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Sensitivity Characterization of Differential
Detectors for Acquisition of Weak GNSS Signals

P. Esteve, M. Sahmouc, Member, IEEI, and M. L. BouchereMember, |IEEI

Abstract—In this paper, we assess the potential of several
forms of the postcoherent differential detectors fothe detection
of weak Global Navigation Satellite Systems (GNSSjgnals. We
analyze in detail two different detector forms, nanely the pair-
wise differential (PWD) and noncoherent differentid (NCDD)
detectors. First, we follow a novel approach to olin analytic
expressions to characterize statistically the PWDeatector. Then,
we use these results to propose a polynomial-likeadel fitted by
simulation to the sensitivity loss experienced byhe differential
operation with respect to coherent summing. This sesitivity loss
formula is also used to characterize the NCDD dettar, shown to
be more adequate than the PWD for the acquisition foGNSS
signals. A comparison between the PWD, NCDD and the
traditional noncoherent detector (NCD) is also caried in this
study. The results highlight the superior performarce of the
NCDD over the NCD for the acquisition of weak signis. For the
case of the PWD, its performance is sensitive to Ppler shift.
The conclusions drawn from the simulation results g confirmed
in the acquisition of real GPS L1 C/A signals.

Index Terms—GNSS, weak signal acquisition, postcoherent
differential detection, sensitivity loss, urban poisioning.

|I. INTRODUCTION

The first step in the signal processing chain of5HSS
receiver is known as signal acquisition [1]-[3]. tlis phase,
the presence of a signal from a given satelligeisided based
on the estimation of its unknown parameters, irtigaar its
spreading code phase and Doppler offset. For thaisiton
of signals with nominal power, integration over aration
equivalent to one period of the incoming signalksesading
code is common usage for detection. For weakeratgn
however, integration over several code periodseisessary
[4], [5]. This is typically the case for positiomjinin urban
canyons, where the signal can be degraded by eliffer
propagation phenomena including multipath [6], sivedg,
signal blockage, and other sources of attenuaipn |

The maximum sensitivity gain is achievable by cehér
integration of consecutive correlation outputs, adted by
correlating each code period of the signal withodecreplica
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generated locally [8], [9]. Nevertheless, the cehér
integration time is limited by factors such as desi Doppler
offset, data bit transition, and the receiver's gessing
capabilities [10], [11]. Therefore, after a certainmber of
coherent accumulations, transition to postcoheirgegration
strategies is usually employed to keep on incrgasin
acquisition sensitivity. The most well-known, andngrally
applied, postcoherent integration strategy is nbecent
integration, in which the coherent outputs’ phaséiscarded
prior to further accumulation [1]-[3]. It is equalivell-known,
however, that noncoherent integration is less &¥ffecthan
coherent integration, as the phase removal operatip
squaring the In-phase and Quadrature (I&Q) branciighe
coherent output incurs a loss, known as squarieg, lavhich
reduces the signal’s Signal-to-Noise ratio (SNR2)[{13].

An alternative postcoherent integration approach
differential, or semicoherent, integration [14]-]22n this
approach, the coherent outputs are not squared raboér
correlated with a previous output. The product loé two
uncorrelated outputs is statistically less detritaeto SNR
than the squaring operation, given the independeficihe
noise terms [14]. Different forms of detection sties
employing postcorrelation differential integratiocan be
found in literature [15]-[17]. One of the two mdeactors that
distinguish these detectors is the generation efdifferential
outputs. Given the nature of the differential otierg each
coherent output, except the first and last, may$ed more
than once. This results in a dependency betweegsecative
differential outputs which is remarkably difficultto
characterize statistically. One approach to avolds t
dependency is studied in [16], where each cohéntegration
output is used only once, in an approach termega@rswise
integration. The drawback of this approach is thaeduced
number of accumulations naturally leads to a smalle
sensitivity increase than if all differential outpuwere
exploited [19].

The second main factor that distinguishes diffeaént
detectors is the formulation of the detection neetrom the
differential integration outputs. In [15], only thi@-phase
branch of the differential integration output isnsiered in
the detection test. A posterior evaluation of tdetection
metric in [17] notes that a residual Doppler offetds to a
partition of the useful signal power between th&I&ranches
of the differential integration output, and a Dagptobust
noncoherent differential form is instead adoptedwhich the
detection metric is obtained as the squared madmitf the
differential integration output (Fig. 1). Althougthis form
significantly improves the differential detectioncheme
performance in the presence of an unknown Dopfee® its

is
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Fig. 1. Noncoherent differential detector blodkgiam and resulting noise distribution under mal present case

detection metric is obtained as the sum of two ddpet
random variables. This dependency once again coaip§
the statistical analysis of the detector output.

In [19], a complex mathematical approach is folldvbat
enables the author to derive expressions for cteriaing the
pair-wise detector (PWD) from [16] as well
noncoherent differential detector (NCDD) from [17The
author also notes however that, while exact, theressions
derived are of limited application due to the prese of

statistical analysis of this detector (Fig. 1), wealuate its
detection performance by introducing and making oke
sensitivity loss formula of this detector by evdiog the gain
of each operation performed inside this detectdre Tinal
sensitivity loss formula is obtained through a palyial fit of

as thesimulation results and validated by the theoretresults for

the PWD detector. This formula finally allows perfong a
formal comparison between the two postcoherengiaten
strategies, also validated in the acquisition af @PS L1 C/A

functions which easily become both burdensome arsignals.

inaccurate for a high number of differential acclations. An
equally complex analysis of differential detectasith similar
results is also found in [18]. The approach whilfréquently
followed in the analysis of differential detectésso resort to
the Central Limit Theorem, through which the notsems
resulting from differential integration can be apgmated by
a Gaussian distribution for a sufficiently high egh number

This paper is organized as follows. Section lladtrices the
signal model employed and describes the cohereepsing
of the input signal. In section lll, the PWD is cheterized,
showing the Laplacian nature of the differentialeigtion
output under noise-only conditions. In section Ithe
performance of the NCDD in the acquisition of weakSS
signals is assessed. In section V a comparisoneeaetvthe

of integrations [20], [21]. In [19], the author alslevelops a noncoherent detector (NCD) and the NCDD detector i

Gaussian approximation for each detector and paintsthe
risk of employing this approximation for a low nuerbof

accumulations, given that the actual distributiohghe 1&Q

components of the differential operation are haaai¢he tails
than the Gaussian distribution, leading to largeauracies in
the threshold setting process.

Both the multitude of existing differential detectfmrms
and the complexity of their statistical charactatign have
been obstacles to the comparison of the two posteoh
integration approaches, noncoherent and differedtithough
in several publications it has been found that edéhtial
detectors are a preferable choice for weak sigaadgiisition,
it was not until [22] that a formal comparison betm the
sensitivity losses of the squaring and differentgkerations
was encountered. The approach developed in [2B§\ised
and consolidated in this paper.

In this study, we analyze the PWD and NCDD detegtor

and propose new approaches for the characterizafitoth.
First, we analyze the PWD form by using a sum oighted
Laplace-distributions to characterize this deted@torabsence
of signal, making use of the fact that the outpétttoe
differential integration results in a noise termlidwing
Laplace distribution. This analysis allows derivingn
expression that can be used for setting the detettireshold,
alternative to the one proposed in [16]. Under dhernative
signal-present hypothesis, the Gaussian approxamats
followed, not without first justifying its adequateise
exclusively under this condition. We then make o$dhe
results obtained to proceed to the assessmene dethsitivity
of the NCDD detection scheme. Given the compleaityhe

carried. Finally in section VI, the conclusions amdidated
with real GPS L1 C/A data. Section VII concludes ffaper.

