
Robust Kalman Filtering for NLOS Mitigation of GNSS Measurements in Urban 

Environments 

N. KBAYER
(1)

, M. SAHMOUDI
(1)

, E. CHAUMETTE
(1)

 and T. CHAPUIS
(2) 

(1) 
ISAE-SUPAERO, Université de Toulouse, France,   

Email: {nabil.kbayer, mohamed.sahmoudi, eric.chaumette}@isae.fr 

  
(2)

 CNES, Toulouse, France, Email:Thierry.chapuis@cnes.fr  

  ABSTRACT- It is well-known that the Extended Kalman Filer (EKF) is the standard estimation method for 

positioning with GNSS measurements. However, this filtering method is not optimal when the GNSS measurements 

become contaminated by non-Gaussian errors including multipath (MP) and non-line-of-sight (NLOS) errors. In this 

paper, we apply some techniques from robust statistic to make the conventional EKF more resistant to outliers which 

may be summed up as MP and NLOS signals in urban environments. We study two robust estimators that do not require 

tuning parameters fixed in advance: the first estimator detect the outliers using a robust statistical test based on the 

measure of the distance between each innovation sample with respect to the median of all innovations, then assign to 

them a low weight in the state estimation while keeping nominal weights for good Pseudo-Ranges (PR). The second 

estimator exploits the difference between two successive innovations to detect jumps related to large errors as MP and 

NLOS bias and correct their effect via a new recursive weighting technique. Test results using real GPS signal in 

downtown of Toulouse show that these estimators are simple to implement and capable of detecting multiple outliers in 

real-time and then improving the positioning accuracy compared to the conventional EKF. 

  INTRODUCTION 

Although there is an exponential increase of global navigation satellites system (GNSS) applications in urban 

environments, these services are looking forward for mature and robust geolocation solutions for urban and indoor 

settings. The main reason of this gap between user expectations & requirements from one side and the existing 

technologies from other side is that these environments present significant challenges for satellites positioning. The high 

density of tall buildings and the presence of many obstacles blocking signals during their propagation pose very 

challenging technical issues for acquiring and tracking the degraded GNSS signals. Building and other objects 

surrounding the receiving antenna may block the direct line-of-sight (LOS) signal from many satellites, hence reducing 

the visibility
 
[1]. In addition, the interaction with the environment usually results in a superposition of various signals 

that have followed different paths. This situation produces a distortion of the pseudo-range (PR) measurements. Then, 

the GNSS receiver delivers biased position estimation in this kind of harsh environments. 

In order to improve the performance of satellite navigation in urban environments, many of existing techniques 

aim to model these degradations and mitigate their effects at the level of signal processing, measurements or position 

domain [2]. In urban environments, the multipath and the non-line-of-sight (NLOS) signals will led to PR 

measurements populated with outliers in the navigation stage. Hence, it is essential to detect the degraded 

measurements to either delete them or decrease their impact on the user state estimation. However, these constrained 

environments induce generally a poor geometrical constellation and less received signals which led to a problem of 

redundancy with less than four signals available in some situations. Then, to handle this lack of information in these 

environments, one common approach is to use all the available signals while paying constant attention to reduce the 

effect of biased PR measurements. This is the principle of the robust Extended Kalman Filter (EKF) [3, 7]. We adopt 

this approach in this work for it simplicity with the objective to develop a practical and efficient implementation. 

Since the conventional least squares method is not robust to outliers [4], Huber [5] introduced a new class of 

estimators, called M-estimators, which attempt to minimize other residual functionals instead of the sum of squares of 

residuals. These approaches substitute the conventional weighted least square solution which solves the equation (1): 
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by a more robust solution minimizing a new convex cost function ρ(. ), called the influence function [3], and solving 

this equation (2): 
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This yields solutions that verify the following equality (3) [3]: 
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error and N is the number of measurements. By contrast, the conventional least squares method yield solutions that 

verify this usual relation (4) leading to the weighted Least Squares solution (WLS): 

0   )( =  xHyWHeWH .                                                      (4) 

 By applying a weight depending on the residual error instead of equal nominal weights, M-estimators ensure the 

robustness of the estimation: assigning a weight to each Pseudo-Range (PR) measurement to suppress the impact of 

possible outliers and define its contribution to the state estimate at each time epoch.  Reference [3] uses this robustness 

ability that M-estimators have to propose a new robust EKF by weighting the innovation vector at each time step. 

