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Abstract—In this paper, we assess the potential of several 

forms of the postcoherent differential detectors for the detection 
of weak Global Navigation Satellite Systems (GNSS) signals. We 
analyze in detail two different detector forms, namely the pair-
wise differential (PWD) and noncoherent differential (NCDD) 
detectors. First, we follow a novel approach to obtain analytic 
expressions to characterize statistically the PWD detector. Then, 
we use these results to propose a polynomial-like model fitted by 
simulation to the sensitivity loss experienced by the differential 
operation with respect to coherent summing. This sensitivity loss 
formula is also used to characterize the NCDD detector, shown to 
be more adequate than the PWD for the acquisition of GNSS 
signals. A comparison between the PWD, NCDD and the 
traditional noncoherent detector (NCD) is also carried in this 
study. The results highlight the superior performance of the 
NCDD over the NCD for the acquisition of weak signals.  For the 
case of the PWD, its performance is sensitive to Doppler shift. 
The conclusions drawn from the simulation results are confirmed 
in the acquisition of real GPS L1 C/A signals. 
 

Index Terms—GNSS, weak signal acquisition, postcoherent 
differential detection, sensitivity loss, urban positioning. 

I. INTRODUCTION 

The first step in the signal processing chain of a GNSS 
receiver is known as signal acquisition [1]-[3]. In this phase, 
the presence of a signal from a given satellite is decided based 
on the estimation of its unknown parameters, in particular its 
spreading code phase and Doppler offset. For the acquisition 
of signals with nominal power, integration over a duration 
equivalent to one period of the incoming signal’s spreading 
code is common usage for detection. For weaker signals, 
however, integration over several code periods is necessary 
[4], [5]. This is typically the case for positioning in urban 
canyons, where the signal can be degraded by different 
propagation phenomena including multipath [6], shadowing, 
signal blockage, and other sources of attenuation [7]. 

The maximum sensitivity gain is achievable by coherent 
integration of consecutive correlation outputs, obtained by 
correlating each code period of the signal with a code replica 
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generated locally [8], [9]. Nevertheless, the coherent 
integration time is limited by factors such as residual Doppler 
offset, data bit transition, and the receiver’s processing 
capabilities [10], [11]. Therefore, after a certain number of 
coherent accumulations, transition to postcoherent integration 
strategies is usually employed to keep on increasing 
acquisition sensitivity. The most well-known, and generally 
applied, postcoherent integration strategy is noncoherent 
integration, in which the coherent outputs’ phase is discarded 
prior to further accumulation [1]-[3]. It is equally well-known, 
however, that noncoherent integration is less effective than 
coherent integration, as the phase removal operation by 
squaring the In-phase and Quadrature (I&Q) branches of the 
coherent output incurs a loss, known as squaring loss, which 
reduces the signal’s Signal-to-Noise ratio (SNR) [12], [13]. 

An alternative postcoherent integration approach is 
differential, or semicoherent, integration [14]-[22]. In this 
approach, the coherent outputs are not squared, but rather 
correlated with a previous output. The product of the two 
uncorrelated outputs is statistically less detrimental to SNR 
than the squaring operation, given the independence of the 
noise terms [14]. Different forms of detection schemes 
employing postcorrelation differential integration can be 
found in literature [15]-[17]. One of the two main factors that 
distinguish these detectors is the generation of the differential 
outputs. Given the nature of the differential operation, each 
coherent output, except the first and last, may be used more 
than once. This results in a dependency between consecutive 
differential outputs which is remarkably difficult to 
characterize statistically. One approach to avoid this 
dependency is studied in [16], where each coherent integration 
output is used only once, in an approach termed as pair-wise 
integration. The drawback of this approach is that a reduced 
number of accumulations naturally leads to a smaller 
sensitivity increase than if all differential outputs were 
exploited [19]. 

The second main factor that distinguishes differential 
detectors is the formulation of the detection metric from the 
differential integration outputs. In [15], only the in-phase 
branch of the differential integration output is considered in 
the detection test. A posterior evaluation of this detection 
metric in [17] notes that a residual Doppler offset leads to a 
partition of the useful signal power between the I&Q branches 
of the differential integration output, and a Doppler-robust 
noncoherent differential form is instead adopted, in which the 
detection metric is obtained as the squared magnitude of the 
differential integration output (Fig. 1). Although this form 
significantly improves the differential detection scheme 
performance in the presence of an unknown Doppler offset, its 
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detection metric is obtained as the sum of two dependent 
random variables. This dependency once again complicates 
the statistical analysis of the detector output. 