Il. SIGNAL MODEL AND COHERENTSIGNAL PROCESSING

The goal of the acquisition module of a GNSS resris to
detect the presence of signal while providing atfitoarse
estimate of the incoming signals’ unknown code phasd
Doppler shift. In stand-alone receivers this estioma is
usually accomplished using maximume-likelihood estiion,
testing several candidate code phases and frequealaogs
within a given uncertainty range. For this, thestfitwo
operations within acquisition are the despreadirigthe
incoming signal and the conversion to basebanduéecy
using the candidate code phase/Doppler shift paivatues.
The combination of the two operations and the puste
accumulation is known as correlation or coheremnai
integration when more than one code period is usettis
process. The coherent processing chain of a GNB&isi-]
is shown in Fig. 2 and is represented as:

N-1

S(fi! f’;\ik) = Z S[nTs] ' C[(Tl - fl)Ts] ' e_jznfdknTs ’ (l)

where{; is thei'™® candidate code phase (code delgy), is
the k™ candidate demodulation frequency]-] is the
spreading cod€l is the sampling periodV is the number of
samples to be coherently accumulated (equal tprtheuct of
the number of samples per code peri¥gd,and the number of
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the signal parameters are constant over the olgervime,
the signal component of the coherent integratiomputi
sm($ir fa, ), is obtained as:

" Sj(zb ﬁik)

?

exp{—jZnﬁknTs}
Sm(fi,f;k) =A-N-d-R(Ay)- sinc(Afd,k . NTS) - eJbm (6)

@)

Fig. 2. Coherent processing block of a GNSS signal

coherently integrated code periods, ), andS(Z;, £, ) is the bm = 2mmAfq NTs + o
correlation output for the candidate satellite, eqdhase and
demodulation frequency. The input signal is offdren: whereA; = {; — { andAfy, = ﬁ,k — f,; are, respectively, the
code phase and frequency offsets between the Gadihd
true parameters of the signal, am{4{) represents the
autocorrelation of the signal spreading code evetuat the
offset A¢. Without loss of generality we assume that the dat
whereA stands for the signal amplitudeandf, respectively pit js constant over the coherent integration tinféis
denote the true code phase and frequency of tlesifSp assumption is not restrictive given the existerfcechniques
signal,d[-] = 1 is the navigation data included in the signalhat deal with this issue, including detection aitons,
¢, represents the initial signal phase offset, @id is the subdivision of coherent integration in two partsl aaking the
noise component introduced by the communicatiomieble most likely one not to contain data bit transitiom, running
that can be modelled as complex-valued zero-meaite Whseveral parallel coherent integrations at diffetentative data

S[nTs] =A- d[nTs - (Ts] : C[nTs - (Ts] : ej2nfdnT5+¢0
+ w[nT]

@)

Gaussian noise, with probability distribution givey[20]:

3{1717}2)

202

1 R{W}
PR}, (7)) = ——exp (— -

©)

bit boundaries [25]. Even if no such techniques applied,
the mean attenuation of the coherent integratigpuits only
around 1dB for a signal integration time inferiorthe data bit
duration for the GPS L1 C/A signal [10].

From (6) the limitations of coherent integrationnche

where R{w} and 3{w} denote, respectively, the real andebserved. For very long coherent integration tinres, only

imaginary parts of¥[-], and the noise variance?, is given
by:

o? = E{R{W}*} = E{3{W}?} = N, B 4
whereE{-} is the operator for the expectation valdg,= k -
T, is the single-sided noise power spectral denkityging the
Boltzman constant and, the noise temperature, amil=
1/T, the front-end filter bandwidth. It should be notkdt (2)
represents the signal from a single satellite. Gitbe
orthogonality of the different signals’ spreadingdes, all
other signals satellites visible to the receiver ba considered
as an extra noise component included in (2). Thgnas
structure is based on the GPS L1 C/A signal, arldowiused
in the analysis presented in this paper. The ekiens other
signal structures, such as Galileo E1, is straighdrd.
Examples of acquisition applied to this signal ctiuoe can be
found, for example, in [23], [24].

Depending on the presence or absence of signaknthe
coherent integration outputS,,({;, fa, ), Wwill either be
obtained as noise-only or as function of signakpioise, and
can be expressed using the following statisticstt te

{Sm(é,fdk) = , Ho
Sm(fi'fdk) = Sm(éi'fz\ik) + Wi Hl

Wmn

®)

the navigation data bit can no longer be considemttant,
but also the produatf,, - NT; has to be bounded to prevent
high attenuations due to the sinc rolloff. In orderprevent
high frequency-derived attenuations, #hg, , offset must be
reduced in the same proportionNs,, is increased, leading to
a demanding requirement in terms of frequency teisi
and, consequently, number of candidate points teelaeched.
In order to avoid both high attenuations in theafidetection
metric and high computational burden, transitioronfr
coherent to postcoherent processing is usuallyieghplThe
next sections will detail the postcoherent diffeian
integration processing.

[ll.  STATISTICAL CHARACTERIZATION OF DIFFERENTIAL

INTEGRATION

Given that coherent integration is limited by sevéactors,
transition to postcoherent integration is requinedorder to
efficiently detect the presence of weak signals.il&Vithe
statistical characterization of noncoherent intégrais well
established and used in GNSS literature, a siméad
practical evaluation is still needed for differahtintegration.
As mentioned in the introduction, the attemptsharacterize
detectors employing postcoherent differential inddign
found in literature have repeatedly resulted imheasithighly
complex expressions or simplifications through Giars
approximations. This fact becomes even more sicanfi
considering the variety of such detectors that dam

where H, corresponds to the case when the signal undghyisaged. Three different differential detectimmesmes are
search is not present, aif{ is the alternative hypothesis. sgnsidered in the course of this work:

Given the distribution of the input signal noislee tcoherent
integration output noise termy,,, is equally a complex-
valued zero-mean Gaussian random variable, withanes

02 = No? and distributed according to (3). Assuming thét al
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0.025 T T T
IN¢/2] | o
SPWD(fi'fdk) =R Z SZm(fz'fdk) : Szm-1(fpfak) (8 0-02””3 ””””””” i””i””
mt g 1 1 |
8 001§ -~ e e
» Coherent differential detector (CDD) [15]: z | | |
% | | |
Ne g N ]
N ~ A A A~ A | | |
Scon (i fa,) =R Z Sm(Cir i) * Sia-1 (8o fa,.) ) 0005””} 777777 ]
m=2 i l:l SSSVE/UfV Distribution
. . ! === | aplace-Sum PDF Distributiq
* Noncoherent differential detector (NCDD) [17]: o 1, = 5 T 0 e o
Distribution of $5,/0%
N¢ 2
52\ 5 2 ). cx 5 7 Fig. 3. Distribution ofSHY, for N5 =10 and PDF of sum of 10
Sncop ((i’fdk) - Z Sm((i’fdk) Sm—l((i' fdk) (10 independent Laplace random variable?scwaiﬂa o2
m=2

whereN, represents the number of available coherent ositpujyvhere NEY = |N./2| is the number of differential
The differences between these three detectorsratly bn the jntegrations that can be performed for this detetvingN,
accumulation of the differential outputs (note #me index for  coherent outputs available. As demonstrated in AgpeA,
each coherent integration output for the PWD detgand the v/ . term is a zero-mean Laplace-distributed random
secondly on the generation of the final detectioBtrio, | 4riable with diversity parameterd, equal to o2. Its

co_herent or nqncoherent, depending if the_ phasensved probability density function (PDF) is given by [27]
prior to detection or not. The PWD form is the siegp to

analyze due to the absence of dependency termsirmdtie 1 byl 1 Iyl

differential outputs accumulation as well as in temeration fo =57 72=c-="¢ % (12)

of the detection metric. On the contrary, the nubifficult one Hom

to characterize statistically is the NCDD detectbr. this ) ) )

section, we analyze statistically the PWD deteutbich will ~ @nd the corresponding cumulative density functiobk):

afterwards allow advancing to the characterizatibthe CDD 1 iyl

and NCDD detectors. Frpon® =51+ 50 (1-¢77)]. (13)
In both its original publication as in [19] and [2ehe PWD Hom 2

detection metric has been expressed as the differehtwo ) ) ] ) )

x? random variables (central unddg and noncentral under 1his way, the PWD detection metric undéy is obtained

H,) to attempt its characterization. In this work, folow a s the sum of;¢” suchYj, ., terms. Given the independency

different approach for the characterization of tumector, between the consecutive differential OutputS chargtic of

making use of the Laplace nature of the differémtizeration the PWD detector, the PDF &, is that of the sum of

output undert,, and employing the Gaussian approximatiofindependent Laplacian random variables. This PDiné@vn

underH,. We will first demonstrate that these are appaipri from [28] as:

characterizations for this detection metric.

