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Abstract
If P1, . . . , Pn and Q1, . . . , Qn are probability measures on Rd and P1 ∗ · · · ∗ Pn and
Q1 ∗ · · · ∗ Qn are their respective convolutions, the Rényi divergence Dλ of order
λ ∈ (0, 1] satisfies Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn) ≤ ∑n

i=1 Dλ(Pi ||Qi ). When
Pi belongs to the natural exponential family generated by Qi , with the same natural
parameter θ for any i = 1, . . . , n, the equality sign holds. The present note tackles
the inverse problem, namely “does the equality Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn) =∑n

i=1 Dλ(Pi ||Qi ) imply that Pi belongs to the natural exponential family generated
by Qi for every i = 1, . . . , n?” The answer is not always positive and depends on the
set of solutions of a generalization of the celebrated Cauchy functional equation. We
discuss in particular the case P1 = · · · = Pn = P and Q1 = · · · = Qn = Q, with
n = 2 and n = ∞, the latter meaning that the equality holds for all n. Our analysis
is mainly devoted to P and Q concentrated on non-negative integers, and P and Q
with densities with respect to the Lebesgue measure. The results cover the Kullback–
Leibler divergence (KL), this being the Rényi divergence for λ = 1. We also show
that the only f -divergences such that D f (P∗2||Q∗2) = 2D f (P||Q), for P and Q in
the same exponential family, are mixtures of KL divergence and its dual.
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1 Introduction

A divergence between two probability measure on the same state space quantifies
their dissimilarity. The Rényi divergence of order λ ∈ (0, 1) has nice properties from
this point of view; moreover, the divergence that is mostly privileged because of its
statistical properties, the Kullback–Leibler divergence, can be obtained as a limit of
Rényi divergences as λ ↑ 1. For these divergences, the question considered in the
paper is the following: when the divergence between two convolutions (i.e. the law
of the sum when the summands are independent) on R

d is equal to the sum of the
divergences between the laws of each summand? This always happens when these
alternative laws belong to the same natural exponential family, with the same natural
parameter for each summand. But since this could happen also in other instances, the
object of the paper is to exclude this possibility in a wide range of cases, mainly when
the summand are identically distributed, additionally to being mutually independent.
Here are the main objects that will be needed along the discussion.
Rényi divergence

Suppose that P and Q are two probabilities on the same measurable space �, with
P equivalent to Q (i.e. P and Q have the same family of null sets) and λ ∈ (0, 1).
The Rényi divergence Dλ(P||Q) of order λ is defined by

Dλ(P||Q) = − 1

1 − λ
log

∫

�

(
dQ

dP

)1−λ

dP = − 1

1 − λ
log

∫

�

(
dP

dQ

)λ

dQ. (1)

Since for any x > 0 and any λ ∈ (0, 1) it holds x1−λ ≥ min(1, x), then

Dλ(P||Q) ≤ − 1

1 − λ
log

∫

�

min

(

1,
dQ

dP

)

dP

= − 1

1 − λ
log

{

P

(
dQ

dP
> 1

)

+ Q

(
dP

dQ
≥ 1

)}

< +∞.

Indeed, the two summands inside the logarithm never vanish simultaneously. More-
over, the function x �→ x1−λ defined on (0,+∞) being strictly concave for any
0 < λ < 1, by Jensen’s inequality Dλ(P||Q) > 0 unless P = Q, in which case the
divergence vanishes. The reader is addressed to [1] for a general proof that

lim
λ↑1 Dλ(P||Q) = −

∫

�

log
dQ

dP
dP =: D1(P||Q), (2)

where D1 is the Kullback–Leibler (KL) divergence. However, while the Rényi diver-
gence is always finite, for any λ ∈ (0, 1), the KL divergence of P w.r.t. Q can be
infinite, even if P and Q are equivalent. A basic reference on KL and Rényi diver-
gences is the book [2]. Another rather exhaustive summary of the properties of the
Rényi divergence is the already cited [1].
Natural exponential families
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In the sequel � = R
d is Euclidean with its usual inner product 〈, 〉. Consider a

probability measure Q on Rd , and define its Laplace transform

LQ(θ) =
∫

Rd

e〈x,θ〉Q(dx) ≤ +∞, θ ∈ R
d .

Let D(Q) = {θ ∈ R
d : LQ(θ) < +∞}, and for any θ ∈ D(Q) define the probability

measure

Pθ
Q(dx) = e〈θ,x〉−κQ(θ)Q(dx), (3)

where κQ(θ) = logLQ(θ) is called the cumulant function of Q. The family (3) is
called the natural exponential family generated by Q [3]. By Holder’s inequality the
parameter setD(Q) is convex and the function κQ is convex aswell. For any θ ∈ D(Q)

it is immediately verified that

Dλ(P
θ
Q ||Q) = − 1

1 − λ
log

∫

Rd

eλ(〈θ,x〉−κQ(θ))Q(dx) = λκQ(θ) − κQ(λθ)

1 − λ
, λ ∈ (0, 1).

Furthermore, the function κ(λθ) is differentiable in λ ∈ (0, 1), with derivative∫ 〈θ, x〉Pλθ
Q (dx). However, differentiability could be lost in λ = 1, when θ lies in

the relative boundary ∂D(Q) ofD(Q), the set of θ ∈ D(Q) such that λθ /∈ D(Q), for
all λ > 1. Conversely, for θ ∈ D0(Q) := D(Q)\∂D(Q), by applying de l’Hopital’s
rule and (2)

D1(P
θ
Q ||Q) =

∫

〈θ, x〉Pθ
Q(dx) − κQ(θ) < +∞.

Finally notice that the natural exponential family generated by the product probabil-
ity Q1⊗· · ·⊗Qn onRdn coincides with the family of all product laws with marginals
belonging to the natural exponential families generated by Qi , i = 1, . . . , n, i.e.

P(θ1,...,θn)
Q1⊗···⊗Qn

= Pθ1
Q1

⊗ · · · ⊗ Pθn
Qn

, θi ∈ D(Qi ), i = 1, . . . , n, (4)

with κQ1⊗···⊗Qn (θ1, . . . , θn) = ∑n
i=1 κQi (θi ).

Since the Rényi divergence and the KL divergence tensorize, for any λ ∈ (0, 1]

Dλ(P
θ1
Q1

⊗ · · · ⊗ Pθn
Qn

||Q1 ⊗ · · · ⊗ Qn) =
n∑

i=1

Dλ(P
θi
Qi

||Qi ).

Recalling that a convolution product ∗ of n laws is the distribution of the sum of
independent random variables having these laws as marginals, we observe that

dPθ
Q1

∗ · · · ∗ Pθ
Qn

dQ1 ∗ · · · ∗ Qn
(y) = EQ1⊗···⊗Qn

{
d(Pθ

Q1
⊗ · · · ⊗ Pθ

Qn
)

d(Q1 ⊗ · · · ⊗ Qn)
(X1, .., Xn)|

n∑

i=1

Xi = y

}
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= EQ1⊗···⊗Qn {e〈θ,
∑n

i=1 Xi 〉−∑n
i=1 kQi (θ)|

n∑

i=1

Xi = y}

= e〈θ,y〉−∑n
i=1 kQi (θ),

for any θ ∈ ∩n
i=1D(Qi ). This implies that the family induced by convolution of

the marginals from the family {Pθ
Q1

⊗ · · · ⊗ Pθ
Qn

, θ ∈ ∩n
i=1D(Qi )} on R

dn is a

natural exponential family on R
d , generated by Q1 ∗ · · · ∗ Qn , with κQ1∗···∗Qn (θ) =∑n

i=1 κQi (θ). Notice that the former is a subfamily of thewhole family of product laws
with independent components belonging to the natural exponential families generated
by Q1, . . . , Qn , since the parameter θ is the same for each of the n components.

