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ABSTRACT

We propose a new fusion method for magnetic resonance imaging

(MRI) and ultrasound (US) data combining two inverse problems:

MRI reconstruction using super-resolution and US image despeck-

ling, using a model relating the two modalities through an unknown

polynomial function. We demonstrate the accuracy of the proposed

fusion algorithm by quantitative and qualitative evaluation using

synthetic data. The resulting fused image is shown to have an im-

proved signal to noise ratio and spatial resolution compared to the

native MRI and US images.

Index Terms— Fusion MRI and ultrasound, super-resolution,

despeckling, alternating direction method of multipliers, total varia-

tion regularization.

1. INTRODUCTION

Image fusion can be generally defined as “gathering all the important

information from multiple images, and including them into a fewer

number of images” [1], e.g., into one single image. This single im-

age is usually more informative and accurate than the images before

fusion and contains all the necessary information for the application

of interest” [1]. Fusion of medical images is an important and chal-

lenging research field facilitating medical diagnosis and decisions in

number of clinical studies. Existing medical image fusion include

positron emission tomography (PET) and magnetic resonance imag-

ing (MRI) [2], or gammagraphy and ultrasound (US) imaging [3].

However, to the best of our knowledge, the fusion of MR and US

images has been only considered in the literature from the perspec-

tive of image registration [4] and not as an image fusion problem,

which is precisely the aim of this work.

MR and US images are two different medical modalities having

their own advantages and drawbacks. For example, for precise lo-

calization and characterization of small lesions such as those occur-

ring within endomotriosis disease, US images allow their depth of

infiltration to be evaluated using transvaginal or transrectal probes.

However, these images are characterized by a low signal to noise

ratio and a limited field of view. On the other hand, MR images pro-

vide a wider field of view of the patient anatomy with a good signal

to noise ratio. However, small lesions cannot be detected with MRI

because of its limited spatial resolution of the order of 1 to 2 mm.

The complementary properties of US and MR images explain why

medical doctors currently need both modalities for the diagnosis of

many diseases. The final aim of this work is to perform MR and US

image fusion for endometriosis surgery, that requires to localize and

to border the endometriosis [5] and to know precisely its depth of in-

filtration, especially if the endometrial implant is inside or under an

organ. As a consequence, endometriosis diagnosis needs both MRI

and US modalities. Being able to fuse MRI and US images would

help the surgeon to overcome the dissimilarities between these two

kinds of images and to improve the medical decision.

This paper studies a new fusion method for MR and US im-

ages. The proposed method is tested on simulated data with avail-

able ground truth allowing quantitative evaluation of the fused im-

age. The remainder of the paper is organized as follows. Section 2

presents a statistical model for MRI and US image fusion including

a linear relation between these two modalities. Section 3 introduces

the MRI/US fusion algorithm investigated in this work. Simulation

results are presented in Section 4 whereas conclusions and perspec-

tives are reported in Section 5.

2. A NEW STATISTICAL MODEL FOR THE FUSION OF

MRI AND US IMAGES

This work assumes that the MR and US images to be fused have

been registered. Thus, registration (e.g., [4]) is considered herein

as a pre-processing step and the possible registration errors are ig-

nored hereafter. Note that despite this hypothesis, the fusion task

is still challenging because of the differences in resolution, contrast

and noise between the two imaging modalities.

2.1. Observation models

In several applications including gynecology (considered in this

study), MRI has the advantage of acquiring images with a large field

of view, at the expense of a relatively low spatial resolution, of the

order of 1 to 2 mm. In contrast to MRI, depending on the choice of

the probe’s central frequency, US imaging can offer well-resolved

images but contaminated by a high level of speckle noise and with

a reduced field of view. Based on these observations, many existing

works aimed at improving independently the quality of MR and

US images. In the case of MRI, the loss of resolution is classically

modelled by a downsampling operation and a low pass filter, e.g.,

see [6]. In US imaging, speckle noise is considered as additive

when considering the log-compressed envelope mode (also called

B-mode) with a log-Rayleigh distribution [7, 8]. These observations

lead to the following statistical models

ym = SHxm + nm

yu = xu + nu

(1)

where xm ∈ R
N is the non-observable high-resolution MR image,

ym ∈ R
M is the low-resolution MR image, nm ∈ R

N is an inde-

pendent identically distributed i.i.d. additive white Gaussian noise

with variance σ2
m, H ∈ R

N×N is a block circulant with circulant



blocks matrix (modelling the blurring effect of the PSF with circu-

lant boundary conditions), S ∈ R
M×N (with N = d2M ) is a deci-

mation operator with a decimation factor d, yu ∈ R
N is the B-mode

US image, xu ∈ R
N is the noise-free US image and nu ∈ R

N is an

i.i.d. additive log-Rayleigh noise sequence with localization param-

eter γ. Note that in (1) all the vectors are obtained by stacking the

corresponding images into column vectors in a lexicographic order.