In [19], a complex mathematical approach is followed that 
enables the author to derive expressions for characterizing the 
pair-wise detector (PWD) from [16] as well as the 
noncoherent differential detector (NCDD) from [17]. The 
author also notes however that, while exact, the expressions 
derived are of limited application due to the presence of 
functions which easily become both burdensome and 
inaccurate for a high number of differential accumulations. An 
equally complex analysis of differential detectors with similar 
results is also found in [18]. The approach which is frequently 
followed in the analysis of differential detectors is to resort to 
the Central Limit Theorem, through which the noise terms 
resulting from differential integration can be approximated by 
a Gaussian distribution for a sufficiently high enough number 
of integrations [20], [21]. In [19], the author also develops a 
Gaussian approximation for each detector and points out the 
risk of employing this approximation for a low number of 
accumulations, given that the actual distributions of the I&Q 
components of the differential operation are heavier at the tails 
than the Gaussian distribution, leading to large inaccuracies in 
the threshold setting process. 

Both the multitude of existing differential detector forms 
and the complexity of their statistical characterization have 
been obstacles to the comparison of the two postcoherent 
integration approaches, noncoherent and differential. Although 
in several publications it has been found that differential 
detectors are a preferable choice for weak signals acquisition, 
it was not until [22] that a formal comparison between the 
sensitivity losses of the squaring and differential operations 
was encountered. The approach developed in [22] is revised 
and consolidated in this paper. 

In this study, we analyze the PWD and NCDD detectors, 
and propose new approaches for the characterization of both. 
First, we analyze the PWD form by using a sum of weighted 
Laplace-distributions to characterize this detector in absence 
of signal, making use of the fact that the output of the 
differential integration results in a noise term following 
Laplace distribution. This analysis allows deriving an 
expression that can be used for setting the detection threshold, 
alternative to the one proposed in [16]. Under the alternative 
signal-present hypothesis, the Gaussian approximation is 
followed, not without first justifying its adequate use 
exclusively under this condition. We then make use of the 
results obtained to proceed to the assessment of the sensitivity 
of the NCDD detection scheme. Given the complexity of the 

statistical analysis of this detector (Fig. 1), we evaluate its 
detection performance by introducing and making use of a 
sensitivity loss formula of this detector by evaluating the gain 
of each operation performed inside this detector. The final 
sensitivity loss formula is obtained through a polynomial fit of 
simulation results and validated by the theoretical results for 
the PWD detector. This formula finally allows performing a 
formal comparison between the two postcoherent integration 
strategies, also validated in the acquisition of real GPS L1 C/A 
signals. 

This paper is organized as follows. Section II introduces the 
signal model employed and describes the coherent processing 
of the input signal. In section III, the PWD is characterized, 
showing the Laplacian nature of the differential operation 
output under noise-only conditions. In section IV, the 
performance of the NCDD in the acquisition of weak GNSS 
signals is assessed. In section V a comparison between the 
noncoherent detector (NCD) and the NCDD detector is 
carried. Finally in section VI, the conclusions are validated 
with real GPS L1 C/A data. Section VII concludes the paper. 

II. SIGNAL MODEL AND COHERENT SIGNAL PROCESSING 

The goal of the acquisition module of a GNSS receiver is to 
detect the presence of signal while providing a first coarse 
estimate of the incoming signals’ unknown code phase and 
Doppler shift. In stand-alone receivers this estimation is 
usually accomplished using maximum-likelihood estimation, 
testing several candidate code phases and frequency values 
within a given uncertainty range. For this, the first two 
operations within acquisition are the despreading of the 
incoming signal and the conversion to baseband frequency 
using the candidate code phase/Doppler shift pair of values. 
The combination of the two operations and the posterior 
accumulation is known as correlation or coherent signal 
integration when more than one code period is used in this 
process. The coherent processing chain of a GNSS signal s�⋅� 
is shown in Fig. 2 and is represented as: 
 