Proposition 1.1 For any λ ∈ (0, 1]

Dλ(P
θ
Q1

∗ · · · ∗ Pθ
Qn

||Q1 ∗ · · · ∗ Qn) =
n∑

i=1

Dλ(P
θ
Qi

||Qi ), θ ∈ ∩n
i=1D(Qi ), (5)

D1(P
θ
Q1

∗ · · · ∗ Pθ
Qn

||Q1 ∗ · · · ∗ Qn) =
n∑

i=1

D1(P
θ
Qi

||Qi ), θ ∈ ∩n
i=1D0(Qi ). (6)

In particular, when Qi =: Q, then Pθ
Qi

= Pθ
Q =: P, for i = 1, . . . , n, hence the l.h.s.

in (5) e (6) are proportional to n, that is for 0 < λ ≤ 1 we have

Dλ(P
∗n||Q∗n) = nDλ(P||Q)), (7)

where for λ = 1 the formula is always valid as long as θ ∈ D0(Q).

Proof The result is immediately obtained by translating (5) and (6) in terms of the
cumulant functions κ ,

1

1 − λ

(
λκQ1∗···∗Qn (θ) − κQ1∗···∗Qn (λθ)

) = 1

1 − λ

n∑

i=1

(λκQi (θ) − κQi (λθ)),

∫

〈θ, x1 + . . . + xn〉Pθ
Q1

(dx1) · · · Pθ
Qn

(dxn) − κQ1⊗···⊗Qn (θ)

=
n∑

i=1

(∫

〈θ, x〉Pθ
Qi

(dx) − κQi (θ)

)

.

��
Remark At this point one can raise the following question: are the Rényi and KL
divergences the unique divergences such that the analogue of (7) holds for any n, when
P and Q belonging to the same natural exponential family? Since the very definition
of divergence is quite different from author to author, it is difficult to give a general
answer. However, the interesting class of f -divergences deserves consideration [2]:
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when f is a convex function defined on (0,∞) such that f (1) = 0, and if P and Q
are equivalent probabilities we define the f -divergence by

D f (P||Q) =
∫

�

f

(
dP

dQ

)

dQ

This number is non negative by the Jensen inequality. This class of f -divergences
includes KL divergence D1(P||Q) and its dual D̃1(P||Q) = D1(Q||P) by taking,
respectively, f (x) = x log x and f (x) = − log x . Note that the Rényi divergence with
parameter 0 < λ < 1 is not an f -divergence. Section5 below shows that the only
f -divergences satisfying the analogue of (7) have the form D f = AD1 + BD̃1 with
A, B ≥ 0 and A + B > 0.

Inequalities between Rényi and KL divergences under convolutions
In the next section, it will be recalled that, in general, if Pi and Qi are equivalent

probabilities on R
d , for i = 1, . . . , n, and λ ∈ (0, 1]

Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn) ≤
n∑

i=1

Dλ(Pi ||Qi ), (8)

where D1(Pi ||Qi ) < ∞ is assumed for i = 1, . . . , n, when λ = 1. Next, setting
fi = dPi

dQi
, for i = 1, . . . , n, and gn = dP1∗···∗Pn

dQ1∗···∗Qn
, it will be established that the

equality holds in (8) if and only if the following equality holds

f1(x1) + · · · + fn(xn) = gn(x1 + · · · + xn), Q1 ⊗ · · · ⊗ Qn − a.s. in x1, . . . , xn .

(9)

Indeed, in the situation considered in Proposition 1.1, Pi = Pθ
Qi
, fi (xi ) = 〈θ, xi 〉 −

κQi (θ) for i = 1, . . . , n and gn(x) = 〈θ, x〉−∑n
i=1 κQi (θ) clearly satisfy (9). If affine

functions are the only solutions of the above equation (9), then the choice Pi = Pθ
Qi

for some value of θ , for i = 1, . . . , n, is compulsory to reach the equality in (8). This
drives our interest to the study of the general solutions of the functional almost sure
equation (9) known in the literature as the Pexider equation [4]. By suitable techniques,
adapted to the almost sure nature of the equation, we reduce this equation to the more
familiar (almost sure) Cauchy functional equation. Focussing on the i.i.d. case Pi = P
and Qi = Q, for i = 1, . . . , n, we will present in Sect. 3 and Sect. 4 some relevant
classes of examples, in the discrete and the absolutely continuous case, where it can be
proved that the solutions to (9) are only affine functions. In the absolutely continuous
case we will stress the relation with the classical Cauchy functional equation [5].
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2 Divergences and Convolutions, Pexider and Cauchy Functional
Equations

In order to formulate our first lemma, for any pair of probability distributions P1, P2 on
R
d , denote by K P1,P2

s the stick-breakingkernel, that is the lawof X1 given X1+X2 = s,
where Xi ∼ Pi , for i = 1, 2, X1 and X2 being independent. Then the following holds:

Lemma 2.1 Let Pi and Qi be probability measures on R
d , with Pi equivalent to Qi ,

for i = 1, 2, and define

fi := log
dPi
dQi

, i = 1, 2, g2 := log
d(P1 ∗ P2)

d(Q1 ∗ Q2)
.

Then Q1 ∗ Q2-a.s. w.r.t. s, K
P1,P2
s is equivalent to K Q1,Q2

s , with

log
dK P1,P2

s

dK Q1,Q2
s

(x) = f1(x) + f2(s − x) − g2(s), K Q1,Q2
s − a.s. in x. (10)

Proof Denote bymP1,P2 the joint distributions of (X1, X1+X2)when X1 ∼ P1, X2 ∼
P2, X1 and X2 being independent. The function (x1, x2) �→ (x1, x1 + x2) = (x, s)
has the inverse (x, s) �→ (x, s − x) = (x1, x2). As a consequence

dmP1,P2

dmQ1,Q2

(x, s) = d(P1 ⊗ P2)

d(Q1 ⊗ Q2)
(x, s − x) = e f1(x)+ f2(s−x) (11)

Next consider the function H(x, s) = exp{ f1(x) + f2(s − x) − g2(s)}, and take
any Borel sets A and B of Rd

∫

B

(P1 ∗ P2)(ds)
∫

A

H(x, s)K Q1,Q2
s (dx)

=
∫

B

eg2(s)(Q1 ∗ Q2)(ds)
∫

A

H(x, s)K Q1,Q2
s (dx)

=
∫

B

(Q1 ∗ Q2)(ds)
∫

A

e f1(x)+ f2(s−x)K Q1,Q2
s (dx)

=
∫

A

∫

B

e f1(x)+ f2(s−x)mQ1,Q2(dx, ds)

=
∫

A

∫

B

mP1,P2(dx, ds),

proving that H(x, s) =
(

dK
P1,P2
s

dK
Q1,Q2
s

)

(x) as promised. ��
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The next lemma is the chain rule for the Rényi and the KL divergence, specialized
for the partial sums we are interested in. The chain rule for the KL divergence is well
known, see [2], Theorem 2.14 c. The chain rule for the Rényi divergence, appearing
in its basic form at (7.71)-(7.72) of [2], is much less known. In order to formulate
it, for any k-tuple of distributions on R

d , say P1, . . . , Pk , let mP1,...,Pk be the law of
(X1, X1 + X2, . . . , X1 + X2 + . . . + Xk), where Xi ∼ Pi are mutually independent,
i = 1, . . . , k.

Lemma 2.2 For Pk and Qk equivalent probability measures on Rd , k = 1, . . . , n let

fk := log
dPk
dQk

, k = 1, . . . , n, gk := log
d(P1 ∗ · · · ∗ Pk)

d(Q1 ∗ · · · ∗ Qk)
, k = 2, . . . , n.