Note also that we suppose that xm and xu have the same spatial sam-

pling. In practical situations, this can be obtained by adjusting the

decimation factor d in the MRI model, so that pixels in the super-

resolved MR and US images have the same size.

2.2. Relation between US and MR images

MR and US imaging technologies exploit different physical phe-

nomena. Consequently, when imaging the same tissues and even

in the virtual case where the acquisition is perfect, they do not pro-

vide the same pixel amplitude. Thus, images xm and xu in (1) are

not identical, even if they represent the same imaged tissues. For

solving the fusion task, we propose to link these two images by a

parametric model. In this work, we adopt the model proposed in [9]

for MR/US image registration. This model originates from the ob-

servation that US images are formed due to the interfaces between

anatomical structures having different acoustic impedances, which

are related with the gradient of the MR image, i.e.,

xu = f(xm, ‖∇xm‖2) (2)

where f : RN × R
N → R

N is an unknown function and ‖∇xm‖2 ∈
R

N is the ℓ2-norm of the local gradient of xm, whose ith component

(corresponding to pixel i) is defined as

‖∇xm‖i =

√
(Dhxm)

2

i
+ (Dvxm)2i (3)

where Dh and Dh are two matrices accounting for horizontal and

vertical discrete differentiation.

Eq. (2) shows that the relation between MR and US images is

governed by the choice of an appropriation function f . Interesting

registration results were obtained in [9] by choosing f as a polyno-

mial function. Therefore, we use a similar model for image fusion,

defined as

xu = c1 + c2xm + c3‖∇xm‖2 (4)

where c1, c2, and c3 are unknown polynomial coefficients.

We assume in this paper that the gradient of the high resolution

MR image can be replaced by the bicubic interpolated MR image.

This assumption is motivated by the fact that, as a first order ap-

proximation, the bicubic interpolated MR image y
m
∈ R

N contains

sufficient information about the MRI contours, leading to

xu = c1 + c2xm + c3‖∇y
m
‖2 (5)

Note that this approximation allows the US image to be written as a

linear function of the MR image through (5), which will significantly

simplify the following image fusion algorithm.

2.3. Fusion of MR and US images using a Bayesian approach

The linear model between the MR and US images in (1) yields the

following fusion model

ym = SHx+ nm

yu = c1 + c2x+ c3‖∇y
m
‖2 + nu

(6)

where x ∈ R
N is the unknown image to be estimated, containing

relevant information from both the MR and US data.

Given the noise models considered, the distributions of ym and

yu are defined as

ym|x ∼ N (SHx, σmIN )

yu|x ∼ LR(γ)
(7)

where N (µ,Σ) denotes the normal distribution with mean vector µ

and covariance matrix Σ, and LR(γ) is the log-Rayleigh distribu-

tion with parameter γ. Using Bayes’ theorem and the independence

between noises nm and nu, the posterior distribution of x is

p(x|ym,yu) ∝ p(ym|x)p(yu|x)p(x) (8)

where p(x) is the prior probability distribution of x and ∝ means

“proportional to”. Thus, the log-posterior distribution can be written

as

− log p(x|ym,yu) =
1

2
‖ym − SHx‖22

︸ ︷︷ ︸
MRI data fidelity

+ log(p(x))
︸ ︷︷ ︸
regularization

+

N∑

i=1

[
exp(yu,i − fi(x))− γ(yu,i − fi(x))

]

︸ ︷︷ ︸
US data fidelity

+ cst

(9)

where xi and fi(x) = c1 + c2xi + c3‖∇y
m
‖i are the ith pixels of x

and f(x), and cst is a constant.