Reference [6] changes the minimization problem (2) by introducing a new term leading to a new re-weighted EKF. This 

estimator applies the weight function of an M-estimator to a transformed innovation  kkkkk xHyRI 

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introduces a new weighted measurement covariance matrix
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kR is the measurement 

covariance matrix at time step k. Other versions of robust EKF have been published in the literature. Different 

approaches use weight matrix obtained from different influence functions and weighting strategies. But each influence 

function gives solutions with different robustness properties which make the choice of the appropriate function for each 

application a challenging issue.  Reference [3] proposes a three parts influence function, while [5] suggests a two parts 

influence function splitting the residuals errors into two groups according to it standard deviation. Reference [4] 

introduces a new L1-L2 weighting function that combine the benefits of reducing the outliers influence using the L1-

norm and obtaining convex objective function using the L2-norm. Reference [6] relies on Hample’s three parts 

redescending M-estimator to present a new modified and damped influence function and [7] argues for a modified Rao 

influence function based on the analysis of measure histograms. The choice of the appropriate function is based on a 

priori statistical analysis of the environment but the need of tuning threshold parameters for optimal performance makes 

the M-estimators difficult to use in real-time applications. Besides, the risk of ending up with deteriorated performances 

renders these estimators inappropriate to high-variable environments with multiple sources of outliers. 

 In this paper, we are interested in circumventing the problem of adaptability of M-estimators parameters by 

investigating in pre-processing approaches to compute the weight matrix at each time epoch for more robust and 

autonomous state estimation in real-time applications. In the second section, we propose a Robust Extended Kalman 

Filter (REKF) that use statistical test on residuals to detect outliers (i.e. degraded PR measurements), compute the 

weights to down-weight outliers at each time epoch adaptively to the input PR measurements. In the third section, we 

make use of the difference between the residual at the current time step and the previous one to build a recursive 

weighting strategy based on the detection of excess change of innovation. In section 4, we show the results of 

robustness properties that our methods provide using real GPS C/A measurements. Finally, some conclusions are 

summarized in section 5.  
 

  ROBUST EXTENDED KALMAN FILTER (REKF) 

  We aim to find a new simple adaptive weighting approach to make EKF more robust to outliers. Since the 

outliers present in PR measurements are hard to identify, we will focus on the innovation information to detect outliers. 

In each time epoch, we apply statistical test on the measurement errors to identify the outliers in the measurement. This 

approach is easy to implement to gain improvement in some urban environments with enough satellite visibility but 

with degraded measurements. If only one PR measurement from a satellite is contaminated by outliers, theses errors 

will appear at the innovation level making the corresponding measurement errors from this satellite more important than 

the measurement errors from non-contaminated satellites (which are almost at the same level of noise). Once this outlier 

is detected, the weight of the corresponding PR measurement will be set to the inverse of the distance between this 



outlier value and the median value of the innovation vector. We ensure then that this PR measurement will have a small 

contribution on the state estimate. The weight of inlier points (i.e. PRs which are not detected by the statistical test) will 

be set to 1 which means a total contribution to the PVT calculation. This new strategy is summarized in Fig. 1: 

 

Fig. 1. High-level block diagram of the Adaptive Robust Extended Kalman Filter estimator 

After linearization of the measurements equation this equation is expressed as:  

kkk nbxHy kk  =                                                                           (5) 

where: ky is the PR measurements vector at time step k [N], 
kx is the state vector at time step k [M], kH is the 

observation matrix at time step k [N, M], 
kb is the bias at time step k [N] and 

kn is the zero-mean Gaussian white noise 

characterized by a covariance matrix kR . If an outlier caused by Multipath or NLOS bias occurs on a PR measurement 

from a satellite, the innovation error distribution will change. The presence of Multipath error in the measurements 

yields a variance jump in the innovations [8] while the presence of NLOS errors introduces a mean jump in these 

residual measurements [8]. In the nominal case when all PR measurements are uncontaminated with outliers, the 

elements of observed residual errors at time step k are confined into a region of noise that depends on the maximum 

noise variance. Fig. 2 shows an example of innovation probability density (pdf) with contaminated and uncontaminated 