Next, for any λ ∈ (0, 1], define the random variable

Zk(Sk) = Dλ

(
K P1∗···∗Pk−1,Pk

Sk
||K Q1∗···∗Qk−1,Qk

Sk

)
, k = 2, . . . , n, (12)

where Sk is distributed according to

m(λ)
k (dsk) = ck,λ

∫

· · ·
∫ (

dmP1∗...∗Pk ,Pk+1,...,Pn

dmQ1∗...∗Qk ,Qk+1,...,Qn

(sk, s
n
k+1)

)λ

mQ1∗...∗Qk ,Qk+1,...,Qn (dsk, ds
n
k+1),

with snk+1 = (sk+1, . . . , sn), and

ck,λ = exp{−(1 − λ)Dλ(mP1∗...∗Pk ,Pk+1,...,Pn ||mQ1∗...∗Qk ,Qk+1,...,Qn )},

for λ ∈ (0, 1), and Sk is distributed as P1 ∗ · · · ∗ Pk, for λ = 1.
Then for λ ∈ (0, 1)

n∑

i=1

Dλ(Pi ||Qi ) = Dλ(P
∗
n ||Q∗

n) − 1

1 − λ

n∑

k=2

logE{e−(1−λ)Zk (Sk )} (13)

Moreover, if D1(Pi ||Qi ) < +∞ for i = 1, . . . , n, then

n∑

i=1

D1(Pi ||Qi ) = D1(P
∗
n ||Q∗

n) +
n∑

k=2

EZk(Sk). (14)

Proof From the tensorization property and the invariance of the Dλ divergences under
measurable one-to-one transformations, here

(x1, . . . , xn) �→ (x1 + . . . + xn, x1 + . . . + xn−1, . . . , x1 + x2, x1), (15)

123
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it follows that

n∑

k=1

Dλ(Pk ||Qk)=Dλ(P1 ⊗ · · · ⊗ Pn||Q1 ⊗· · ·⊗Qn) = Dλ(mP1,...,Pn ||mQ1,...,Qn ).

Therefore the relation (14) is proved once we show that

Dλ(mP1∗···∗Pk−1,Pk ,...,Pn ||mQ1∗···∗Qk−1,Qk ,...,Qn )

= Dλ(mP1∗···∗Pk ,Pk+1,...,Pn ||mQ1∗···∗Qk ,Qk+1,...,∗Qn )

− 1

1 − λ
logE{e−(1−λ)Zk (Sk )} (16)

for k = 2, . . . , n. In order to prove this relation note that, under any product probability
measure, the law of x1 + . . . + xk−1 conditional to x1 + . . . + xm, m = k, k +
1, . . . , n coincides with the law conditional to x1+ . . .+ xk only. In fact the additional
information conveyed by the random variables x1 + . . . + xm, m = k + 1, . . . , n
concerns only the variables xm,m = k + 1, . . . , xn , which are clearly independent of
any function of x1, . . . , xk . This ensures that

dmP1∗···∗Pk−1,Pk ,...,Pn

dmQ1∗···∗Qk−1,Qk ,...,Qn

(sk−1, s
n
k )

= dmP1∗···∗Pk ,Pk+1,...,Pn

dmQ1∗···∗Qk ,Qk+1,...,Qn

(snk )
dK P1∗···∗Pk−1,Pk

sk

dK Q1∗···∗Qk−1,Qk
sk

(sk−1)

mQ1∗···∗Qk−1,Qk ,...,Qn -a.s. in snk−1. Raise to λ both sides of (16), integrate w.r.t.
mQ1∗···∗Qk−1,Qk ,...,Qn and divide by λ − 1: then the l.h.s. clearly agrees with
Dλ(mP1∗···∗Pk−1,Pk ,...,Pn ||mQ1∗···∗Qk−1,Qk ,...,Qn ). As far as the r.h.s. is concerned, it
yields

1

λ − 1
log

∫

. . .

∫

e−(1−λ)Zk (sk )
(

dmP1∗···∗Pk ,Pk+1,...,Pn

dmQ1∗···∗Qk ,Qk+1,...,Qn

(snk )

)λ

×mQ1∗···∗Qk ,Qk+1,...,Qn (ds
n
k ). (17)

Next, multiply and divide under the integral sign by

= exp{(λ − 1)Dλ(mP1∗···∗Pk ,Pk+1,...,Pn ||mQ1∗···∗Qk ,Qk+1,...,Qn )},
reducing the expression in (17) to

Dλ(mP1∗···∗Pk ,Pk+1,...,Pn ||mQ1∗···∗Qk ,Qk+1,...,∗Qn )

+
∫

. . .

∫

e−(1−λ)Zk (sk )m(λ)
k (dsk) (18)

which has the promised form (13). With similar arguments, the statement (14) then
follows from the chain rule for the KL divergence. ��
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Theorem 2.3 Let P1, P2, . . . Pn and Q1, Q2, . . . , Qn be probability measures on R
d

with Pi equivalent to Qi , and let λ ∈ (0, 1] (in case λ = 1 assume also D1(Pi ||Qi ) <

+∞), for i = 1, . . . , n. Then

n∑

i=1

Dλ(Pi ||Qi ) ≥ Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn). (19)

Moreover, the equality in (19) holds if and only if Q1 ⊗ . . . ⊗ Qk a.s. in x1, . . . , xk
we have

f1(x1) + . . . + fk(xk) = gk(x1 + · · · + xk), k = 2, . . . , n. (20)

where fk and gk are defined as in Lemma 2.2, for k = 1, . . . , n.

Proof The relation (19) is a consequence of the second term at the r.h.s. in (13) and
(14). In the latter case this is obvious, whereas for the former notice that the random
variable under the expectation sign is 1 only for Zk(Sk) = 0, otherwise it lies in (0, 1).
The properties of the logarithm immediately yield the conclusion. Hence in both cases
the r.h.s. vanishes only when Zk(Sk) = 0 a.s. Now notice that in (14) Sk has the law
of P1 ∗ · · · Pk , which is equivalent to Q1 ∗ · · · Qk . In (13) Sk is distributed according
to m(λ)

k , which is the first marginal of a law equivalent to mQ1∗···∗Qk ,Qk+1,...,Qn , hence
it is equivalent to Q1 ∗ · · · ∗ Qk as well. Consequently

D
(
K P1∗···∗Pk−1,Pk
s ||K Q1∗...∗Qk−1,Qk

s

)
= 0, Q1 ∗ · · · ∗ Qk-a.s. in s

if and only if

gk−1(sk−1) + fk(s − sk−1) = gk(s), K Q1∗...∗Qk−1,Qk
s -a.s. in sk−1

by Lemma 2.1. This relation can be rewritten as

gk−1(sk−1) + fk(xk) = gk(sk−1 + xk), (21)

Q1 ∗ · · · ∗ Qk−1 ⊗ Qk-almost surely in (sk−1, xk). By induction the relation (20) is
obtained. ��

The above results are conveniently supplemented by the following corollary.

Corollary 2.4 Let P1, P2, . . . Pn and Q1, Q2, . . . , Qn be probability measures on Rd ,
with Pi equivalent to Qi , for i = 1, . . . , n, and let

fi (x) = log
dPi
dQi

(x), i = 1, ..., n, gn(s) = log
d(P1 ∗ · · · ∗ Pn)

d(Q1 ∗ · · · ∗ Qn)
(s).

Suppose that

f1(x1) + · · · + fn(xn) = Gn(x1 + · · · + xn) (22)

123
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holds Q1(dx1)⊗ . . .⊗Qn(dxn)-a.s. in x1, . . . , xn, for some real measurable function
Gn. Then

a) Gn(y) = gn(y), Q1 ∗ · · · ∗ Qn-a.s. with respect to y;
b) for any k = 2, . . . , n it holds

f1(x1) + · · · + fk(xk) = gk(x1 + · · · + xk)

Q1(dx1) ⊗ . . . ⊗ Qk(dxk)-a.s. with respect to (x1, . . . , xk), where

gk(s) = log
d(P1 ∗ · · · ∗ Pk)

d(Q1 ∗ · · · ∗ Qk)
;

c) Finally let λ ∈ (0, 1] and in case λ = 1 assume also that D1(Pi ||Qi ) < +∞, for
i = 1, . . . , n. Then for any k = 2, . . . , n it holds

k∑

i=1

Dλ(Pi ||Qi ) = Dλ(P1 ∗ . . . ∗ Pk ||Q1 ∗ . . . ∗ Qk). (23)

Proof Since

e f1(x1)+···+ fn(xn)Q1(dx1) . . . Qn(dxn) = eGk (x1+···+xn)Q1(dx1) . . . Qn(dxn),

by multiplying both sides by an arbitrary bounded positive h(s) onRd and integrating
we get

∫

Rd

h(s)egn(s)(Q1 ∗ . . . ∗ Qn)(ds)

=
∫

Rd

h(s)(P1 ∗ . . . ∗ Pn)(ds)

=
∫

Rnd

h(x1 + · · · + xn)e
f1(x1)+···+ fn(xn)Q1(dx1) . . . Qn(dxn)

=
∫

Rnd

h(x1 + · · · + xn)e
Gn(x1+···+xn)Q1(dx1) . . . Qn(dxn)

=
∫

Rd

h(s)eGn(s)(Q1 ∗ . . . ∗ Qn)(ds).