NEW 4 "X‘. m NBW —k-1

. : . _ NEY +ke-1y__ ¢ T \7
A. PWD Probability Density Function under,H Fsp, ) = Z ( K )zwgguk LY k=112
Modeling the output of a detector under no signakent,

only noise, allows establishing a threshold foridieg if a and the respective CDF is found by integrating (fdth
candidate signal is present or not with a certaégree of respect to:
confidence, established by the acceptable probalofi false

(14)

alarm, P¢,. In this case, the coherent integration outputs L NEW -1 _— (M)
H . . . PW P&~k
consist solely of the accumulation of Gaussian exdéesms, Fogy, ) =5+ 5800 Z (NDC Zk_l)%. (15)
and the output of the PWD detector is: =0 2%be
NEW wherey, (+) is the lower incomplete Gamma function of order

a. The accuracy of this formulation can be asselfbgd
comparing the histogram of simulation results witie
(11) theoretical distribution given by (14). This comipan is
shown in Fig. 3 foivi¥ = 10. As can be seen in this figure,
= Z?R{Wzm'WEm_l}= Z?R{Yyo,m}= ZYI!IO,mr the PDF corresponding to the sum of Laplace random
m=1 m=1

m=1

800G fa) = 99 . Som(Girfa) - Simes (G fr)
m=1

PW PW PW
Npc Npc Npc
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variables accurately matches the simulation reslilis now and the Gaussian noise term becomes much mordicigti
possible to set the detection threshdlg, for the PWD than the Laplacian one.

detector according to the specifi®, by using (15) and  From [27] the variance of a Laplace-distributed d@m
solving: variable is2A?, which leads to:

Pra = 1= Fopyp o Ven) - (1) var {R{Vyom}} = 204 (18)

This characterization of the PWD detector UnH@rcan be Assuming Stationarity of all parameters during &igna'

used as an alternative to the existing formuldé&hand [19]. integration time, the variance mf{wy_m} can be easily seen to
be given by:
B. PWD Probability Density Function underH
Under H,, the signal under test is considered to be present Var{m{wy,m}} =2 - var{R{spwn}} = 2 Isp|* - 03 . (19)
and the detection performance of the detector astiin of
the input signal power, and the threshold set Wie #, This way, $,, can be modelled as a noncentral Gaussian

analysis, is assessed. In the presence of sigmalPWD  random variable with meaag, —and variancesd, —given
detection metric results as: PWD

by:
NS%V PW PW
5 5 . 5 & ~ NPV - = NJY - Ispl? - 2mAfy ( NT,

ngllD({irfdk) _ m{z SZm(fivfdk) . Sim—1({irfdk)} Il$vlw DC {um} ¢ sml COS( TAfq k s) (20)

NEE/ m=1 O'Szgl}VD ~ N[;igv: . (EREWY'm} 'ZER{Y].ZIO'm}) (21)
= Z 9{{SZmS;mfl + sZmW;mfl + WZmS;mfl + WZmW;mfl} (17) - NDC . ZGW . (lsml + O—W)

=1 . . e .

NEW NpW where once again the approximate equalities areirudt
= ) Rl + Wy + Yiom} = Z RV} - assuming stationarity of all parameters during #ignal

m=1 m=1 integration time. Evidently this is not the caseewldealing

with real signals, but it is an essential assunmpfior the
The first term, u,, is the deterministic componentcharacterization of the detectors’ performance.

originating from the product of the two signal campnts and  The drawbacks of the PWD detection metric are now
the third term,Y,,,, was analyzed in the previous sectionremarked in (20), as not on;¥ is approximately only half
The remaining termwy ,,,, is obtained as the sum of theof the number of differential integration outputat can be
products of the deterministic signal with Gaussiarse, and generated, but also givefif,, # 0 a portion of the signal
is therefore a Gaussian random variable. Thusstatstical power is allocated to the imaginary part Yif, m, and is
analysis of the differential integration output endH; therefore not useful. The expression for the proiabof

involves analyzing the sum of a Laplace and a Gamss detectionp,, for the PWD detector is finally obtained as:
random variable, dependent between them. If th@eetdrms

were independent, their distribution could be dlgec o ¢ — 2
expressed as a Normal-Laplace random variable [zgidPWD _ 1 exp {_( i) }dt _
s . ) 2
however, this is not the case. In [16] as in [19 suggested 2102, Zasgﬁm
to rewrite R{Vy,,,} as the subtraction of two Chi-square Spwp "Vt 27
random variables, but this approach does not leaddosed- /V B \ (22)
form expression, having to resort to numerical rodshto =1erfc th — Heffip
compute the integral term and obtain the final ltetustead in 2 \ 202
[20] it is proposed to approxima®{Y,} by a Gaussian Nt

random variable, under the claim of the Central itim
Theorem (CLT) through which the summation of seveugh Where erfc(*) is the complementary error function,
terms will tend to a normal distribution with vamize equal to representing the tail probability of the standardrnmal
that of the individual terms. While this is notecommended distribution. To assess the accuracy of the fitvjted by this
approach to follow undeH, given the low precision at the expression, a comparison between the predictedsiamdated
tails of the Gaussian approximation vis-a-vis taquirement detection rate for a GPS L1 C/A signal samplednatet the
for the accurate threshold determination, it carctesidered chip rate is shown in Fig. 4 fof5#” = 1, 5 and 10, employing
an acceptable approach undér. Furthermore, in [21] four 1ms coherent integrationV(= 2046) and Afy, = A = 0.
different PDFs are fitted to the actual distributiof the The theoretical analysis is carried by first cadtinlg the
differential integration outputs undék;, concluding that the threshold using (16) and then employing (22) todjmtethe
Gaussian distribution is the one that most acclyratatches detection probability, while the simulation anatysialculates
the true detector output distribution in these ¢omals. This the threshold based on the simulated noise disipibuand
will be especially true when the input signal poviethigh, then measures the detection rate as the perceotégeshold
crossings for each Carrier-to-Noise/(G)Nalue.
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Input Signal Carrier-to-Noise Ratio (dB-Hz)

Fig. 4. Comparison between theoretical and siradlatetection probability
for Nf¥ =1, 5 and 10 (1ms coherent integratidfy;, = A = 0)

As shown in Fig. 4, the predicted pair-wise detecto

performance according to (22) is very close to tre
observed in the simulations, what validates the SSian

approximation undef;. The accuracy of this approximation

can also be observed by comparing the normal Ptz
histogram of the detector outputs. Two exampleshosvn in

Fig. 5. From the plots in this figure it is clehat the Gaussian

approximation is very accurate for high inpuf G Malues
even for a low number of accumulations. This is tuehe
higher influence of the cross noise-signal multiglion,wy ,,
in (17), with respect to the noise-only Laplaciagrn.
Contrarily, for weak signals and a low number
accumulations, the Gaussian fit is not
representation of the detector output distributidot the
closeness between the two distributions is stidihhiln fact,
the area matched in the top plot of Fig. 5 is ckos®0%. This
also explains why the difference between the ptedi@and
simulated results in Fig. 4 is not substantial e¥en low
C/N, values. Additional
Gaussian approximation becomes gradually more atetor
a higher number of accumulations, being the aretchmia
these cases even greater than for the two presdrees
Alternatively, one may estimate the PDF of the cieteunder
H, from data using nonparametric kernel estimatioth ve
cost of additional computation [30].

an accurate

simulations confirm that the

Sensitivity Characterization dffé@ential Detectors for Acquisition of Weak GNS®jnals<6

Gaussian Approximation Fit -E{V =1-C/N,=34dB-Hz

0.03 T T T T
l:l S:tva Distribution : : :
0.025 ™= Approximation | T
2
S 002r-----r-——--7-[f  %Y\--7--—--—1
o
i
a
>
go0sg-----r-—-—---7/1f  \A\T----1
Qo
©
Ee}
S
& o0 -----F----- N\ -----1
000§ - ----L---
[}
-10 -5 0 5 10 15
_— . 1 2
Distribution of $WD/<JW
Gaussian Approximation Fit -E}Lﬂ’ =1-CIN, =44 dB-Hz
0.025 T T T T T T
l:l $1 Distribution| | ‘ ‘ ‘
WD | | | |
= Approximation | | |
002-==-=---—-=-r-/f \\—- """
=
2
8 001§ — - -4 -—— - -
=
a
©
S 00 ---t----i-—
a
0003 ---7----+/ N7 --—1
0
Of 10 20 30 40 50 60 70 80