PR measurements: 

 
Fig. 2. Residual error distribution from N different satellites 

Accordingly, the additive outlier in a PR measurement from a satellite j will induce a non-zero mean bias 

    
jkjk nb   that comes out the usual region of the noise at time step k. Using statistical tests on the residuals vector 

at time step k such as Chauvenet’s criterion [9], the outlier could be detected since the corresponding residual will be far 

away from the median of the standard residuals. Chauvenet’s criterion permit to determine whether a value is abnormal 

compared to the other signal values. The idea behind is to find a probability band containing all the normal samples of a 

data set. A suspected sample that has a value too far from the median of the data samples i.e. more than the median 
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absolute deviation is considered as an outlier. Once a contaminated PR measurement  
j

yk is identified, the 

corresponding weight will be down to:  
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The idea is to ensure a positive weight not exceeding 1. This weight will be smaller if the residual value from the 

satellite j deviates more and more from the residual-vector median value. We choose the median value instead of the 

mean value because it is a robust measure of central tendency. This deweighting technique allows assigning a low 

weight to outlier measurements while giving the normal measurements a total contribution to the PVT computation. We 

compute then the state estimation at step time k using the obtained weighting matrix   
jkwdiagW k . We introduce 

this matrix to weight the measurement covariance matrix as it is done in [6], 
1
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The main difference between the proposed method and the approach of [6] is that we compute the weighting matrix kW  

using a statistical test based on the innovations median as defined in equation (6), while in [6] kW  is computed by 

applying an influence function of an M-estimator on a transformed innovation vector. 

 

  RECURSIVE ROBUST EXTENDED KALMAN FILTER (RREKF) 

Sometimes, the transition between LOS and NLOS is sudden and can be detected due to the large errors 

associated to the NLOS. To exploit this fact, we study techniques as reference [10] which suggests a recursive 

weighting to make the conventional least square more robust to outliers. We analyze the recursive relation between 

weights applied to each PR measurement by comparing the innovation (i.e. difference between measured PR and 

predicted one) at two successive time steps. The linearized measurement vectors at time step (k-1) and k are defined as:  

1111-k1-k  =   kkk nbxHy                                                                       (8) 
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We suppose that we have well-weighted the measurements at time step (k-1) and we want to find the optimal weights at 

the time step k by detecting the excess change of the innovation between two successive time epochs [12]: 

       
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When the measurement noise from each satellite is a zero-mean white Gaussian noise, the second term in the above 

difference lies between j6  and j6   with a probability of 99% with j is the measurement noise variance since 

each measurement error is within the interval  jj 3,3    at 99%. In the presence of outliers in the epoch time k 

and k-1, the innovation difference  je  should be within this interval. If the measurement from the satellite j is 

contaminated with outliers and the difference between the outliers bias is small i.e.   01   jkk bb , then the 

innovation difference  je  should lie within the 4-sigma noise interval. In both cases, the weight at time step k, 

corresponding to the PR measurement from the satellite j should be set equal to the weight at time step (k-1),  
jkw 1 , 

meaning that we keep the same weight because the measurements are well-weighted at time step (k-1). If the innovation 

difference is outside the interval  jj 6,6   , then we have to change the weight  
jkw . In this specious case, we 

assign a lower weight to the corresponding PR measurement equal to:   
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The idea is to ensure a positive weight not exceeding 1. This weight will get smaller if the outlier from the satellite j at 

time step k 
kb is increasing so that the innovation difference is getting bigger. To summarize, the weight corresponding 

to the PR measurement from the satellite j will be equal to:  
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 Practically speaking, the measurement noise variance j  is unknown. So, we define the threshold  
j6  as 

the maximum MP/NLOS admissible bias. We compute then the state estimation at time step k using the obtained 

weighting matrix   
jkwdiagW k . We introduce this matrix to weight the measurement covariance matrix as in [6]. 

To initialize the first weights, we use the weights obtained by the REKF estimator presented in the previous section. 

Similarly to the REKF, this new strategy allows a new simple way of weighting the PR measurements without 

parameters tuning in advance as in M-estimation based robust Kalman filters.   