Estimating x in the sense of the maximum a posteriori princi-

ple consists of minimizing the cost function in (9). In this paper,

we propose to use the classical total variation (TV) to regularize the

solution, in order to obtain a piece-wise constant fused image. This

regularization leads to

x̂ = argmin
x

1

2
‖ym − SHx‖22

+ τ

N∑

i=1

[
exp(yu,i − (c1 + c2xi + c3‖∇y

m
‖i))

− γ(yu,i − (c1 + c2xi + c3‖∇y
m
‖i))

]
+

λ

2
‖∇x‖22

(10)

where τ and λ are hyperparameters balancing the weight between

US and MR data fidelity and the TV regularization terms.

3. MR/US FUSION ALGORITHM

To solve (10), we propose to use an algorithm based on the alternate

direction method of multipliers (ADMM). ADMM is a well-known

optimization algorithm that is intended to blend the decomposability

of dual ascent [10]. We start by reformulating (10) with its con-

strained counterpart

x̂ = argmin
xmr

1

2
‖ym − SHx‖22 +

λ

2
‖∇x‖22

+ τ
∑

i

[exp(yus,i − vi)− γ(yu,i − vi)] +
λ

2
‖∇v‖22

(11)

s.t. v = c1 + c2x+ c3‖∇y
mr
‖

The augmented Lagrangian associated with (11) is defined by



Algorithm 1: Proposed MR/US image fusion algorithm.

Input yu, ym, S, H, τ , λ, µ

− Estimate the polynomial function f

REPEAT

1− xk+1 = argmin
x

1

2
‖ym − SHx‖22 +

λ
2
‖∇x‖22+

µ‖vk − (c1 + c2x+ c3‖∇y
m
‖2) + dk‖22

2−vk+1 = argmin
v

τ
∑

i
[exp(yu,i−vi)−γ(yu,i−vi)]+

λ
2
‖∇v‖22+µ‖v−(c1+c2x

k
m+c3‖∇y

m
‖2)+dk‖22

3− dk+1 = dk + µ(vk − (c1 + c2x
k + c3‖∇y

m
‖2))

Until stopping criterion is satisfied

Output: Fused image x

L(x,v,d) =
1

2
‖ym − SHx‖22 +

λ

2
‖∇x‖22

+ τ
∑

i

[exp(yu,i − vi)− γ(yu,i − vi)] +
λ

2
‖∇v‖22

+ µ‖v − (c1 + c2x+ c3‖∇y
mr
‖) + d‖22.

Algo. 1 summarizes all the steps of the proposed MR/US image

fusion method, which are detailed below.

3.1. Update of the image x

The update of x is achieved by minimizing the sum of quadratic

functions, which admits an analytic solution computed efficiently in

the Fourier domain. This computation is possible providing circulant

boundary conditions and using the decomposition of the decimation

matrix S proposed in [11]. The estimate of x is finally obtained as

x
k+1 =

[
H

H
S
H
SH+ 2

(
λ

2
D+ µc

2
2IN

)]−1

R (12)

where

R =
(
H

H
S
H
ym + 4

µ

λ
c2(v

k + d
k − c1 − c3‖∇y

m
‖)
)

vk and dk are estimated in the k-iteration, and

D = D
H
h Dh +D

H
v Dv.

3.2. Update of v and d

The variable v is updated using a gradient descent algorithm with

backtracking line search, given that the function to minimize in this

step is differentiable and convex. The scaled dual variable is updated

analytically as mentioned in [10], see step 3 in Algo. 1.

3.3. Estimation of the polynomial f

The unknown polynomial function f relating xm to xu, is defined

by three coefficients gathered in the vector c = (c1, c2, c3)
T . To

estimate these coefficients, we propose to use the following relation

yu,i = c1 + c2y
m,i

+ c3‖∇y
m
‖i + ǫi i = 1, ..., N

or equivalently, in algebraic form

yu = Ac+ ǫ (13)

where A is the following matrix

A = [1,ym, ‖∇ym‖2].

where 1 is a vector of ones.

Assuming a Gaussian error term, the maximum likelihood es-

timator of c (that is also the least squares estimator) is defined by

ĉ = A†yu, where the pseudo-inverse A† is computed by using the

singular value decomposition of A.

3.4. Simulation setup

This section demonstrates the efficiency of the proposed MR/US fu-

sion method using synthetic images with controlled ground truth.

More precisely, an observed MR image was generated starting from

an abdominal high resolution MR image (as displayed in Fig. 1(a)).