Since this is true for all such h, we get the result a). Next, for the proof of b), the R.-N.
derivative of P1 ⊗ . . . ⊗ Pn−1 w.r.t. Q1 ⊗ . . . ⊗ Qn−1 is given by

exp{ f1(x1) + . . . + f (xn−1)} =
∫

Rd

exp{gn(x1 + . . . + xn−1 + xn)}Qn(dxn)
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by taking exponentials at both sides of (22) and integrating w.r..t. xn . Observe that the
equality clearly holds Q1 ⊗ · · · ⊗ Qn−1. The r.h.s. is clearly a positive function of
x1+ . . .+ xn−1, hence by taking logarithms at both sides one obtains b) for k = n−1.
The general result is then obtained by induction. Finally, the proof of c) immediately
follows from b) and Theorem 2.3. ��

Note that all the previous resultsmake reference to a completely arbitrary numbering
of the variables. The following result allows to turn the Pexider a.s. equation (22) into
a simpler form. In order to formulate it, for any vector x0 ∈ R

d and any probability
measure Q an R

d define its translation by x0 by Qx0(·) = Q(x0 + ·).
Proposition 2.5 Suppose fi are measurable functions on R

d and Qi are probability
measures on the same space, for i = 1, . . . , n, that satisfy the a.s. Pexider functional
equation

f1(x1) + f2(x2) + . . . + fn(xn) = Gn(x1 + . . . + xn), (Q1 ⊗ . . . ⊗ Qn)

−a.s. w.r.t. (x1, . . . , xn). (24)

Then there exists xi0 ∈ R
d , i = 1, . . . , n, such that the function

G̃n(z) = Gn

(
n∑

i=1

x0i + z

)

− Gn

(
n∑

i=1

x0i

)

satisfies the a.s. Cauchy functional equation

G̃n(z1) + . . . + G̃n(zn) = G̃n(z1 + . . . + zn), Q
x01
1 ⊗ . . . ⊗ Q

x0n
n

−a.s. in (z1, . . . , zn). (25)

Conversely, any solution G̃n of the above equation generates a family of solutions of
Eq. (24)

fi (x) = G̃n(x − x0i ) + bi , i = 1, . . . , n, Gn(x)

= G̃n

(

x −
n∑

i=1

x0i

)

+
n∑

i=1

bi , (26)

where bi are arbitrary real constants, for i = 1, . . . , n.

Proof The first step is to observe that, by Fubini theorem, the set of n-tuples
(x01 , . . . , x

0
n ) ∈ R

dn s.t.

f1(x
0
1 ) + f2(x

0
2 ) + . . . + fn(x

0
n ) = Gn(x

0
1 + . . . + x0n ) (27)

and simultaneously, for any i = 1, . . . , n

fi (xi ) +
∑

j �=i

f j (x
0
j ) = Gn(xi +

∑

j �=i

x0j ), Qi − a.s. w.r.t. xi , (28)
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has Q1⊗. . .⊗Qn-probability equal to 1, whichmakes possible to choose (x10 , . . . , x
n
0 )

with these properties. Next define

f̃i (z) = fi (x
0
i + z) − fi (x

0
i ), i = 1, . . . , n,

and subtract both sides of (27) from (28). Recalling the definition of G̃n we get, for
any i = 1, . . . , n

f̃i (z) = G̃n(x
0
i + z), Q

x0i
i − a.s. w.r.t. z.

Finally subtract both sides of (27) from (24), getting the required relation (25). The

relation (26) is immediately obtained, by observing that a relation holding Q
x01
1 ⊗

. . . ⊗ Q
x0n
n -a.s. in (z1, . . . , zn) must hold Q1 ⊗ . . . ⊗ Qn-a.s. w.r.t. (x1, . . . , xn) for

xi = x0i + zi , for i = 1, . . . , n. ��
It is clear that the correspondence established with the last result between the

solutions of the Pexider a.s. functional equation (24) and the Cauchy a.s. functional
equation (25)maps affine functions into linear functions. If G̃n(z) = 〈θ, z〉 solves (25),
then the corresponding solutions fi of equation (24), obtained in (26), with the choice
of bi = −k

Q
x0i
i

(θ), are associated with the probability measures Pθ
i , for i = 1, . . . , n

in the following way

dPθ
i

dQi
(x) = e fi (x) = eG̃n(x−x0i )+bi = exp{〈θ, x − x0i 〉 − k

Q
x0i
i

(θ)}
= exp{〈θ, x〉 − kQi .(θ)}, i = 1, . . . , n

The above probabilities are elements of the natural exponential family generated by
Qi , provided θ ∈ D(Qi ), with

k
Q

x0i
i

(θ) = log
∫

exp{〈θ, z〉}Qx0i
i (dz),

and

kQi (θ) = log
∫

exp{〈θ, x〉}Qi (dx) = k
Q

x0i
i

(θ) + 〈θ, x0i 〉, i = 1, . . . , n.

3 The a.s. Pexider and Cauchy Equation in the Discrete Case

In this section, we study the n-Pexider a.s. equation (24) in the identically distributed
case

f (x1) + f (x2) + . . . + f (xn) = Gn(x1 + . . . + xn),
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Q⊗n − a.s. w.r.t. (x1, . . . , xn). (29)

We also allow n = ∞, meaning that the above equations holds for any n = 2, 3, . . ..
To shorten the notation, for any d ∈ N and n ≥ 2 or n = ∞ we introduce the set of
probability measures in Rd

Hn
d = {Q : the equation (29) has only solutions Q-a.s. equal to an affine function}.

It is also plain that we can replace Q with any equivalent probability measure,
without changing the set of solutions.

In this section, we will present some classes of Q ∈ H2
d and Q ∈ H∞

d , that are
discrete, that is concentrated on a finite or countable set.

3.1 The General Discrete Case

It is clear that when Q is concentrated on a subset of Rd which is finite or countable,
then equation (29) depends on Q only through its (set-theoretical) support S = {s ∈
R
d : Q({s}) = 0}. Note that in the discrete case we are allowed to choose x0i = x0

for i = 1, . . . , n in Proposition 2.5, which is not guaranteed to work in general. As a
result, by translating and centring, we can reduce our interest to the Cauchy functional
equation in S (assumed to contain 0 w.l.o.g.)

G̃n(z1) + . . . + G̃n(zn) = G̃n(z1 + . . . + zn), zi ∈ S, i = 1, . . . , n, (30)

where G̃n is defined in Sn = ∑n
i=1 S, and it is an extension of Gn−1 to Sn . It is

clear that the sequence of sets {Sn} is non-decreasing and its union S∞ = ∪∞
n=1Sn is

the additive semigroup generated by S (more precisely it is a monoid, because of the
assumption 0 ∈ S). Notice the equation (30) can be rewritten as

G̃n(z1) + G̃n(z1) = G̃n(z1 + z2), z1 ∈ Sm, z2 ∈ Sn−m .

for any m and n ∈ N. In case equation (30) holds for any positive integer n, the union
of the graphs of the functions G̃n , defines a function G̃ on S∞, that satisfies

G̃(z1) + G̃(z2) = G̃(z1 + z2), z1 ∈ S∞, z2 ∈ S∞. (31)

Note this equation has the same form of (30) with n = 2, and a possibly different
domain S∞. It says that G̃ is a homomorphism of the monoid S∞ onto its image
G̃(S∞) ⊂ R.

The set Gn(S) of solutions of (30) is a linear space containing the linear functions,
so its dimension is greater or equal than d. It is equal to d if and only if Q belongs to
Hn

d . By Corollary 2.3, the sequence (Gn(S), n ≥ 2) is non-increasing w.r.t. inclusion;
consequently the set of solutions to (30) for any integer n ≥ 2 is the set G∞(S) :=
∩n≥2Gn(S).
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Remark It is easy to produce an S with the corresponding G∞(S) (hence all Gn(S)

for n ≥ 2) has dimension larger than d. For example, consider S = {0, 1,√2} ⊂ R,
with S∞ = {x = n1 + n2

√
2, ni ∈ N0, i = 1, 2}. A function G ∈ G∞(S), defined on

n1 + n2
√
2 ∈ S∞, has the form

G(n1 + n2
√
2) = n1G(1) + n2G(

√
2),

hence the space G∞(S) has dimension 2. These functions are linear only when
G(

√
2) = √

2G(1).