  RESULTS AND ANALYSIS 

To assess the performance of the proposed positioning algorithms of GNSS, preliminary results are obtained 

from measurements collected in Toulouse downtown. The recorded PR measurements contain 14833 epochs 

corresponding to 58 minutes of recorded data. The data for the experiments were collected along the trajectory 

displayed in figure (3) of downtown Toulouse that includes narrow streets and high buildings which reduced the 

visibility of the satellites.  

 

                Fig. 3. Trajectory for data collection in downtown Toulouse [12] 

We used the UBLOX 6T receiver and a SPAN Novatel system including a DGPS receiver tightly integrated 

with an IMU-FSAS (from iMAR). We consider the trajectory provided by the Novatel receiver as the reference 

trajectory for comparison with our algorithms. We compare the PVT solutions from the REKF, the RREKF, the 

conventional EKF and the robust EKF in [6] with a damped-Hampel M-estimator. We show in the following figure 4 

the results of post-processing the GPS L1 C/A code PR measurements these fours methods.  



 

 

 

Fig. 4. North Positioning error (top), East Positioning error, and Up Positioning error (bottom) 

 The positioning error variation shows that REKF is more robust to MP and NLOS errors and produces less 

positioning error than the other estimators. The outliers in PR measurements caused by the deep urban environment 

induce big degradations on the positioning that the conventional EKF cannot handle. This led to a bad positioning 

accuracy in the three ENU directions. The robust estimators introduced in this paper can detect in real time these 

outliers and underweight their effect leading to more precise position in the three ENU directions. To highlight this 
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result, we compute the median, the 5
th

 percentile, the 95
th

 percentile and the maximum value of the positioning error in 

each ENU direction and for all estimators:  

Table 1.Performance evaluation of the four EKF estimators 

 North Direction East Direction 

Median 

Positioning 

error [m] 

5th 

percentile 

[m] 

95th 

percentile 

[m] 

Maximum 

Positioning 

error [m] 

median 

Positioning 

error [m] 

5th 

percentile 

[m] 

95th 

percentile 

[m] 

Maximum 

Positioning 

error [m] 

Conventional 

EKF 

0.4692    -20.9646   23.9384    77.2746 2.1222   -12.7793    21.3046    45.7713 

Robust EKF: 

Perälä M-

estimator 

0.5069     -18.2333 23.5348    68.9710 2.0394    -12.1223   19.2631    65.8632 

Robust EKF 0.5897    -12.7392   20.1790    51.4920 2.1260    -7.0352    13.7048    64.7134 

Recursive 

Robust  EKF 

1.3597      -17.6996 28.0573    73.4195 1.4294    -17.6984   25.6776    63.0848 

 Up direction 

Median 

Positioning error [m] 

5th percentile [m] 95th percentile [m] Maximum 

Positioning error [m] 

Conventional 

EKF 

-1.1430       -9.7344 61.7679   187.6790 

Robust EKF: 

Perälä M-

estimator 

-1.1049    -9.4923    55.9389   123.8774    

Robust EKF -5.2378   -13.2703    24.5521    76.8256 

Recursive 

Robust  EKF 

-0.2618   -21.7245   106.1452   265.3133   

 

It can be seen that the REKF improves the positioning accuracy while adapting the estimation in real-time to 

the outliers introduced into the PR measurements. This estimator is also simple to implement. It gives good positioning 

results with just simple modification of the conventional EKF. Regarding the RREKF estimator, it improves a little bit 

the positioning accuracy but it doesn’t give the expected performances. Despite this performance-improvement, the use 

of REKF, RREKF estimators and the robust estimator in [6] lead to erroneous results when the outlier measurements 

have almost the same value (almost the same MP/NLOS bias for many PR measurements) or when the inlier 

measurements are less than 4 which explain the enormous positioning error in some deep urban environment as shown 

in the following figure (5) with PR measurements corrupted by MP from buildings and trees:    

 

Fig. 5. Estimators and reference trajectories [12] with: white color refers to the reference trajectory, green to the REKF 

trajectory, red to the robust EKF in [6] trajectory and light blue to the RREKF trajectory.    