Distribution of ﬁi\m/cfv

Fig. 5. Accuracy of Gaussian approximation of efiéintial integration
output underH; for Nj¥ =1, C/N, = 34dB-Hz (top) andC/N, =
44dB-Hz (bottom)

differential detector (NCDD) whose detection metemoves
the phase information by a squaring operation @p [1

Npc+1 2

> SulGofa) SialCofs)| . @3

m=2

Sneop (fi' fdk) =

The expressions of the probability of false alarmd a whereN,. = N, — 1 is the number of differential integrations

probability of detection derived in this sectionngaetely
characterize the pair-wise differential detectdre Terivation
of similar expressions for the CDD and NCDD detexctis
significantly more complex due to the rise of degemrcy
between terms. Therefore, we follow a differentrapph in
the next section to assess the performance of these
detectors by evaluating their sensitivity gain.

IV. SENSITIVITY OF DIFFERENTIAL DETECTORS

In the previous section, the pair-wise differentigtector
has been studied, highlighting its drawbacks forSSN\signal
acquisition, particularly in the presence of a revozresidual
Doppler offset in the coherent output. A more sal@aletector
in presence of Doppler frequency shift is the ndwmecent

achievable with this detector form having. correlation
outputs available. The advantage of this detecitr mespect
to the PWD can be directly observed in simulatidng=ig. 6,
the two detectors’ detection performance is conpéoethree
different simulation scenarios whose details arewsh in
Table 1. For scenario S1, where the residual Dopyfset is
null and the same number of accumulations is perdar for
both detectors, the PWD detector outperforms th®NCdue
to the of the squaring loss paid by the NCDD. Hosvethis
gain with respect to the NCDD will be limited agtBoppler
offset grows, according to (20). For scenario Spanticular,
where cos(2rAf,  NT;) = 0, the nonzero detection rate for
the PWD detector at high input signal power is aecéd
merely due to the influence of the cross signat@dbaussian
termswy ,, in (17).
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TABLE 1
SIMULATION SCENARIOS FOR DETECTORS COMPARISON IRIG. 6

Simulation Parameters SimulationScenaric

S1 S2 S3
Signal GPS L1 C/A
Sampling Frequency 2.046MHz
Coherent Integration Time 1 code period — 1ms/2atfiples
Number of Code Perio 2 6 11
Differential Integrations NCDD 1 NCDD 5 NCDD 10

PWD 1 PWD 3 PWD 5

Residual Doppler Offset OHz 125Hz 250Hz

1
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|
08— -+
|
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2 |

& 06—~ - - -

c ‘l

205~~~ 1f - -
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T T

40 42 44
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0.1

e
Input Signal Carrier-to-Noise Ratio (dB-Hz)

36 38

Fig. 6. Comparison of pair-wise and noncoherefiemdintial detectors for
simulation scenarios described in Table 1

As the statistical characterization of the NCDDed#&dr is
not easy to accomplish, works in literature commarde the
Gaussian approximation under batly and H; hypotheses.
However, as previously noted, this cannot be camsidl a
reasonable option undéf, for a low number of differential
accumulations given the required precision at #iks of the
distribution. Instead we propose to follow an aitgive to the
formal statistical analysis of this detector, ebshing a
comparison with a reference scheme whose analysis
mathematically viable. This approach is followed[31] for
the characterization of the noncoherent detectqiieg to
radar systems. In [31], a sensitivity loss terndédined that
allows predicting the detection performance of aacoherent
detection scheme operating at a target receivekimgpoint
(P4, Pro), ith respect to the one which would be obtairfex i
coherent solution was instead applied. The fornmuiavided
in [31] is usually adopted in GNSS literature faralysis of
the squaring loss of noncoherent integration [4], [7]. The
same procedure is followed in this section to psepa loss
formula for the noncoherent differential detectoy;p,. This
procedure was previously followed in [22] and [32]it given
the lack of accurate expressions for
characterization of the differential operation, tfemulas
proposed were solely based on simulation data. iReguto
the analysis described in the previous sectionamalytical
approach can now be followed to validate and comptd the
work in [22].

This section starts by reviewing the optimal GN&&edtor
as well as the procedure to derive a sensitivigs lormula
with respect to this detector. Next, a formula ftre
differential integration loss is proposed, and #Hensitivity

Sensitivity Characterization dffé@ential Detectors for Acquisition of Weak GNS®jnals<7

loss of the NCDD detector is obtained as a comimnaif the
differential and squaring losses.

A. Sensitivity Loss of a Nonoptimal GNSS Detector

1. Methodology of Evaluation
The optimal detector in the presence of a statipsamnal
and known signal phase is the purely coherent tieté€D)
[8]. The detection metric for the coherent detedcsodefined
as:

N¢
Seo(Gofu) =Ry D SmlGifa) - (24)
m=1

It should be noted that this detector is only gassio apply
in theory given the assumption of knowledge of thput
signal phase. However it serves as a referencetHer
evaluation of the detection loss of nonoptimal, practical,
detectors. The equation that characterizes thiectmts
performance is [31]:

1
Eerfc[erfc‘l(ZPfa) — /N¢ Ng snry,
1

= Eerfc[erfc‘l(ZPfa) — Jsnreonl,

wheresnr;, andsnr,,, are, respectively, the Signal-to-Noise
Ratio (SNR, expressed in linear dimensions) atdégector
input and after coherent integration (in this casencident
with the detector output), ané; the number of samples per
code period. Inverting (25), the SNR at the coheren
integration output can be expressed as functiotheftarget
working point:

Pacp =
(25)

snre, = [erfc™(2P;,) — erfc1(2P,)]°
= D(Py, Pra) -

(26)

This SNR is also known as ideal detectability fact.,
and represents the minimum SNR at the coherengriaiien
output that allows detection of signal at the targeeeiver
working point (Pd,Pfa). The minimum input precorrelation
SNR is then expressed as a functiodo8s:

D

—. 27
NN, (27)

Snrin,min =

The productN.N in this equation corresponds to the gain

the statisticaf coherently integrating th& N, signal samples and is the

maximum achievable signal integration gain. Conseaty,
the required input SNRsnry, .4, for achieving a similar
working point with detectors employing other intagon
approaches (such as noncoherent or differentiagration),
must always be higher thanr;, ..;,, given the nonideality of
the operations involved. A sensitivity loss chaeastic of the
nonideal detectol, .t.ct0r» With respect to the ideal coherent
one may then be expressed as [31]:
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Coherent (optimal) Integration the optimal detector is the square-law detectoD)Skwhose
 snrgy = DN, = snry N, detection metric is expressed as [8]:

Correlation >

Output #1
N¢ 2

SN min F} SNy, = D, Sstp (Zi' fdk) = Z Sm((i' fdk) : (31

m=1

Correlation

Output #N, The equation that characterizes the detection pedioce
of the SLD detector is [19]:

Nonoptimal Integration
Correlation SN oy = SNy req N
Output#1 1 Pisip = Q4 (,/ZNCNS snry,, /—21n(Pfa))

Nonoptimal l
Gain = _ = / —
snri"vre‘l — Coher::x:IGaln— [~ SIg, = Dc Q1 2 SanOh' 2 n(Pfa) ’

Integration Loss

Correlation __ | where Qx(a,b) is the K" order Marcum Q-function. The

Output #N, squaring loss can now be expressed as the raticebatthe
Fig. 7. Coherent (optimal) and nonoptimal inteigrastrategies diagram and input SNRs required by the two detectors in ordeacthieve
SNR measuring points similar detection performance:

(32

SnTyy req Snrinreq ' Ns
— b — b Snr; snr snr
Lgetector = = (28) . = >Minstb _ SMTcohSLD _ SMTeohsLD

