(x) is equal to:



09 = h(xg) + 20 (x - x,) @
=h(xg) +Ho(x=Xq)

This reference point, should be close enough to the true

receiver positiox . Practically speaking, we define, as

the estimated receiver position at the previoug titep.

If we define a linearized PR measurement vegtxual to

y =r —(h(Xy) —HgXp) then the problem (1) can be

formulated by the following linear measurement éiguia

y =Hx+1 +byp L ostV (5)

It is important to note that the new position todstimated
is a position related to the reference poxgtwhich may
be chosen as the previous position estimation.eSthe
clock bias is the same for all the satellites thais
problem can be restated as:

Yy =AeS+byp_nostV (6)

whereA, =[H, 1] and sT:(xT,bC). Then, the cost
function used in the maximum likelihood estimator t
estimates will be equal to:

J (r|s b) = ||y —Ags-— bMP—NLOS||2R‘1

J (r|s, b)=(y-A¢s- bMP—NLOS)TR_l(y —AS—Dbyp_nios)
(7)

Without having any information on the MP and NLOS
measurement bias, the estimate of state veetdl be
biased. To compensate for the effect of MP/NLOS, we
need some geometric information about the propagati
paths of received signals. Therefore, we proposasea
3D city model combined with a GNSS simulator toaitt

a feasible range set of the MP-NLOS bias error. The
propagation calculation uses ray-tracing methodse W

assume that at every time step the measurement bias

byp-_nLosiS bounded, meaning that:

On=12,...,N,  ()n < (Owp-nios)y < W)n

(8)

wherel =[I1,I2,...,IN]T is the lower bound of the bias and

u= [ul,uz,...,uN]T is the upper bound of the bias.

The computation of these two bounds at every titep s
using a 3D city model will be detailed in the thgelction.
We propose two solutions to exploit this additional
information on the MP-NLOS bias. In the first pane
will use it directly in the position estimation fimem to
end up with a constrained least squares solutiorthé
second part, we will reformulate the problem arattsby

estimating the additional bias and then exploits thi
estimation to correct the estimation of the statetor.

Constrained Least Squares

Substituting the linear equation (6) on the NLOSifing
inequalities (8), we will obtain:

On=12...,N, ()ys(y-Ags-V), =(bMP—NLOS)n < (U)n

)
This leads to:
0n=12..,N, (), ~(u)y =V <(Adn <y)y = (1), - (),
(10)

When the measurement noise is a zero-mean white
Gaussian noise(v)nlies between-30,, and 30, with a
probability of 99.73% whereg, is the measurement noise
variance for the measurement from tH& gatellite. This
assumption allows us to obtain final bound<Afs) :

Cint < AgS< Cgyp (12)
where ¢y = [yl - —30y,..., YN —Uy —30'N] is the lower
bound and ¢, =[y, —1; +30y,..., yy —Iy +30y]is the
upper bound.

In this method, we consider the bias as a noisepocoent
which will not be estimated by the maximum likeldtb
estimator. If the MP-NLOS bias will be removed fraohe
expression of the cost function in (7), then it trhaes taken
into account in the covariance matrix noise to ioverthe
estimation of the state vector This means that the MP-
NLOS bias will be considered —for now at this stap-a
measurement noise and then the total measuremesd no
will be equal to:

N=byp_nLostV

The biadp_yoslies between the NLOS bias lower

bound and the NLOS bias upper bounmd Since the
values of the bias vector are unknown, we assurae th
every MP-NLOS bias valugbys_y os), has a Gaussian

T . u, +I
distribution with a mean value equal te”z—”and a

standard deviation equal tel% .These mean and

standard deviation values are chosen to ensur®®has%
of the bias values are within the inter\{é”,un] as shown
in the following figure:
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Figure 1: MP-NLOS bias Probability Density function

Since the MP-NLOS bias and the measurement noese ar

independent, the total noisa will have a Gaussian
distribution with a covariance matrix equal to:

2
R, =R+ diag{{u”—(;l“} } (12)
n=L...,N

The mean value of the "ncoordinate of the total

u, +1,

measurement noiséﬂ)n will be equal to since the

measurement noiseis a zero-mean noise. This mean

value must be subtracted from the PR measuremeitrve
y when estimating the state vector. Then, the catePR

measurement  will  be noted y, such that:
up, +1
On=12,...,N, (yc)n =(y), —%

It is worthy to note that some previous works saditran

estimated non-zero mean value from the pseudoranges

before the PVT computation when detected as a rom-z

jump in the mean values using a chi-square based

statistical test of residuals. However, again halpée
residual test assumes that the PVT is accurategéntoube
able to detect a jump in the measurements. Invtioisk,

we are interested to scenario where most or all the

pseudormanges are contaminated by MP or NLOS errors

Finally, the constrained least square solution bé t
problem (6) is:

S=argninly, ~Adea =argnin(ys ~Ag Ry (v ~Agd

Gt SAOSSCsup
(13)

subjecto

This problem is equivalent to the following conste
quadratic system:

s=argmins’ (AgR;"A)s—2(YeR;Ay)S
S

A C
subjectto [ O}ss[ S“p}
Ay ~Cinf

(14)
This quadratic problem can be resolved using thdaida
routine quadprog This estimator will be referred as the
Constrained Iterative Least Squares (CILS).

Maximum likelihood estimation of the State and Bias
vectors

Let us define the following scalar product relatedthe
matrixR :

Oa,cO0, (alc),. =a'R™%c (15)
The corresponding norm is then:
Dano", [df.=a"R™a (16)

We can define the orthogonal projectionfgwith regard
to this scalar product:

Da0o", Nisa=AgAGR™A() AR (17)

LetAg be the vector subspace orthogonahgwith regard

to the scalar product (15). The orthogonal progecton
this subspace is equal to:

Da0ON, NAsa=a-NA%a=(Iy-N4%)a  (18)



Let us express now the cost function in (7):
2
J(Y|S: Prp-nLod =||y _AOS_bMP—NLOEuR-l

“(HAO +r|A° )Y —Ags— bMP—NLOS)

=|eoy-A

+

2
u]
(I'Ig‘ll)(y ~AS~bupniod)|
R

2

—~

rlggl)(y ~bup-niod _A051

R—l

+

o 2

(nggl)(y_bMP—NLos) 1
(19)

The state estimate is then equal to:

§= argnsi r'{J Vs bMP—NLOQ}

“(I'I 291)()/ ~byvp-niod ‘Ao# i

-1

=argnsin{ “(I‘I’F:g) il}

= arg“si”{ “Ao (AER_le)_lAgR_l(y ~bypniod ~ A05<

2

Rt
2

S -

:arg@i!’»{“Ao[(AgR—le)-lAg 41

= (ASR_IAO)_lAgR_l(y —byp-niod
(20)

The maximum likelihood state estimation is equalkite
least squares solution by considering the PR measant
corrected by the MP-NLOS bias. This state estinmatian

be seen as a sum of a bias free-estimate compstéaha

MP and NLOS bias were present and a bias-correction
term. Without knowing the MP-NLOS bias value, the
estimation of the state vector will be inaccurdtben, we
propose to estimate this bias to use in the coorect the
state estimation using equation (20).

The MP-NLOS biasbyp_nos Can be estimated by

minimizing the cost function regard to,p_p  os:

bMP NLOS_arg min {J(Y|5 byvp- NLOS)}
MP NLOS

“(HA—I)(y buvp-nLog) —A Sﬂ 4
=arg min
bMP—NLOS Ao
(n 1)(y Pyp- NLOS)
—arg min { (I'I 71)()/ byvp-nLOS) }
MP NLOS
— Ag Ay
arg min { (n fl)y (I'I %)Pvp-nLOS) }
MP—NLOS

(21)

Let us definey, = (I'IQ‘_?1

(M*2,)b =@ -N")b
r1/PmP-NLos = N T 25 )Dvp-NLOS

=(Iy ‘Ao(AgR_le)_lAgR_l)BMP—NLos

) ¥ .Then, we have:

=Apbyp-nLos
The MP-NLOS bias estimate is then equal to:

~ . 2
byp-nLos =arg, min {")’b _AbeP—NLOS"R*} (22)
P-NLO
By using the same method of resolution as in (2@)get:

bup-ntos = (ALR A AR Ty, (23)
Noting that:

_(rAS Ao
bup-nros = (MR% +M2%)Pyp-nLos

— A A
=N2%bye-nLos + MR %P vp-NLoS
0
- bAo + bAO
MP-NLOS MP-NLOS
we can conclude that what we have estimated iadhthe
orthogonal projection obye_n 050N the vector subspace

Ag since y,is the orthogonal projection of on this

subspace then we ha\fq,]p_N,_os = . We can only

0
MP-NLOS
estimate (N-M) components of the bias vechqfs_nios

which is equals to the dimension of the subspege
where M denotes the size of the state vector ansl tRe

number of PR measurements. To correctly estimage th
bias, we have to estimate the other componenteoMR-

NLOS biasb”o

MP-NLOS
To overcome this problem, we propose to use the 8SILO
bounding information. The upper and lower bounds on
each MP-NLOS bias component define a regibrof the
spacd]N where the best estimate of the bias could be.
Then, we seek to find a poir&MP_NLoson this regionB
that have an orthogonal projection on the vectdaspace
Agverifying the equation (22). The final estimatetbé
bias would be:

0 A
b =p™o
MP-NLOS =R = s

with BQE_NLOS = argb min ) ||yb _AbeP—NLOS”E‘l}

+bho
MP-NLOS

and  byp_nos B

(24)
Authors of [30] estimate the bias in a similar wayour
proposed method but the final estimate is not Hmaes In

[30] the bias estimate is on the vector subs@#and this
estimate is not necessarily equals to the bias coemt on
the subspace\ , because of the added box constrats
Then, the bias estimate in [30] is not the maximum
likelihood estimate of the MP-NLOS bibgp_y osWhich

means that this estimate will no longer be asyniqsbthy
(at high bias to noise ratio) efficient. But thedaibnal
information on the bias error which is the bounteves



limiting this degradation. But in our method, weelseo
estimate firstly the component of the bias in trextar

subspacé j and then we look into the box constraiBt®

find the vector that have a component in the sutrs@é

equals to the estimated one. If several pointsfauad,
then the final point will be the average of all gbepoints.
Since the problem (24) is difficult to solve, wevha
chosen to estimate the MP-NLOS bias as a solutidheo
constrained system composed of the minimizatiomlera

(22) and the box constraints.

Once the MP-NLOS bias is estimated, we use equation
(20) to estimate the state vector by adding thes-bia
correction term to the bias-free term computed With PR
measurements as if no bias exists. Then, this agtimis
called lIterative Least Squares with Bias Correction
(ILSBC).

NL OS bias bounding using 3D model

In this section, we will explain the strategy usedredict

the most appropriate bounds of the measurementétias
each time step. The choice of the most suitablgeaet of

the bias error is important for better estimatioh tloe
NLOS biad, where k indicates the time step. Since theses

bounds are not known and highly dependent on the
environment, we suggest in our work to use a 3B cit
model to predict lower and upper bounds of the €@ih
bias and integrate this information as additionalguality
constraints in the position estimation problem laew in

the previous section.

We distinguish between two kinds of 3D models: ones
providing pure geometrical information on the bl
and street sizes [1, 26] and others more informativ
providing also simulated GNSS signals at any input
position and time [21, 22, 31]. In our study, werdaised
the software simulator SPRING provided by the Fhenc
space agency CNES-Toulouse [28] to estimate thstiiea
range set of the bias errors. SPRING is a full vearfe
simulator that models the pseudo-range measurearght
calculates the PVT solution considering the 3D
environment of the receiver antenna. At each titap,ghe

3D model is applied in a set of inputs points tdiiws the
calculation of the bias error on each receivedaign this
work, we integrate the bound of this geometric infation

to improve the PVT solution. As the estimation bkt
NLOS bias bounds must be accurate enough, the snput
points used in the 3D model to obtain these boundst

be carefully chosen. To make this prediction ofltbends
more accurate, we have used the following process t
select the input points at each time step:

- The initial point is generated using a converdildBNSS

solution (WLS or EKF): a search area around thisitpig
defined as a square area centered on this solatioh
covering the area included in the available 3D aikydel.
The size of this search area is defined accordinghé

environment and the integrity of the provided cantignal
GNSS solution.