CONCLUSIONS AND FUTUR WORKS 

 The purpose of this study is to implement simple techniques for rendering the conventional EKF more robust 

to outliers which may occur in urban environments without the need of tuning parameters fixed manually in advance as 

in the M-estimation. In this work, two robust estimators were presented: one adaptive robust estimator capable of real-

time outliers-detection in the innovation and underweighting these outlier measurements, and another recursive robust 

estimator able to use the innovation difference between two time steps to build up a recursive weighting technique. 

Based on the obtained results, the two proposed methods seem to outperform the conventional EKF when outlier 

measurements occur. The REKF estimator gives better positioning performances than the RREKF estimator that does 

not give the expected improvements and has to be re-worked. Then, robust estimation methods should be used with 

caution for GNSS positioning in urban environments. But generally speaking, these estimators provide an autonomous 

robust EKF for MP/NLOS mitigation purposes in urban environments with enough redundancy of satellites in visibility 

which is suitable in a multi-constellation context.  

This work confirm our prior conclusion that in deep urban canyons, even with advanced and robust signal processing 

algorithms, additional sources of positioning information are needed including 2D and 3D maps [13], navigation 

sensors and communication assistance.  

  REFERENCES: 

 

[1] L. Wang, P. D. Groves, M. K. Ziebart “GNSS Shadow Matching: Improving Urban Positioning Accuracy Using a 
3D City Model with Optimized Visibility Prediction Scoring” Proceedings of the 25th International Technical 
Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2012), Nashville, TN, September 2012, 
pp. 423-437.  

[2] K. Fallahi, C.T. Cheng, M. Fattouche, “Robust Positioning Systems in the Presence of Outliers Under Weak GPS 
Signal Conditions,” IEEE SYSTEMS JOURNAL, vol. 6, NO. 3, September 2012. 

[3] K. D. Rao, M. N. S. Swamy, E. I. Plotkin “GPS Navigation with Increased Immunity to Modeling Errors” IEEE 

Transactions on Aerospace and Electronic Systems, Vol. 40, No. 1, January 2004. 

[4] A. H. Mohamed “Robust and Reliable Kalman Filtering of GPS Data,” Proceedings of the 9th International 

Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), Kansas City, MO, 

September 1996, pp. 1441-1450. 

[5] P. Petrus “Robust Huber adaptive filter,” IEEE Trans. Signal Processing, vol. 47, no. 4, pp.1129-1133, Apr. 1999. 

[6] T. Perälä “Robust Kalman-type Filtering in Positioning Applications,” Kalman Filter, Vedran Kordic (Ed.), ISBN: 

978-953-307-094-0, InTech, DOI: 10.5772/9578. Available from: http://www.intechopen.com/books/kalman-

filter/robust-kalman-type-filtering-in-positioning-applications. 

[7] T. Delaporte, R. J. Landry, M. Sahmoudi, J. C. Guay “A Robust RTK Software for High-Precision GPS 

Positioning,” Annual European Navigation Conference, Sep. 2008.  

[8] M. Spangenberg, J. Y. Tourneret, V. Calmettes, G. Duchateau “Detection of variance changes and mean value 

jumps in measurement noise for multipath mitigation in urban navigation,” Signals, Systems and Computers, 2008 42nd 

Asilomar Conference on , vol., no., pp.1193-1197, 26-29 Oct. 2008. 

[9] W. Chauvenet, “A Manual of Spherical and Practical Astronomy,” V. II. 1863. Reprint of 1891. 5th ed. Dover, 

N.Y.: 1960. pp. 474–566.  

[10] Md. Z. A. Bhotto, A. Antoniou “Robust Recursive Least-Squares Adaptive-Filtering Algorithm for Impulsive-

Noise Environments” IEEE Signal processing Letters, Vol. 18, No. 3,pp.185-188, March 2011. 

[11] M. S. Grewal, A. P. Andrews “Kalman Filtering: Theory and Practice Using MATLAB”, Second Edition. 

[12]   “Toulouse”, 43°36’15.65’’N 1°26’36.17’’E, Google Earth, 5/7/2013, 24/03/2015. 

[13] A. Bourdeau, M. Sahmoudi, J. Y. Tourneret  "Constructive use of GNSS NLOS-multipath: Augmenting the 

navigation Kalman filter with a 3D model of the environment," Information Fusion (FUSION), 2012 15th International 

Conference on , vol., no., pp.2271,2276, 9-12 July 2012 

 

 