SNTiy i D./N. sq
nmin o/ Ne SNIiycp  SNTeonch D,

(33)

Given the linearity of the correlation operatidiyetecror This loss can be promptly obtained by solving (26

can also be interpreted as the ratio of the twaetation . . .
output SNRs (Fig. 7). This can also be noted in @S the (32), for any (Pd’Pf‘?) pair and usmg_the rgsults n (33)'.
Nevertheless, solving these equations is a noatrivi

productsnr;, ..o * Ny corresponds to the SNR at the correlation - . . ..
red ) mathematical process, and in [31] a simple appration for

output of the nonoptimal detector, abd/N, corresponds to L., is suggested:

the SNR at the correlation output of the coherestector. 9 '

Finally, the required SNR to acquire a signal agigeen

working point with the nonoptimal detector can b@ressed Ly, = McohSID 4 o 23 1+y1+ 9'2/DC_ (34)

as: 1 Dc SNI'coh,SLD 2

The sensitivity gain of the SLD detector in thegemece of

SNR; = SNRi;, 1mi + L
inreads nmindB detector,dB 29) N, code periods is then given by:

D
=10-logy <r;lc) + Lgetector,ds -
GSLD,dB (Nc) = Gcah,dB (Nc) - qu,dB ’ (35)

The ratioD./Ng corresponds to the input SNR that would
be required by the CD detector if only 1 code perMmuld be
available and can be denotedsas;, ninn,-1- Equation (29)

can then be rewritten as:

whereG,,(N.) = N,. As an example, the input signal power
required by the SLD detector for the acquisitionaotingle
GPS C/A code period, sampled at 2 times the chip ra
(N5 = 2046), and for a working poinfP,, Ps,) = (0.9,107%)

SNRinreq.as = SNRinmin, =108 can be found through:

- (10 : 10g10 (NC) - Ldetectar,dB) (30)

= SNRinminn.=1,d8 — Gaetector,a(Nc) , Deap(0.9,1075) = [erfc™2(2- 1075) — erfc™1(2- 0.9)]2 = 11.9 dB
whereG eecror COrresponds to the detector sensitivity gain of Legas = 10 -logyg (ﬂ) = 0.6dB
integrating a numbeN, of code periods and is defined as the ' 2
difference between the ideal gain of coherent itiégn and Gsp,as(1) = Geonap(1) — Lsgas = —0.6 dB
the loss of the nonoptimal operations performed witspect b
to the ideal detector. SNRinstp,ae = 10 -logyg (ﬁc) — Gsypap(1) = —20.6 dB
S

2. Application to the Squaring Loss
These expressions can be used in the quantificafidhe
squaring lossLg,, that is incurred by the phase removal
operation, representing the price to pay in terfnadualitional 0.9 =0, (\/2 -1-2046 - snry,, /-2 1n(10-5)) =
input SNR for not knowing the input signal phasetHis case, & SNR;, g = —20.6 dB

Naturally, a very similar result is obtained by\sog (32):
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Correlation
Output #1
Coherent
C) Re{} — Integration
Output
Correlation
Output #2
Correlation
Output #1
* Differential
® Re{} —> Integration
Output
Correlation
Output #2

Fig. 8. Comparison for determination of differahtyperation sensitivity loss

This approach can be generalized to any numbeguzring
operations, and is the basis to obtain the lossthef
noncoherent integration scheme in [31]. This methadd
evaluating the nonoptimal detectors’ sensitivitgdodiffers
from the traditional approach of calculation of efldction
coefficient, as a measure of the output SNR. Tiisr@ach
has been followed for both the differential and cairerent
detection schemes in several publications suchl@f gnd
[21], but its inapplicability in these cases is ity
illustrated in [33] and, therefore, it is not calesied here.

B. Sensitivity Loss of the Differential Operation

In order to be able to quantify exclusively theslas the
differential operation with respect to coherent sing, the
detection scheme employed in this analysis mustdasoy
other operations, in particular the squaring of signal for
phase removal. This can be achieved by concergratirthe

signal power on the in-phase branch of the difféaén

integration output (zero residual Doppler offset)d athen
taking just its real part as the detection metkig(8). By
comparing the required input SNRs for the two sakgenm
Fig. 8, it is guaranteed that the difference infqgrenance
between both is exclusively due to the nonoptimabff
differential operation with respect to coherent suing. The
differential detector employed in this case coroesls to the
CDD detector:

Npc+1

Seon(Go fu) =% D Sm(Gfa) - Sina(Gof)

m=2

(36)

As for the moment we are focusing in the assessofehie
sensitivity loss of a single differential operatidhe detection
metric of interest is:

Seon ($ur far.) = R{S2(8i far.) - S1(8i fu )} - (37
To characterize the sensitivity of this detectomngsits
probability of detection, we need the PDF of théedéon

previous section can be directly applied. Making o$ (13),

P = 10° - 1000 simulations per C{N 1ms Coherent Integration
1 T
|
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Fig. 9. Comparison of Gaussian and Norireace approximations for t
CDD detector foiv,, = 1
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Fig. 10. Sensitivity loss due to differential opion — theorysimulation an
approximation

(16), and (20)-(22), the equation that charactsrizkis
detector folVS¥ = 1is:

1
Pa,cop = Eerfc (Vth - Hslg‘}m)/
= —erfc (- oy - In(Pa) + Isil? )
2 V40 - (Isml? + 02)
1 In(P:,) + 262 - N - snr;
= Zerfc (_ ( fa) w S m) .
+/8Ns * snry, + 4

2
According to (28), the sensitivity loss of a singl&ferential
operation as function df., Ly;¢¢(1, D), can be expressed as:

(38)

s
Lqirr(1,D) =

nI'in,req _

SnI'in,req ' Ns

SnI'in,min

D2 (39)

wheresnr;, ., in this case is the input SNR required by the

metric in (37) undeH,. As this detection metric is equivalentCDD detection scheme to achieve the working pgecdied
to the pair-wise detector one EY = 1, the results from the PY Dc. This required input SNR can be directly obtairgd
solving (38) for any pai(Py, Pf,), but it should be noted that
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Fig. 11. Noncoherent differential detector blaikgram and SNR measuring points

this expression is based on the Gaussian apprdagimander
H,, which was seen not to be entirely accurate. Agrotption

any number of differential operationd,y;sr(Np¢, D), it
suffices to note that the SNR at the correlatiotpotof the

is simply to consider the Gaussian and Laplace derngoherent detector is written & /N, or, for the case of the

independent, in which case a Normal-Laplace randariable
is obtained [29]. The expression that characterifi@s
detector under this assumption is shown in AppemliXhe
accuracy of these two approximations Bf.pp can be
assessed by comparing the predicBgdfrom (38) and (55)
with the results obtained from simulation. This gamson is
shown in Fig. 9 for the acquisition of a GPS C/Anrsil,
sampled at 2 times the chip raté & 2046), Py, = 1075 and

NCDD detector,D./(Npc + 1). Equation (40) can then be
rewritten as:

0.2- (NDC + 1)
D.

0.45 - sﬁ (NDC + 1)
+ T (41)

This formula expresses the sensitivity loss inalirby a
numberN,. of differential integrations (employiny,. + 1

Lairf(Npc, Do) = 1+

Afar = A7 =0. As expected, none of the approximationgonerent outputs) and a receiver working point igecby

represents an entirely accurate prediction of tletedaor
performance. In fact, the predicted performancesrming to
both approximations are almost coincident, fromahhi can
be concluded that the oddity of the differentialtedéor
behavior is mostly due to the dependence betweeniviio
stochastic terms under analysis.