3.2 S Contained inN0

The present subsection is devoted to the case S ⊂ N0. Even in this case, finding
necessary and sufficient conditions on S to get a one-dimensional G2(S) in general
is a complicated combinatorial problem, which seems solvable only by brute-force
computations. In the sequel, the notation S \{0} := S0 is needed. In the next proposition
we consider two simple cases.

Proposition 3.3 If S = {0, c, 2c, . . . , nc}, with c, n ∈ N or if S ⊂ N0 is an additive
semigroup, then G2(S) is one-dimensional: any Q supported by such an S lies inH2

1.

Proof In the first case it is easily seen by induction on k = 1, . . . , n that G(kc) =
kG(c), for any G ∈ G2(S). There is nothing to prove for k = 1, and if it holds for
k − 1 then

G(kc) = G((k − 1)c + c) = G((k − 1)c) + G(c) = (k − 1)G(c) + G(c) = kG(c).

Choosing a = G(c)
c , one obtainsG(x) = ax for x ∈ S. For the latter assertion, observe

that for any x0, y0 ∈ S0, the assumption implies that

{x0, 2x0, (y0 − 1)x0, y0x0} ⊂ S, {y0, 2y0, (x0 − 1)y0, x0y0} ⊂ S.

Arguing as in the former case we prove that if G ∈ G2(S), then G(kx0) = kG(x0),
for k = 1, 2, . . . , y0 and G(hy0) = hG(y0), for h = 1, 2, . . . , x0. Setting k = y0 and
h = x0, we get

G(x0y0) = y0G(x0) = x0G(y0) ⇒ G(x0)

x0
= G(y0)

y0
=: a

and G(x) = ax for x ∈ S as before.
In the general case S ⊂ N0 we offer a general procedure to help to determine G2(S).

It consists of an iterative procedure producing a sequence of partitions {Pk, k ∈ N0}
of S0 = S\{0}. These partitions have the property that for any A ∈ Pk , and x, y ∈ A

G(x)

x
= G(y)

y
, ∀G ∈ G2(S).
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Here is the procedure.

1. Set k = 0 and P0 = {{i}, i ∈ S0};
2. For any A ∈ Pk set �A = A ∪ (A + A);
3. For any A, B ∈ Pk define A ↔ B when �A ∩ �B �= ∅;
4. Let L1, . . . , LHk be the connected components of the graph (Pk,↔) and set

Pk+1 = {∪A∈L1 A, . . . ,∪A∈LHk
A};

5. Set k ← k + 1;
6. Go to 2.

It is clear that Pk+1 is coarser than Pk (in the sense that for any A ∈ Pk , there exists
B ∈ Pk+1 such that A ⊂ B). If for some k ∈ N it is Pk+1 = Pk then P� = Pk for
� > k (this always happens when S is finite). The following result explains our interest
in the partition Pk . ��
Theorem 3.5 If A ∈ Pk , then

G(x)
x = G(y)

y for x, y ∈ A, for any G ∈ G2(S).
Furthermore Hk = |Pk | is larger or equal than dim G2(S). In particular Hk = 1
implies that G2(S) is one-dimensional.

Proof The proof works by induction on k. For k = 0 the statement is trivial. Next
assume that the statement is true for k − 1 and suppose that Br = ∪h∈Lr Ah ∈ Pk

and x, y ∈ Br , for some r ∈ {1, . . . , Hk}. Then, either there exists h ∈ Lr such that
x, y ∈ Ah , in which case G(x)

x = G(y)
y by the inductive assumption, or x ∈ Ah1 and

y ∈ Aht , with Ah1 , Aht ∈ Lr and h1 �= ht , with Ah1 ↔ Ah2 ↔ . . . ↔ Aht , for some
t-tuple Ahi ∈ Lr , i = 1, . . . , t . Suppose first that t = 2, in which case there exists
z ∈ �Ah1

∩ �Ah2
. Next choose G ∈ G2(S) arbitrarily. If z ∈ Ah1 , by the inductive

hypothesis G(x)
x = G(z)

z ; else z = x1 + x2 with x1, x2 ∈ Ah1 . Again by the inductive

hypothesis G(xi )
xi

= c, with i = 1, 2. Consequently, using the extension of f to S2, we
have

G(z) = G(x1 + x2) = G(x1) + G(x2) = c(x1 + x2) = cz

which proves that G(z)
z = G(x)

x . With the same argument, one proves that also G(y)
y =

G(z)
z . If t > 2 one constructs a sequence zi ∈ �Ai ∩ �Ai+1, i = 0, 1, . . . , t − 1 such

that for any G ∈ G2(S) it holds

G(x)

x
= G(z1)

z1
= . . . = G(zt−1)

zt−1
= G(y)

y
,

ending the proof of the first statement of the theorem. For the second statement, recall
Pk = {B1, . . . , BHk }. For G ∈ G2(S) and r = 1, . . . , Hk , let

cr (G) = G(x)

x
, x ∈ Br .
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The function c(G) = (c1(G), . . . , cHk (G)) fromG2(S) intoRHk is linear and injective,
as its kernel is trivial. Consequently, the dimension of the domain does not exceed Hk .
��

In general, when S is finite, the above procedure ends with a value of k such
that Hk ≥ 1. In Example 1, it happens that G2(S) is one-dimensional. When Hk >

1, the complete knowledge of G2(S) can be obtained by solving a system of linear
equations with a number of Hk unknowns smaller than |S0|. As illustrated in the last
two forthcoming examples, it is then possible that G2(S) is one-dimensional or not.

Example 1 s = {0, 2, 3, 4, 5, 10}. The partition P0 consists of the elements of S0. To
get the ↔ edges observe that

�2 = {2, 4}, �3 = {3, 6}, �4 = {4, 8}, �5 = {5, 10}, �10 = {10, 20}

whose non-empty intersections are �2 ∩ �4 and �5 ∩ �10. Consequently P1 =
{{2, 4}, {5, 10}, {3}}. Now in order to describe P2 let us compute

�{2,4} = {2, 4, 6, 8}, �{5,10} = {5, 10, 15, 20}, �3 = {3, 6}.

and observe that �{2,4} ∩ �3 = {6} is the only non-empty intersection, implying
P2 = {{2, 3, 4}, {5, 10}}. In order to compute P3 observe that

�{2,3,4} = {2, 3, 4, 5, 6, 7, 8}

which has a non-empty intersection with �{5,10}. Hence P3 has a single element that
coincides with S0.

Example 2 S0 = {1, 3, 4, 5}. Since {�i , i ∈ S0} are pairwise disjoint P1 = P0 =
{{i}, i ∈ S0}. However, the system

G(1) + G(5) = 2G(3),G(5) + G(3) = 2G(4),

G(4) = G(1) + G(3),G(5) = G(1) + G(4),

has only constant solutions, in other words G2(S) is one-dimensional.

Example 3 S0 = {3, 4, 8, 13}. Then

�3 = {3, 6}, �4 = {4, 8}, �8 = {8, 16}, �13 = {13, 26}

showing that P1 = {{3}, {4, 8}, {13}}. Since �{4,8} = {4, 8, 12, 16}, one obtains that
P2 = P1. This means that for any G ∈ G2, setting G(i) = ici , we have c4 = c8.
There is only one constraint on the unknowns c3, c4, c13, obtained from the relation
3 + 13 = 2 × 8 namely

3c3 + 13c13 = 16c4

from which it is obtained that G2(S) has dimension 2.
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3.3 S Contained inZ andZd.