The resulting image was blurred, decimated and contaminated by an

additive i.i.d. white Gaussian noise (see Fig. 2(a)). The free noise

US image was generated using the polynomial relation (2), yield-

ing the image of Fig. 1(b) and contaminated by a log-Rayleigh noise

with localization parameter γ (see Fig. 2(b)). Note that the simulated

MR and US images have different gray-level intensities, resolution

and noise structures. The MRI blurring kernel was a 2D-Gaussian

filter of size 9× 9 with variance σm = 4, the decimation factor was

d = 4, and γ was equal to 10−3 in the simulation hereafter. The

performance of the proposed fusion algorithm was evaluated using

four quantitative metrics: the root mean square error (RMSE), the

peak signal to noise ratio (PSNR), the improved signal-to-noise ra-

tio (ISNR) and the mean structural similarity (MSSIM) defined as

RMSE =

√
1

N
‖x̂− xtrue‖22 PSNR = 20 log10

max(x̂,xtrue)

RMSE

ISNR = 10 log10
‖y − xtrue‖

‖x̂− xtrue‖22

MSSIM =
1

M

M∑

j=1

SSIM(xtrue,j, x̂j)

where xtrue is the ground truth, x̂ is the estimated image, y is the

bicubic interpolated MR image or its US counterpart yu. MSSIM is

the structural similarity implemented blockwise, M is the number

of local windows, x̂i and xtrue,j are local regions extracted from x̂

and xtrue and SSIM is the structural similarity index computed for

each window following its definition in [12]. Note that these metrics

are used herein to compare the fused image with an estimated high

resolution MR image computed using the algorithm of [11] and with

an estimated denoised US image.

4. RESULTS

4.1. Simulation results

In this section, we consider the previous dataset composed of sim-

ulated MR and US images, and we solve the optimization problem

(10) using the proposed ADMM-based fusion algorithm. The ob-

served MR and US images are of sizes 64 × 64 and 256 × 256
pixels. The fused image is displayed in Fig. 2(c), illustrating the

potential of the proposed algorithm to fuse information from both

images. In particular, one may remark that the image in Fig. 2(c)

preserves the smoothness of homogeneous tissues in MR image and

enhance the tissue boundaries due to the better resolution of US im-

age. Fig. 2(d) shows the image restored from the MR data only using

a super-resolution algorithm studied in [11] with a TV regularization



(a) Ground truth high-resolution

MRI

(b) Ground truth US image

Fig. 1. (a) True high-resolution MR image (b) Ground truth US image with-

out Rayleigh noise obtained using a polynomial function applied to the MR

image in (a).

(a) MRI observation (b) US observation

(c) Fused image (d) Estimated HR MR image

Fig. 2. US and MRI fusion: (a) shows the MR low-resolution and blurred

image, (b) shows the noisy US image, (c) shows the fused image using Algo

1, (d) shows the high resolution MR image estimated using the fast super

resolution algorithm of [11].

in order to match the proposed regularization. Despite its ability to

improve the quality of the low-resolution MR image, one may no-

tice that its resolution is lower than the fused image. Note that the

denoised US image, not shown in the paper because of space limita-

tion, provides a good spatial resolution but maintains a high level of

noise compared to the fused image.

The visual impression of Fig. 2 is confirmed by the quantita-

tive results in Tab. 1, proving that the fused image obtained with

the proposed method is closer to the MR ground truth than the

super-resolved MR image obtained with the fast single image super-

resolution method of [11] and closer to the US ground truth than the

denoised US image. These results confirm the importance of using

both MR and US data jointly in the fusion process. Note that the

peak signal to noise ratio (PSNR) and the improved signal-to-noise

ratio (ISNR) are improved by more than 3 dB in this example.

5. CONCLUSION

This paper studied a new fusion method for MR and US images.

The proposed method was able to reconstruct an image containing

information from both images, by solving a super-resolution inverse

Table 1. Quantitative results on simulated data.

Fused image SR MRI Despeckled Us

RMSE 0.060 0.081 0.29

PSNR [dB] 24.37 21.08 10.67

ISNR [dB] 5.25 2.11 0.68

MSSIM [dB] 0.74 0.69 0.64

problem for magnetic resonance images and a despeckling problem

for ultrasound images. These two problems were solved jointly by

using appropriate statistical models and a polynomial relationship

between the images of interest. Results obtained on simulated im-

ages clearly show the advantage of combining the information pro-

vided by these two modalities rather than using them independently.

Confirming the simulation results on real images is an important per-

spective of this preliminary work. Learning the dependency between

MR and US images using machine learning methods instead of para-

metric models is also an interesting prospect that could provide more

flexibility in the fusion model.
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