Fig. 10 showsLy;¢((1,D.) calculated through (39) using

D.(Pg, Pf,), With respect to the coherent operation. It should
be noted that this simple passage from (40) to (4Es not
actually take into account the dependence betwéden t
consecutive differential outputs. Nevertheless,itawill be
seen further, it still seems to be a good approtioneof the
actual loss experienced by the NCDD detector.

the snry, ., values for the approximations and simulation

values shown in Fig. 9. All curves are expressefiastion of

C. Sensitivity Loss of the NCDD detector

D./2. Although the difference between the approximaion After characterizing the loss of differential intagon, we

and simulation loss values is not considerable, phafile
exhibited is significantly different. This fact cqiicates the
proposal of an expression tbyr(1,D.) based on the
theoretical loss curves which is consistent at dotgh and
low SNR values. The issue is with the sensitivityd formula
and not with the metric PDF approximation, meanthgt
even with a good model of the PWD distributionsitdifficult
to obtain a closed formula of the sensitivity

now extend the analysis to the NCDD detector ldgspp,

which, according to the block diagram shown in Hig, is a
combination of both differential integration ancuagng loss.
According to the procedure previously describee, NCDD

detector sensitivity loss is defined as the add#@lanput SNR
that is required by this detector with respectht® input SNR
that is required by the coherent detection schemezhieve a

losSimilar target working point. The sensitivity gaiof the

Laisr(Npe, D.). Therefore, the simulation-derived loss curve iNCDD scheme having/; coherent outputs available is then

considered. The theoretical analysis, nevertheleasseful to
validate the simulation results. Several differmaidels can be
employed in the attempt to approximate the simoitapoints
of Lgisr(1,D.) shown in Fig. 10. Although various
approximations of different orders af/ (D,/2) offer a good
fit in the SNR area under consideration in the féguheir
behavior at high and, especially, low SNR valuekasahem
unsuitable for the approximation sought. One apipneion
that closely matches the simulation results in $iINR range
under consideration and that is consistent for Hoth and
high SNR values is:

Lo (LD ~ 14 0.2 N 0.45
aiff\Lb Ve = D./2 m- (40)

This curve is also shown in Fig. 10, where its aacy in
predicting the sensitivity loss induced by one efintial
operation is verified. In order to generalize tbiss formula to

expressed as followdD( is omitted in the loss formulas for
simplicity of notation and all the terms are in dB)

Gnepp(Ne) = Geon(Ne) — Lyepp (Ne)
= Geon(Ne) — (Ldiff(NDC) + qu)
= Gsp(N¢) — Ldiff(NDC) .

(42)

This way we can directly relate the sensitivityrgaif the
NCDD detector with that of the SLD detector by s (Npc).
This will be particularly useful in the comparisaf the
NCDD and NCD detectors, as the sensitivity lossnida
proposed in [31] for the latter (equation (47)glso related to
the SLD detector. It should be noted that, evekyif(Npc)
was obtained for the CDD scheme by concentratihghal
signal power in the real branch of the correlat@nput, it
expresses the sensitivity loss of the differentipération as
function of the SNR of the coherent output and st i
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detector forV,. = 20 and accuracy of loss formula detector to achieve detection @ftd,Pfa) =(0.9,107°%) as function of

coherent integration time and ingLN,
independent of its phase. This way, it can be tireapplied

It then suffices to express the differential operatoss as L7 (Npc) =1+ sty | Ysorgs (45)

function of the SNR prior to the phase removal afien,
snrgig N Fig. 11. This can be done by recurring to the The accuracy of this formula can be assessed bpaony

squaring loss formula: the predicted and observed sensitivity losses ogtiathrough
simulations. Defining a targe®; = 0.9, the predicted and

_ SDrgif 1+./1+9.2/snryy, 43 observed sensitivity loss of the NCDD detectionesol with

ST snrgy, 2 ’ respect to the SLD detector in the acquisition dBRS L1

C/A signal (V¢ = 2046) is shown in Fig. 12 for three different

wheresnr,,, is the SNR at the output of the NCDD detector asalues ofPy,. From this figure it can be seen that there is a
shown in Fig. 11. Given that all the loss formuteve been very close match between the observed and expdossd
developed with respect to the coherent detectdneit follows profiles for this detector. In fact, the predictignaccurate to

thatsnr,,, = D, and therefore: within £0.3dB in the interval presented for each of the three
P, values considered. An example of the accuracyhif t
SNrgg  SNrgg 1 +JT_2/])C formula is shown in Fig. 12 faNp, = 20. It can be noticed
sa =g D 2 = from this figure that the predicted NCDD sensitvibss at
out c (44)

(P, Pry) = (0.9,107%) with respect to SLD is very close to
the actual value. FaV,. between 50 and 100 the maximum
error is still within+0.5dB.

1+ 1+ 9.2/D,

& SN = Dc . 2

The sensitivity loss of the NCDD detector with resipto
SLD is finally given by:
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D. Applications of the NCDD Sensitivity Loss Formula
One of the applications of the proposed formulafois

characterizing the detection performance of the RCD

detector. We can use this formula to constructsemsitivity
curve of the detector using as reference the caofthe SLD

detector given by (25), as was done in Fig. 13. The

comparison between the simulated and predictedctiete
performance for the scenarios of Table 1 is ploiteBig. 14.
From this figure it can be seen that the NCDD <iiitsi
prediction curve is also accurate when a nonzerpplzo
offset is accounted for in the curves of scenai2oaBid S3.
More details on the usage of this formula for a zeso
Doppler offset are given in section V.B.

Another application of this formula is in the esdition of
the number of differential integrations requiredr fthe
acquisition of a GPS L1 C/A signal at a given in@gtN,.
Fig. 15 shows this estimation for three differemtiues of
coherent integrations. Having obtained a loss féancapable
of quickly providing an estimation of the NCDD deti@’s
performance, it is now of interest to compare tatector with
its noncoherent counterpart. This analysis is edrim the next
section.

V. DIFFERENTIAL AND NONCOHERENT DETECTION SCHEMES
COMPARISON

The performance comparison of differential
noncoherent detection schemes has been the sobeteral
publications in recent years [8], [18]-[21], butttee authors’
best knowledge the first formal comparison betwebka
NCDD and the noncoherent detector (NCD) is foun{Ri,
recurring to (45). In this section, the resultsnirg22] are
reviewed and extended by evaluating the sensitidigs of
each detector for a nonzero Doppler offset.

and
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Fig. 16. Sensitivity loss of NCDD and NCD with pest to SLD forAf, , =
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T
45 50

A. NCDD and NCD Sensitivity Loss in absence of DopplerFig. 16, for a low number of differential integars the

The detection metric for the NCD detector is defias:

Nnc

Sweo(Go fu) = D [Sm(G fa )l (49)
m=1

combined effect of the differential and squaringsldeads to
an inferior performance of the NCDD detector wigspect to
the NCD. This can also be seen in Fig. 17 wheretinees for
the sensitivity loss of each detector are showr(EQrPfa) =
(0.9,107>). As the predictions from both loss formulas are no
exact, conclusions about the precise crossing biotild not

whereNy. = N, is the number of noncoherently accumulate@€ taken from these plots. In any case, it is &nétate that for

correlation outputs. The sensitivity loss of the IN@etector,
Lycp, With respect to the SLD detector is given indhf [31]
as an extension of the squaring loss formula i (34

14 /1492 Ny:/D.
1+1+92/D,

If the Doppler offset is small enough for its effen the
coherent integration output to be disregarded, eecti
comparison between the two loss formulas, (45) (@l can
be used to compare the relative performance otigtectors.
In Fig. 16, the losses that would be observed loh sgheme
with respect to the SLD detector for three différemrking
points are presented. The number of available pededs is
varied from 2 to 50 to obtain the curves shown.dkding to

Lyep (NNC) =

(47

the acquisition of weak signals, requiring a higimber of
postcoherent accumulations, the differential deteds a
preferable choice.