The procedure presented above can be easily extended to cover the case S ⊂ Z with
the following modifications. First, if there is no i ∈ S such that −i ∈ S as well, the
procedure is performed separately on S+ = S ∩ N and S− = S ∩ (−N). If i ∈ S and
−i ∈ S, then {i,−i} ∈ P0 and the procedure is kept unchanged, defining this time
�A = A∪ (A+ A)\{0}, for any A ∈ Pk . In fact, with this modification, the procedure
can be used for any finite or denumerable S ⊂ R.

here are a couple of results with S ⊂ Z and S ⊂ Z
d .

Proposition 3.4 Let 0 ∈ S ⊂ Z. ThenG∞(S) is one-dimensional and any Q supported
by such an S lies in H∞

1 .

Proof Recall that G∞(S) = G2(S∞), as a consequence, we consider (30) with n = 2.
Denote S+ = S ∩ N and S− = (−S) ∩ N, where N = {1, 2, . . .}. If one of the two is
empty, the result follows fromProposition 3.3. So assume that they are both non-empty
and let S+∞ and S−∞ be the corresponding additive semigroups. Define G+(x) = G(x)
for x ∈ S+∞ and G−(x) = G(−x) for x ∈ S−∞. If x, y ∈ S+∞, then xy ∈ S+∞ and since
(30) is true, we have G+(xy) = xG+(y) = yG+(x). This implies that G(x) = a+x
for x ∈ S+∞, for some real constant a+. If x ∈ S−∞ and y ∈ S+∞ then xy ∈ S−∞ from
which G(x) = a−x for x ∈ S−∞, for some real constant a−. Let c+ and c− the greatest
common divisors of S+∞ and S−∞,, respectively, and let c = gcd(c+, c−). Then from
the Bézout identity

S∞ = S+∞ − S−∞ = cZ, (32)

by consequence x ∈ S∞ if and only if −x ∈ S∞, and since G(0) = 0, from (30) it
follows G(x) = −G(−x), i.e. a+x = a−x , from which a+ = a−. ��
Theorem 3.6 If 0 ∈ S ⊂ Z

d and 0 is also contained in the interior of the convex hull
of S, then G∞(S) is d-dimensional.

Proof From Theorem 2 in [6], S∞ is a subgroup of Zd , which means that there exist
w1, . . . , wd ∈ Z

d linearly independent, such that any element x of S∞ has the form

x = x1w1 + . . . + xdwd

where x1, . . . , xd ∈ Z. Moving each coordinate at a time, it is clear that equation

G(x) + G(y) = G(x + y), x, y ∈ S∞

with G(0) = 0, implies that G(x) = 〈a, x〉, for some a ∈ R
d . ��

4 The Absolutely Continuous Case

In this section we consider probability measures Q on Rd that are absolutely continu-
ous w.r.t. the Lebesguemeasure. As before, our goal is to determine suitable properties
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that ensure that Q ∈ G2
d or Q ∈ G∞

d . For establishing results of this kind, some of the
tricks that have been used in the case of the classical Cauchy functional equation are
still valid.

Theorem 4.2 If Q has a positive density w.r.t. the Lebesgue measure inRd on an open
connected set O, and f satisfies

f (x1) + f (x2) = G2(x1 + x2), Q ⊗ Q-a.s. in (x1, x2), (33)

then f (x) = 〈a, x〉+ b, for some a ∈ R
d and b ∈ R. As a consequence, Q lies inH2

d .

Proof By assumption each property concerning points of Rd that holds Q-a.s., holds
almost everywhere w.r.t. the Lebesgue measure restricted to O and conversely. The
same is true for properties concerning pairs of points in Rd , replacing Q by Q⊗2 and
the set O by O × O . We start by applying Proposition 2.5: in the present situation we
are not allowed to choose x10 = x20 , as in the discrete case, but, due to the properties
of the Lebesgue measure, these two vectors can be chosen as close as we wish. As
a result the probability measures Qx10 and Qx20 have positive density in the open sets
O1 and O2 containing the origin 0, respectively, obtained the one from the other by
a translation, whose length can be made as small as we wish. As a consequence, for
Õ = O1 ∩ O2, it holds

G̃2(u) + G̃2(v) = G̃2(u + v), a.s. in (u, v) ∈ Õ2. (34)

where

G̃2(z) = Gn

(
n∑

i=1

x0i + z

)

− Gn

(
n∑

i=1

x0i

)

By Fubini’s theorem the equality (34) holds for any fixed u ∈ Õ \ M∗, M∗ ⊂ Õ
being of d-dimensional Lebesgue measure zero, and for v ∈ Õ\N∗

u , where N∗
u ⊂ Õ

has d-dimensional Lebesgue measure zero for any u ∈ Õ\M∗. We aim to replace G̃2
by a version such that (34) holds for all u, v ∈ Õ . Here, the technique used by [7]
on the whole space R can be adapted as follows. Consider any u ∈ Õ . Then u − M∗
has Lebesgue measure 0 like M∗, and thus one can choose u1 ∈ Õ\M∗, such that
u − u1 ∈ Õ\M∗; in fact, since 0 ∈ Õ , u1 can be chosen arbitrarily close to 0. From

− G̃2(v) = G̃2(u1) − G̃2(u1 + v), v ∈ Õ \ N∗
u1 (35)

and

G̃2(u − u1 + w) = G̃2(u − u1) + G̃2(w), w ∈ Õ \ N∗
u−u1

by choosing w = u1 + v one obtains from the latter

G̃2(u + v) = G̃2(u − u1) + G̃2(u1 + v), v ∈ (Õ \ N∗
u−u1) − u1, (36)
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and so, summing both sides of (35) and (36), we obtain

G̃2(u + v) − G̃2(v) = G̃2(u − u1) + G̃2(u1) =: h(u),

v ∈ (Õ \ N∗
u1) ∩ {(Õ \ N∗

u−u1) − u1}.

From (34), for u ∈ Õ \ M∗ the l.h.s. of the above display is equal to G̃2(u), almost
everywhere in v ∈ Õ w.r.t. the d-dimensional Lebesgue measure: this implies that
h(u) = G̃2(u), for u ∈ Õ\M∗, meaning that h is almost everywhere equal to G̃2 in
Õ . It remains to prove that h satisfies

h(u) + h(v) = h(u + v), u ∈ Õ, v ∈ Õ. (37)

For this is enough to observe that for any choice of u, v ∈ Õ it is possible to select
s, t ∈ Õ , as close as we wish to the origin, such that

G̃2(u + s) − G̃2(s) = h(u), G̃2(v + t) − G̃2(t) = h(v),

G̃2(s + t) − G̃2(u + v + s + t) = −h(u + v),

G̃2(s) + G̃2(t) − G̃2(s + t) = 0,

G̃2(u + v + s + t) − G̃2(u + s) − G̃2(v + t) = 0,

which summed from both sides yield exactly (37). In fact, each of these equalities fails
in a subset of Õ2 with a 2d-dimensional Lebesgue measure zero. Since 0 ∈ Õ , (37)
implies also that h(0) = 0.

The next step is to prove that h is continuous in Õ . For this, we borrow a trick from
[8]. Since 0 ∈ Õ , for ε > 0 sufficiently small, one can define for t ∈ R

ϕ(t) =
∫

B(0,ε)

eith(y)dy,

where B(0, ε) is the ball of radius ε around 0. Now observe that, by dominated con-
vergence, ϕ(t) is nonzero if |t | ≤ η, where η > 0 is small enough. Next, for any
x ∈ Õ

∫

B(x,ε)

eith(s)ds =
∫

B(0,ε)

eith(x+y)dy

=
∫

B(0,ε)

eit(h(x)+h(y))dy = eith(x)ϕ(t). (38)

Again by dominated convergence, for all |t | ≤ η the function

x ∈ Õ �→ eith(x) = 1

ϕ(t)

∫

B(x,ε)

eith(s)ds
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is continuous. Finally for η > 0 sufficiently small

h(x) = i(e−iηh(x) − eiηh(x))
η∫

−η

eith(x)dt

thus, by dominated convergence, we deduce that h is continuous as well.
Notice that until nowwe have not yet exploited the connectedness of O . First, since