- Elimination of indoor points from the defined sgaarea
because this method is applied to outdoor urban
positioning. This step is achieved by a pre-pracgssf

the search area in the 3D city model.

- Defining a number of random grid points in tharsé
area that satisfy the same visibility condition. Bgibility
condition we mean that the received signals at each
defined grid point has to be similar to the recdiggnals

by the receiver. A random grid points will give atter
bounds prediction than a distributed grid pointheT
number of points used at each time step will bedix
depending on the computational cost and the sizthef
search area.

We obtain then a set of K points distributed rantjom
the search area. For each of these points, thet@nodel
will be applied to estimate the NLOS bias at thaénp for
each received signal. Thus, for each point of thgrid
points, we can define a NLOS bias vector:

(0i)s

b, =|. wherek =1,2,...,K is the point index and
(0N

N is the number of received signals
Then the predicted bias bounds will

min{(5,),] max{(by)1]

be equal to:

I =]. andu=|. wherel the lower

min{(b )y ] max{(bi)n ]

bound vector andis the upper bound vector.

The inaccuracy of bias estimation using a 3D model
simulator can be taken into account by adding allsma
variance, indicative of 3D modeling errors, to tbaver
and upper bounds prediction so that the final bsund
prediction became:

Iy =1-(q}) andu; =u+(a;)

n=1...,N n=1..,N "

RESULTSAND ANALYSIS

To assess the performance of the proposed positoni
algorithms of GNSS, preliminary results are obtdifrem
measurements collected in the ISAE-SUPAERO campus.
The recorded GPS L1 C/A code PR measurements oontai
3500 epochs. The data for the experiments wereatel
along the trajectory displayed in figure (2) of IBA
SUPAERO campus. The recorded data corresponds to
open sky conditions. In addition, we have elimidatke
initial bias that exists in measurements. To d,thve
have used the reference receiver positions and the



assumption that the highest elevation satelliteesmonds
to a line of sight (LOS) situation or to a weak MIPOS
bias. The PR difference between the satellite with
highest elevation angle and other satellites allassto
have an approximate prediction of the initial bpesent
in measurements by neglecting measurements noiss.te
In this section, we have manually introduced anitifi
biases and bounds prediction, but further resuits @D
model bias prediction using SPRING [28] in downtoain
Toulouse will be presented in next studies.

Figure2: Trajectory for data collection in | SAE-
SUPAERO campus[32]

We added artificial values of bias to some PR
measurements to test the performances of our mgthod
First, we have considered only four signals amomg t
eight received signals from the satellites in viwing the
measurement campaign. This scenario is more itileges

to study because it corresponds to limited recesigdals

as in urban canyons areas. We have added addititasl

to these four signals. We have introduced biasésdamn

the epoch time 400 and the epoch time 2100. We have
added a random bias between 0 meters and 40 nieters

the first PR measurement, a fixed bias of 60 mdtethe
second PR measurement, a random bias between 100
meters and 110 meters to the third PR measuremena a
random bias between 20 meters and 30 meters fouhth

PR measurement. We have introduced the followirgeup
and lower bounds between the epoch time 400 and the

0 41
. 55 63 . .
epoch time 18001 = and u = . Outside this
95 114
18 32
interval, we have considered the following upped an
0 075
lower boundst = 0 andu = 075 .
075
0 075

We have introduced faulty bounds between the efioah
1800 and the epoch time 2100 to analyze the effiebad
bounding on the performances of the proposed method
Finally, we used the UBLOX 4T receiver and a SPAN
Novatel system including a DGPS receiver tightly
integrated with an IMU-FSAS (from iMAR). We conside
the trajectory provided by the Novatel receiver the
reference trajectory for comparison with our algoris.
We will compare our methods to the Iterative Lesgtiare
(ILS) [33]. The ILS argues that the state estimatehe
epoch time k depends on the state estimate atréwops
epoch time following this equation:

S = (AJRTAQ) TATRTHY = AgSeg) + S

The following figures show the result of position
estimation errors for the three methods: ILS, Caiséd
ILS and ILS with Bias correction. The results anewn in
the north and east directions.
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These figures show that the proposed two methods gi
the same performances as the ILS when there is Re M
NLOS bias in the PR measurements. They give less
there are errors
measurements as shown in the north and east pusdio
error in the time interval [400, 1800]. However ttime

positioning errors

|
500

|
1000

|
1500
Time step in s

|
2000

|
2500

|
3000

Figure 3: North Positioning error (top) and East Positioning error (bottom)

when

in

the

interval [1800, 2100] shows that bad NLOS bounds ca
lead to bad performances for both methods. But, in
general, the proposed methods handle well the pnolalf

Table 1 : Performance evaluation of the three estimators

3500

the bias added in the PR measurements. To highight
result, we compute the median, tHe fgercentile, the 9%
percentile and the maximum value of the positiorengr
in each ENU direction and for all estimators.
following table, we have introduced the good NLOS
bounds for the time interval [1800, 2100]:

Ire th

North Direction East Direction

Median 5 g5™ Maximum median 5 g5™ Maximum

Positioning| percentile | percentile| Positioning| Positioning| percentile | percentile| Positioning

error [m] [m] [m] error [m] error [m] [m] [m] error [m]
Iterative Least 71.47e06 | 43.25e-6 85.20 91.10 8.63e-06 -13.60e-08 83.46 89.33
Squares (ILS)
Constrained 45.09e-6 -8.91 10.09 15.87 -2.5669 -8.87 6.42 14.51
Iterative Least
Squares (CILS)
Iterative Least| 44.98e06 -13.14 5.79 19.72 2.676 | -22.07e-08 17.18 23.1y7
Squares  with
Bias Correction
(ILSBC)

Up direction
Median 5N percentile [m] 9% percentile [m] Maximum

Positioning error [m] Positioning error [m]
Iterative Least -223.36€06 -87.18 62.09e® 111.44
Squares (ILS)
Constrained 40.78e-06 -25.59 27.32 49.48
Iterative Least
Squares (CILS)
Iterative Least 41.63e06 -16.73 36.05 57.97
Squares  with
Bias Correction
(LSBC)




It can be seen that the CILS and the ILSBC imprihee
positioning accuracy by being robust to the biaotluced
into the PR measurements. These estimators giverbet
performances than the conventional Iterative Least
Squares. Despite this performance-improvement,ute

of theses estimators lead to erroneous results wieehias
bounding is faulty which means that these methadgs a
very depending on good lower and upper bounds
prediction. We can notice also that the size of NS
bias constraints have few influence on the perforeaof

the solution estimation, even though more narrowl an
accurate bounds lead to better performances edlgdoia

the CILS estimator, but the most critical conditignthat

the true bias value must be within the lower angeup
bounds used in the estimation.

CONCLUSIONSAND FUTUR WORKS

The purpose of this paper is to study the problédm o
positioning with NLOS GNSS pseudoranges in urban
canyons by using a 3D city model to find the most
appropriate  bounds of the measurement bias and
introducing these bounds in the state estimatioretaer

the conventional least squares more robust to kiétrand
NLOS phenomena. In this work, we use firstly the 3D
model simulator SPRING provided by the French Space
Agency CNES to obtain an admissible range of th©SL
bias for each satellite in visibility. Then, weegtate this
additional information in the state estimation ewgwith a
constrained problem if we consider the bias asdatitize
noise or a maximum likelihood estimation of thetestand

the bias if not. Based on the obtained results, ttihe
proposed methods seem to outperform the conveitiona
Iterative Least Squares when a bias measuremeuntocc

The current results show that the two proposednastirs

are very sensitive to the quality of the predictexinds.
Faulty lower and upper bounds may lead to erroneous
results as shown in the previous section. The gtead
improvement of the reliability of 3D models simued
may limit the damage of bad feasible bounds estimat
But generally speaking, these estimators provide an
autonomous robust navigation solution for MP/NLOS
mitigation purposes in urban environments even auth
enough redundancy of satellites in visibility.

The performance-improvement shown in the results
section encourages us to more investigate in ouhods
and to validate them in deep urban environmentsidgs,

we will investigate on more accurate estimationhef bias
bounds since they are crucial information for gpodition
estimation. More studies will be carried out tooles the
problem (22) and to get better estimate of the biathe
sense of maximum likelihood estimation.
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