The effect of the inferior sensitivity loss of ti¢CDD
detector with respect to the NCD for the acquisitad weak
signals is reflected on the acquisition time thethedetector
needs to achieve the required degree of confidémcene
detection of a given signal with a certain powaer. the
detection of the presence of signal, the allocatibthe signal
integration time between the coherent and posteotier
strategy involves a tradeoff between sensitivityd an
complexity. The ultimate practical restriction teetincrease of
the coherent integration time (considering no natign data
bit influence or dynamics and clock instability exffs) is the
number of frequency grid pointd , to be evaluated in the
acquisition process. The usual practice is to @edimaximum



> TAES-201300470

TABLE 2
INTEGRATION STRATEGIES COMPARISON

Integration  Frequency Grid Correlation Outputs Requir

Time (ms) Points NCD NCDD
1 10 64 40
2 20 21 16
4 40 8 7
5 50 6 6
10 100 3 3
20 200 - -

allowable frequency attenuation for the coherempuaiuwhich
should not be exceeded, resulting in a rule sugh]as

_AF,  AF, AR

N y=—=—r—=Toon—,
Ja 5fd x/Tcah con x
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Detectors Loss for 2 to 50 Correlation Outputs pler offset: 500Hz
T T T

T T 7

—a—Py=0.9,

R,=1E-3

—~—P,=0.9, R, = 1E-5[]

——P,=0.9,R, = 1E-7
: :

Non-Coherent Differential Detector Loss (dB)

-
|
| |
X - | |
-~ -——73---
| |
| |
1

|

|

1 1 T
0 1 2 3 4 5 6
Non-coherent Detector Loss (dB)

Fig. 18. Sensitivity loss of NCDD and NCD with pest to SLD forAf, , =

whereAF, is the width of the Doppler frequency search spa@oHz and Ny = Npc + 1 € [2,50] (leftmost point corresponding to
(typically around 10kHz)§f; is the frequency grid resolution Nyc = 2 and rightmost one thiy; = 50)

(not to be confused withAf;, the residual frequency

estimation error as defined in section IlI), ardis the
coefficient resulting from the maximum desired aitople
attenuation [1]:

X
Lﬁf.max = sinc (Tcoh : Sfd/z) S 6fy = T

coh
. Lgf_max,dg =0.5dB=>x=1/2
*  Lsfmaxas = 1.9dB=x =1

This way, even if the maximum integration gain ldained
through the increase of the coherent integrationeti it
directly impacts the acquisition process complexitymber
of operations required). As an example, we consa¢otal
signal observation time of 20ms. The highest siitgitgain
possible corresponds to coherently integratinguphout the
20 code periods, that is:

Geonas(20) = 1010g,,(20) = 13dB.

The other alternatives imply trading-off the cohmrand
postcoherent integration gains according to theataops
(values in dB):

Gnep(Nne) = Geon(Ne) — Lyep (Nye)
Gnepp (Npe) = Geon(Ne) — Lycpp (Npe)

In Table 2, the number of correlator outputs rezplifor
each different postcoherent integration strateggdioieve the
13dB gain for a working point dfPy, Pr,) = (0.9,10°) and
for different number of coherent integrations i®wh. The
number of frequency grid points is calculated forgmd

Integration Loss (dB)

oS/~~~ =~~~ Noncoherent Differential Detector Loss
== Noncoherent Detector Loss
T T T T T

T

5 10 15 20 25 30 3 40 45 50
Number of Correlation Outputs

Fig. 19. Sensitivity loss of NCDD and NCD with pest to SLD as function

of number of correlation outputs fodf,, =500Hz and (P, P;,) =

(0.9,1075)

B. NCDD and NCD Sensitivity Loss in presence of Dapple

In the presence of a nonzero and stationary Dopyfset,
the coherent processing output is affected by ithefanction,
as in (6). This means that the SNR at the cohgmattessing
output will be less than what would be expected dozero
Doppler offset [3], [34]. This way, the effectiveolerent
output SNRsnr . o, IS given by:

—_ .ol 2 .
SNl copeff = SNTeqp * SINC?(Afyy - NTy) < SN conAf g =0 »

This extra attenuation in the coherent processnigainslated
into (44) and (47) as an increase oD, by

employingdf, = 1/T,,,,. Naturally, the strategy requiring the 1/sinc*(Afy, - NT;). The comparison for a Doppler offset of

shortest observation time is the one employing ldmgest
coherent integration time. It can also be seen it

500Hz (typically middle of a frequency bin for oneherent
integration) is shown in Fig. 18. Although in tHigure it can

performance of the NCDD and NCD schemes become vepg seen that the crossing point between the NCDNIOD

similar when low postcoherent integration gains sweght.
The preferable solution from the ones presentethéntable
should be found as a compromise between integrdiine
and complexity.

sensitivity losses occurs at a higher loss valbis, ¢rossing
occurs in fact for a lower number of accumulations,
comparing Fig. 17 and Fig. 19. According to theletspit can

be seen that the NCDD detector remains as the suwitstble
detector for the acquisition of weak signals.
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Noise-Only Correlation Outputs Distribution (In-Pleabranch)
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Real Data Acquisition: 1ms Coherent IntegrationGdherent Outputs

160 | | | | | ! ' !
SRR TR
2 ! ! ! ! 07t --r--r-~r-—r-~f-- e e
31000”’J‘”"L” ****‘L***:***’ ] | | | | |
2 | | | | S o6 -k ——F-——F——F——
Eoeog - -a---r-- S o R
2 | | | | o 04 ‘r ‘r
400****:***:*** **:****:***’ 0.3, *‘F**‘F**’
200,,,,3,,,:,, ,L,,,i,,,, o2 --F--F-f--F--L--b--L- Lol
| | o1 | | — NCDD Detector: . = 17
-8000 -1500 -1000 -500 0 500 1000 1500 2000 } } L _‘ NCD‘Detect‘or: N‘C‘: 2
Correlation Output Values (In-Phase branch) 032 33 34 35 36 37 38 39 40 41 42
Fig. 20. Noise-only correlation output histogram Approximate Carrier-to-Noise Ratio (dB-Hz)
a) 2 correlation outpu
Real Data Acquisition: 1ms Coherent IntegrationGdherent Outputs
VI. ReAL DATA PROCESSING [ R
The validation of the theoretical analysis desdfikia N
sections Il and IV as well as the comparison betwéhe 08 T
differential and noncoherent detectors in sectiohave been ot --r--r--r-——r--r-4f- e e
carried using simulated data. In this section, Nl@&DD and 5 0.6 ]
NCD detectors’ performance is assessed with redb GP Sos L ff R
C/A signals collected at thelnstitut Supérieur de 8 b b
I'’Aeronautique et de I'Espac€lSAE), Toulouse. The data R .
acquisition was carried with a NordNav R30 receiver 08-—-r--r- .
operating at a sampling frequency of 16.4MHz. 02— -b--b--k- N e
The focus of this work is in the acquisition of Wesgnals, P /' | = NCDD Detector: N =4)|
however the reception of such signals is unpreblietand ‘ | = NCD Detector: lc =5
their actual signal power difficult to assess. Thiay, an % 20 a0 31 32 33 34 35 36 37 B
. . . . - . Approximate Carrier-to-Noise Ratio (dB-Hz)
alternative approach is followed in which a straignal is )
identified and then corrupted with an extra Gaussiaise b) 5 correlation outputs
Component. For thIS pUrpOSG, It iS essential tocdmate that Real :Dala Acquisition: 1ms Coherent Integratio® Cbherent ‘Outputs
the noise environment is effectively Gaussian. W signal ook — ! I
provided by the NordNav R30 receiver is alreadyitidigd, ! ]
this can be achieved by analyzing the noise digioh at the o8 ; ;
output of correlation when testing the presencarofabsent Y AR A TTortTr
PRN code, which, according to (5) enables us timnest the 8 o6 ERtR by
input signal variance. The result of this analysishown in Sos--L--L__L__Lfo Ji Lol
Fig. 20. From the histogram shown in this figutes Gaussian g o4l - 71 o ~ 71 o
nature of the environment noise is well-remarkéedhbuld be e ] .
noted that this Gaussian feature was verified irtada 03— T
collections also in deep urban scenarios, as ircitiyecenter 02~ ~p - E- o
of Toulouse. This validates the methodology empdoige the o1 - - _| T NeDD Detecior e =)
. . . . === NCD Detector: \ = 10
emulation of weak signals and allows testing trgo@thms (S

under a wide range of signal strengths.
Two types of analysis are carried. First the detscare
compared employing data blocks of fixed size, ahdirt

26 27 28 29 30 31 32 33 34 35 36

Approximate Carrier-to-Noise Ratio (dB-Hz)