0 ∈ Õ , again for x inside a ball B(0, r0) of sufficiently small radius r0 > 0 around 0,
it is easily obtained that, h being continuous and satisfying (37), it is h(x) = 〈a, x〉
for some a ∈ R

d . This is first established when x is aligned with each of the vectors
in Rd , following the standard one-dimensional argument in Chapter 2 in [5], and then
using the decomposition of any vector in the ball as a sum of its projections on the
vectors. Using (37), we obtain h(x)−h(x0) = 〈a, x−x0〉 for x ∈ B(x0, rx0) ⊂ O , for
any x0 ∈ O and rx0 > 0 suitably small. Next, by connectedness, for any x ∈ O there
exists a continuous path contained in O , starting from the origin and ending in x ∈ O ,
that can be covered with a finite number of balls {Bi := B(xi , ri ) ⊂ O, i = 1, . . . , I },
with ri > 0 and yi ∈ Bi ∩ Bi+1, i = 1, . . . , I − 1. Then

h(x) = h(x) − h(0) =
I−1∑

i=0

(h(xi+1) − h(yi ) + h(yi ) − h(xi ))

=
I−1∑

i=0

(〈a, xi+1 − yi 〉 + 〈a, yi − xi 〉)

= 〈a,

I−1∑

i=0

(xi+1 − xi )〉 = 〈a, x〉,

as desired. ��
Remark the assumption of the previous theorem cannot be weakened. For example,
with

Q(dx) = (1(0,1)(x) + 1(3,4)(x))
dx

2
,

any function f equal to d1 on (0, 1) and to d2 on (3, 4) is a solution of (33) for
n = 2 and does not have an affine form, unless d1 = d2. More generally, the intervals
(0, 1) and (3, 4) can be replaced by (a1, a2) and (b1, b2), with 2a2 < a1 + b1 and
a2 + b2 < 2b1.

The disconnectedness of the support, which is crucial in the previous counterexample,
can be circumvented by increasing n in (24). In the next result this is achieved by a
rather direct argument, without reducing to an equation of the form (31) as we did in
the discrete case.
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Corollary 4.3 assume Q is a probability measure onRd which is absolutely continuous
w.r.t. the Lebesgue measure (on the whole space), and that its density q is positive in
some open set O. Then Q ∈ H∞

d .

Proof By a suitable translation if needed, assume that 0 ∈ O , and that O is connected.
Moreover suppose Q(O) < 1, otherwise Theorem 4.2 is directly applicable. The
Borel set O∗ = {x /∈ O : q(x) > 0} is defined up to null sets and has the property
Q(O) + Q(O∗) = 1. If f satisfies the equation (24) for all values of n, define
fO = f 1O . For any Borel set A ⊂ R

d of positive Q-probability denote by QA the
probabilitymeasure Q conditional to A. Then fO solves equation (33)with Q replaced
by QO : consequently, by Theorem 4.2, fO(x) = 〈a, x〉, for some a ∈ R

d , almost
everywhere in O w.r.t. the d-dimensional Lebesgue measure. Our goal is to prove that
the same is true for fO∗ = f 1O∗ , that solves (33) with Q replaced by QO∗ . For this
purpose, note that the sequence {Om = O + . . . + O m-times,m ∈ N} increases to
R
d . Consequently, the sequence {O∗

m = O∗ ∩ Om,m ≥ m0} increases to O∗, and
Q(O∗

m) ↑ Q(O∗) asm → ∞,m0 being the first value ofm such that O∗
m has positive

d-dimensional Lebesgue measure. As a consequence, by exploiting (24) in the subset
of m-tuples with components in O , whose sum belongs to O∗

m , we have

fO∗(x1 + . . . + xm) = fO(x1) + . . . + fO(xm)

a.e. in x1, . . . , xm w.r.t. themd-dimensional Lebesgue measure. Since fO(x) = 〈a, x〉
a.e. w.r.t. the d-dimensional Lebesgue measure in O , fO∗(y) = 〈a, y〉, for y ∈ O∗

m,

a.e. w.r.t. the d-dimensional Lebesgue measure in O∗
m . By increasing m the proof is

achieved. ��

Remark It is worth observing that the assumption of Corollary 4.3 cannot be replaced
by the weaker assumption that Q is absolutely continuous w.r.t. the d-dimensional
Lebesgue measure. Indeed, already in dimension 1 there exist closed subsets F of R
with positive Lebesgue measure, but without an interior point, excluding the uniform
distribution on F from the statement of the result.

5 Exponential Families, f and KL Divergences

This section considers the problem raised in the remark at the end of Sect. 1. If f is
a convex function on (0,∞) such that f (1) = 0, define the f -divergence between
equivalent probabilities P and Q on some set � by

D f (P||Q) =
∫

�

f

(
dP

dQ

)

dQ.
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The best examples are f (x) = x log x, and f (x) = − log x , leading to the KL
divergence

D1(P||Q) = −
∫

�

log

(
dQ

dP

)

dP =
∫

�

log

(
dP

dQ

)

dP.

and to its dual D̃1(P||Q) = D1(Q||P).

We prove in this section that if P and Q belong to the same natural exponential
family on R

d then the property

D f (P
∗n||Q∗n) = nD f (P||Q) (39)

holds essentially only for a linear combination of the KL divergence D1 and its dual
D̃1.For showing this, we have to exhibit some natural exponential family and a positive
integer n, with the property that the relation (39) holds for all P and Q members of
the family, only when D f has the form AD1 + BD̃1. After realizing that the normal,
Gamma and Poisson families lead to untractable computations, the simplest choice
reveals to be a successful one: the Bernoulli family, with n = 2, that is P∗2 and Q∗2
binomial.

Theorem 5.1 Let P and Q are two Bernoulli distributions with means p and q �= p,
respectively. If D f (P∗2||Q∗2) = 2D f (P||Q) holds for all 0 < q < p < 1 then there
exists three constants A, B ≥ 0 and C such that

f (x) = −A log x + Bx log x + C(x − 1). (40)

and then

D f (P||Q) = AD1(P||Q) + BD1(Q||P).

Proof Here dP
dQ (0) = (1 − p)/(1 − q) and dP

dQ (1) = p/q. Similarly

dP∗2

dQ∗2 (0) =
(
1 − p

1 − q

)2

,
dP∗2

dQ∗2 (1) = (1 − p)p

(1 − q)q
,
dP∗2

dQ∗2 (2) =
(
p

q

)2

We have therefore to prove that

D f (P
∗2||Q∗2) = f

((
1 − p

1 − q

)2
)

(1 − q)2 + 2 f

(
(1 − p)p

(1 − q)q

)

(1 − q)q + f

((
p

q

)2
)

= 2D f (P||Q) = 2 f

(
1 − p

1 − q

)

(1 − q) + 2 f

(
p

q

)

q (41)

implies that f has the form (40).
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For simplification,wewrite X = p
q , Y = 1−p

1−q .This implies thatq = 1−Y
X−Y , 1−q =

1−X
Y−X . Note that 0 < q < p < 1 ⇔ 0 < Y < 1 < X . We do not need to consider the
alternative case. for convenience we denote

D = {(X ,Y ) : 0 < Y < 1 < X}.