¢) 10 correlation outputs

Fig. 21. NCDD and NCD sensitivity comparison imaisition of real signals

sensitivity curve is drawn, and in the second asialg fixed ) ) . )
y ! alp using 2, 5 and 10 correlation outputs and 1ms @stiéntegration

attenuation is imposed and the detectors’ detectaia is
plotted as function of the number of available cqaeiods.
The Doppler search grid considered in the followexgmples
spans from -5 to 5 kHz and the frequency resoluitioavery
case considered 5/T,,;,. For each analysis a mean of 1 false

alarm per 100 detections is fixed, so the detediiwasholds  A. Detectors Sensitivity Comparison

are set by running the detectors for 100 independate  The first comparison of the performance of the NCarl
blocks extracted from the short collection time letiesting a NCD detectors in real data acquisition is perforraetploying
nonpresent PRN code. The detectors are then ruthés®e 3 coherent integration time of 1ms and 2, 5, anddteelation
same 100 blocks using the PRN code of the stroggabi outputs. The signal/N, is varied as shown in the plots of

previously identified. This procedure is repeated €ach
C/N, point shown in the plots.
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Real Data Acquisition - Attenuated Signal 33dB-Hz

1 T T T T T T T
| | | | | |
09 ———l—-——d———+——— k- ——- — 5 =+
| | | | |
[ L > ) 1 ___]
0.8 | | | | |
| | | | |
Ofr ===~~~ 1-J/f /S -1~
o | | | I | |
EO'G————\———A——— e — — A — — 4+ — — —4
- | | | | | |
o Lo\ __A_ S
S 0.5 | | | | | | |
2 | | | | | |
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| | | | |
03 - - —I— h S v a1
| | | | | |
02k - - -! 77:777: | | _\ .\
‘ ‘—Noncoherent Differential Detector
0.1 —|— — — 14— — — 1| ™= Noncoherent Detector H
: : : === Square-Law Detector
0 T T T T
2 3 4 5 6 7 8 9 10

Number of Code Periods Proces

Fig. 22. NCDD, NCD andLD sensitivity comparison in acquisition
emulated signal at 33dB-Hz using 2 to 10 correfatiotputs

Fig. 21. In these plots, it is clear that the NCBtector
becomes more effective than NCD as the input sigral,
decreases and, consequently, a longer signal @igsriime
is required for reliable signal detection. It slibbke noted that
in this analysis no methods for attempting compenseaof
data bit transition were applied, so in severahdadbcks the
change in data bit value is encountered. Givenldhg data
bit duration for the GPS L1 C/A signal with resptxits code
period, the data bit transition affects both detectearly in
the same way, even if noncoherent integration isiraty
more robust. Nevertheless, the data bit transiisae requires
further attention in modern GNSS signals, as Galld, in
which the navigation data period is similar to gpreading
code period.

B. Weak Signal Acquisition

To show how detection of weak signals is achievih the
different detectors, a signal at an averégd, of 33dB-Hz is
emulated by adding extra noise to the real sigidle
attenuated signal is then attempted to be acquinidid the
SLD, NCD and NCDD detectors. The detection ratefieer
for each detector is shown in Fig. 22 as functibthe number
of code periods integrated. From this plot, it te@nseen that
this signal can be reliably acquired with any oé tthree

detectors, provided the number of code periods & b Uy = (Wl +wl_)/NZoy, Uy = (Wl — wl_)/NZa,,

integrated is sufficiently high. While the SLD detier is the
best performing one, its complexity of execution

considerably higher than the other two detectomspleying

only 1ms coherent integration, and consequentlgerng a
less stringent requirement on the frequency grgbldion.
Also here the superior performance of the NCDD dete
with respect to the NCD is observed.

VII. CONCLUSION
In this paper, the performance of postcoherentuifitial

detectors in the acquisition of weak GNSS signalss w

studied. First, we characterized statistically BWD detector.
Under the noise-only hypothesis, we made use ofattethat

is
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that both signal and noise are present, it was shinat the
approximation of the output of this detector by auSsian
random variable matches closely its true distritutiand an
expression for its probability of detection wasided.

Given the complexity of following the similar pratge for
the NCDD detector, we instead characterized thiteatier
through its sensitivity loss with respect to theDSdetector.
Firstly, the methodology to characterize a detertdhis way
was described, and subsequently a formula for sisgeshe
sensitivity loss of the NCDD detector (combining ttbo
differential and squaring losses) with respect he SLD
detector was proposed. The theoretical results walidated
by simulations, showing that this is a valid apgio#o follow
in such cases when the statistical analysis ofd#tectors is
overly complex.

The results obtained enabled the comparison oNBBD
and NCD detectors, allowing deciding on the mostgachte
integration strategy for achieving a predefined sgerity
level. It was confirmed that differential integiaii is in fact
preferable to noncoherent integration in the adtjoiis of
weak signals. The theoretical conclusions were icoefl
with the acquisition of real GPS L1 C/A signalsghiighting
the potential of the NCDD detector in weak sigrajuasition.

APPENDIXA

UnderH,, the differential operation outputy,, is expressed
as:

Yho = Wi " Wiy
= (W‘rInWrIn—l + WT?'LWT‘?'L—I) +j(W1?1WrIn—1 - Wr?l—1ern) (48)
= YFIIO +jY1?o
TheY{, term can be rewritten as:
YPIIO = WrInwrln—l + WT?LWT?I—l
=0y, /2-[(Uf +U3) — (U7 + U§)] (49)

= a‘f,/Z [ — %]

where all thel/,, terms are Normal-distributed with zero mean
and variance 1:

Us; = (W-,% + Wr?l_l)/\/iaw, U, = (w,‘,{ - Wr?l_l)/\/iaw (50)

and, as so, both; and x, are independeny? random
variables with two degrees of freedom [27]. Frorb][3he
distribution of the subtraction of two independeahdom
variables is given by:

([ 20 fe s, 220
fi@ ="

o (51)
U fx,(Z +x3) fx,(xz) dx,, 2z <0

the output of pair-wise differential integrationreesponds to a Wherez = x; — x,, andfy, (x;) andfx, (x,) are the PDFs of

sum of independent Laplace random variables to gz®m
new expression for its characterization. Underabsumption

x; andx,, that is [35]:
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xn/2—1

on/z . r(n/2) €

fx(x) = (52
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with n = 2 the number of degrees of freedom of the
distribution for bothx; andx,. This way,f;(z) can be easily
rewritten as:

(1
. ,—Z/2
¢ . e-lel/2

f2(2) = (53

(2

ENIEENE N

_ez/Z

which corresponds to a Laplace distribution of zem@an and [3]
diversity or scale parameter, equal to 2 [27]. From this same
reference it comes that the variance of the Laptisteibution

is 24%. Thus, the variance af- Laplace(1) is thenc? - 242 =
22'%, implying that:

[4]

5
02/2 - Laplace(1) = Laplace(a2/2- 1) &l
It finally results thatt},~ Laplace(s2). The same reasoning [®!
can be followed to demonstrate th)@?o~ Laplace(s2) by
simply defining a normal random variable= —w,‘fL and
. ST Q. J (7]
analyzing the distribution ob,,w,,_; + xwp,_;.
(8l
APPENDIXB
Given two independent random variabldsandW, such that
Z~N(u,0?) and W~Laplace(1), their sumY=Z+W
results in a Normal-Laplace distribution, whose Pidid CDF
are given by [29]:

(9]

[10]
A0 =20 Re/p-p) +R/24) (6
R A— R A
F) = o) - g SATDIROAED ey

with y = (y —w)/o, ®() and ¢(-) the CDF and PDF [12]
functions of a standard normal random variable eetsyely,

andR(-) the Mills ratio, defined as [29]: 3]

O(z) 1-®(2)
ORERIO)

Given a threshold,,, the tail probability ofY, equivalent to
P, in detection of a signal distributed accordingity) is:

R(z) = (56)

[14]
[15]

[16]

Py =1-F V) (57

This equation can be employed in the charactedizatf the [17]
output of the CDD detector undetl,, considering the
Gaussian and Laplace noise terms independent hetwess)
themselves. For the case of a single differenfiration, the
terms in (55) and (57) are given by:

[19]
A=oc2
u= #SgI}VD = |Sm|2

[20]

0% = var {ER{Wy'm}} ~ 202 |sy|?

contribution to this work.
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