The functional equation (41) becomes for (X ,Y ) ∈ D

f (Y 2)

(
X − 1

X − Y

)2

+ 2 f (XY )
(X − 1)(1 − Y )

(X − Y )2
+ f (X2)

(
1 − Y

X − Y

)2

= f (Y )
X − 1

X − Y
+ 2 f (X)

1 − Y

X − Y
(42)

that we rather rewrite as

(X − 1)2 f (Y 2) + 2(X − 1)(1 − Y ) f (XY ) + (1 − Y )2 f (X2)

= 2(X − Y )((X − 1) f (Y ) + (1 − Y ) f (X)) (43)

We define now the function h(X ,Y ) on (0,∞)2 by

h(X ,Y ) = f (XY ) − f (X) − f (Y ) (44)

For (X ,Y ) ∈ D we plug (44) into (43) and the function f disappears: we get

(X − 1)2h(Y ,Y ) + 2(X − 1)(1 − Y )h(X ,Y ) + (1 − Y )2h(X , X) = 0 (45)

Let us introduce H(X ,Y ) defined on the set

S = (0,∞)2 \ {(X ,Y ) : X �= 1,Y �= 1}

by

H(X ,Y ) = h(X ,Y )

(X − 1)(1 − Y )
,

and for simplicity denote h(X , X) = h(X), H(X , X) = H(X). Plugging H in (45)
we get for (X ,Y ) ∈ D

H(X ,Y ) = 1

2
(H(X) + H(Y )) (46)

At this point suppose that f has four successive derivatives. Later we show that this
hypothesis is necessarily fulfilled.
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We compute ∂2

∂X∂Y h(X ,Y ) = 1
2

∂2

∂X∂Y (H(X) + H(Y ))(X − 1)(1 − Y ) in two ways:
the first being

∂2

∂X∂Y
h(X ,Y ) = −H ′(X)

2
(X − 1) + H ′(Y )

2
(1 − Y ) − 1

2
(H(X) + H(Y ))

= −1

2
(H(X)(X − 1))′ + 1

2
(H(Y )(1 − Y ))′. (47)

A remarkable consequence of (47) is that

∂4

∂2X∂2Y
h(X ,Y ) = 0 (48)

The second way from (44) gives

∂2

∂X∂Y
h(X ,Y ) = f ′(XY ) + XY f ′′(XY ). (49)

Applying (48) to the result of (49) we get

2 f ′′(XY ) + 4XY f ′′′(XY ) + X2Y 2 f I V (XY ) = 0.

With the replacement t = XY and by using the notation y(t) = f ′′(t) we get the
following Euler linear differential equation on t > 0

t2y′′(t) + 4t y′(t) + 2y(t) = 0,

whose solutions have the form y(t) = tα , with α root of the characteristic equation
α(α − 1) + 4α + 2 = 0, i.e. α = −1 and α = −2. As a result there exist two
real numbers A and B such that f ′′(t) = A

t + B
t2
. Since f is convex we obtain that

A, B ≥ 0. Furthermore, by using f (1) = 0, we finally obtain the existence of a third
constant C such that f has the form

f (t) = At log t − B log t + C(t − 1).

Now we remove the differentiability assumption on f . Thus there exists a positive
measure ν on (0,∞) such that its right-derivative

f ′+(t) = f ′+(1) − 1(0,1)(t)
∫

(t,1]
ν(ds) + 1(1,+∞)(t)

∫

(1,t]
ν(ds).

Since the left-derivative f ′−(t) is f ′+(t−), the derivative f ′ exists almost everywhere;
more precisely, out of the finite or countable set of atoms of ν). Observe that H ′(X)
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has meaning almost everywhere for X �= 1, since from h(X) = −(X − 1)2H(X) we
deduce

−H ′(X)(X − 1)2 − 2(X − 1)H(X) = h′(X) = 2X f ′(X2) − 2 f ′(X)

and the set of X such that at least one between f ′(X) and f ′(X2) fails to exist is at
most countable. Therefore H ′ is locally with bounded variation, for X �= 1.

The key idea of the proof is to givemeaning to ∂2

∂X∂Y h(X ,Y ) by considering t = XY
has the new variable. The transformation (X ,Y ) �→ (X , t) maps D onto

E = {(X , t) : X > 1, 0 < t < X}

Now, using (47), we consider

h1(X ,Y ) = ∂

∂X
h(X ,Y ) = H ′(X)

2
(X − 1)(1 − Y ) + H(X) + H(Y )

2
(1 − Y )

for (X ,Y ) ∈ D, and we introduce

h2(X , t) = Xh1(X ,
t

X
) = H ′(X)

2
(X − 1)(X − t) + H(X) + H(t/X)

2
(X − t)

leading to

∂

∂t
h2(X , t) = −H ′(X)

2
(X − 1) − H(X) + H(t/X)

2

+H ′(t/X)

2
(1 − t

X
) = A1(X) + A1

(
t

X

)

(50)

for (X , t) ∈ E , where

A1(X) = −H ′(X)

2
(X − 1) − H(X)

2
.

Note that A1 and t �→ ∂
∂t h2(X , t) are locally of bounded variation. The second

computation of ∂
∂t h2(X , t) starts from ∂

∂X h(X ,Y ) = Y f ′(XY ) − f ′(X) leading to
h2(X , t) = t f ′(t) − X f ′(X) and

∂

∂t
h2(X , t) = t f ′′(t) + f ′(t), (51)

where f ′′(x) does exists almost everywhere in t > 0. Indeed, by comparison of (50)
and (51), we obtain that ν is an absolutely continuous measure. For convenience we
denote ν(dt) = f ′′(t)dt, and obtain that

A2(t) := t f ′′(t) + f ′(t) = A1(X) + A1(t/X),
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which is correct dX×dt almost everywhere on E . Coming back to the (X ,Y ) notation,
we obtain the multiplicative Pexider equation A2(XY ) = A1(X) + A1(Y ), true on
(X ,Y ) ∈ D almost everywhere. This is easily turned into additive form with the
change of variable

X = ex , Y = ey, F(x) = A1(e
x ), G(x) = A2(e

x ),

leading to

F(x) + F(y) = G(x + y), a.e. on y < 0 < x (52)

almost everywhere. Next choose x0 > 0 and y0 < 0 in such a way that

F(x0) + F(y0) = G(x0 + y0), F(x0) + F(y)

= G(x0 + y), a.e. y < 0, F(x) + F(y0) = G(x + y0), a.e. x > 0

so that, once defined for z1 > −x0, z2 < y0 and z ∈ R

F̃1(z1) = F(x0 + z1) − F(x0), F̃2(z2)

= F(y0 + z2) − F(y0), G̃(z) = G(x0 + y0 + z) − G(x0 + y0),

we have

F̃1(z1) = G̃(z1), a.e. z1 > −x0,

F̃2(z2) = G̃(z2), a.e. z2 < y0,

G̃(z1) + G̃2(z2) = G̃(z1 + z2),

where the latter holds a.e. in z1 > −x0 and z2 < y0, hence it certainly holds a.e. in z1
and z2 within a suitably small ball around the origin. The rest of the proof is carried
away as in Lemma 4.2, proving thatG(x) = Ax+C and A2(t) = A log t+C . Finally
the equation

t f ′′(t) = A log t + C − t f ′(t),

proves that f ′′ is continuous: by two successive differentiations, we obtain that f has
four derivatives as promised. This concludes the proof. ��

6 Conclusion

In the paper we have considered equivalent probability measures Pi and Qi on R
d ,

for i = 1, . . . , n, and their convolution products P1 ∗ · · · Pn and Q1 ∗ · · · ∗ Qn , i.e.
the distributions of X1 + . . . + Xn and Y1 + . . . + Yn , where Xi ∼ Pi and Yi ∼ Qi

123



Journal of Theoretical Probability            (2025) 38:37 Page 27 of 28    37 

are mutually independent, for i = 1, . . . , n. We observed that, for any λ ∈ (0, 1], the
Rényi divergence (including the Kullback–Leibler for λ = 1) satisfies the inequality

Dλ(P
∗n||Q∗n) ≤ nDλ(P||Q), (53)

and that the equality occurswhen Pi belong to the natural exponential family generated
by Qi , with the same natural parameter θ . But in general the equality holds when the
log-densities fi = log Pi

Qi
satisfy a Pexider-type equation

f1(x1) + . . . + fn(xn) = Gn(x1 + . . . + xn), (54)

Q1 ⊗ . . . ⊗ Qn-almost surely in (x1, . . . , xn). Saying that Pi and Qi belong to the
same natural exponential family is saying that fi is an affine function.When the natural
parameter θ is independent of i , alsoGn is affine and (54) is satisfied. But in some cases
there could exist other solutions. Focussing on the i.i.d. case Pi = P and Qi = Q, we
have established that for some classes of probability measures Q’s supported byZ and
Z
d , as well for other classes of Q’s absolutely continuous w.r.t. the Lebesgue measure

in Rd , these solutions cannot occur. Some counterexamples are provided as well. We
have finally proved that an f divergence cannot satisfy D f (P∗n||Q∗n) = nD f (P||Q)

for P and Q members of the same exponential family unless this f divergence has
the form D f (P||Q) = AD1(P||Q) + BD1(Q||P) where D1 is the KL divergence,
A, B ≥ 0 and A + B > 0.
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