����	 , �� �� � � ������ ⋅ ���� � ��	���� ⋅ ������� !"#$%�&
"'( 	, (1)

 
where ��	 is the *+, candidate code phase (code delay), ���! is 
the -+, candidate demodulation frequency, ��⋅� is the 
spreading code, �� is the sampling period, . is the number of 
samples to be coherently accumulated (equal to the product of 
the number of samples per code period, .�, and the number of 

 
Fig. 1.   Noncoherent differential detector block diagram and resulting noise distribution under no signal present case 
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coherently integrated code periods, ./01), and ����	 , �� �� is the 
correlation output for the candidate satellite, code phase and 
demodulation frequency. The input signal is of the form: 
 ������ � 2 ⋅ 3���� � ���� ⋅ ����� � ���� ⋅ ����� "#$4567 89�����	 (2)

 
where 2 stands for the signal amplitude, � and �� respectively 
denote the true code phase and frequency of this specific 
signal, 3�⋅� � :1 is the navigation data included in the signal, <( represents the initial signal phase offset, and 89�⋅� is the 
noise component introduced by the communication channel 
that can be modelled as complex-valued zero-mean white 
Gaussian noise, with probability distribution given by [20]: 
 =>?@89A, B@89AC � 12EF� exp J�?@89A�2F� � B@89A�2F� K (3)

 
where ?@89A and B@89A denote, respectively, the real and 
imaginary parts of 89�⋅�, and the noise variance, F�, is given 
by: 
 F� � L@?@89A�A � L@B@89A�A � M(N (4)
 
where L@⋅A is the operator for the expectation value, M( � - ⋅�( is the single-sided noise power spectral density, - being the 
Boltzman constant and �( the noise temperature, and N ≃1 ��⁄  the front-end filter bandwidth. It should be noted that (2) 
represents the signal from a single satellite. Given the 
orthogonality of the different signals’ spreading codes, all 
other signals satellites visible to the receiver can be considered 
as an extra noise component included in (2). This signal 
structure is based on the GPS L1 C/A signal, and will be used 
in the analysis presented in this paper. The extension to other 
signal structures, such as Galileo E1, is straightforward. 
Examples of acquisition applied to this signal structure can be 
found, for example, in [23], [24]. 

Depending on the presence or absence of signal, the Q+, 
coherent integration output, �R���	 , ���!�, will either be 
obtained as noise-only or as function of signal plus noise, and 
can be expressed using the following statistical test: 
 S�R���	 , ���!� � 													8R														,			T(�R���	 , ���!� � �R���	 , �� �� 7 8R	, 		T&  (5)

 
where T( corresponds to the case when the signal under 
search is not present, and T& is the alternative hypothesis. 
Given the distribution of the input signal noise, the coherent 
integration output noise term, 8R, is equally a complex-
valued zero-mean Gaussian random variable, with variance FU� � .F� and distributed according to (3). Assuming that all 

the signal parameters are constant over the observation time, 
the signal component of the coherent integration output, �R���	 , �� ��, is obtained as: 
 sR���	 , �� �� � 2 ∙ . ∙ 3 ∙ W>X�	C ∙ sinc�X��,� ⋅ .��� ∙ ��5\ (6)<R � 2EQX��,�.�� 7 <( (7)

 
where X�	 � ��	 � � and X��,� � �� � � �� are, respectively, the 
code phase and frequency offsets between the candidate and 
true parameters of the signal, and W>X�C represents the 
autocorrelation of the signal spreading code evaluated at the 
offset X�. Without loss of generality we assume that the data 
bit is constant over the coherent integration time. This 
assumption is not restrictive given the existence of techniques 
that deal with this issue, including detection algorithms, 
subdivision of coherent integration in two parts and taking the 
most likely one not to contain data bit transition, or running 
several parallel coherent integrations at different tentative data 
bit boundaries [25]. Even if no such techniques are applied, 
the mean attenuation of the coherent integration output is only 
around 1dB for a signal integration time inferior to the data bit 
duration for the GPS L1 C/A signal [10]. 

From (6) the limitations of coherent integration can be 
observed. For very long coherent integration times, not only 
the navigation data bit can no longer be considered constant, 
but also the product X��,� ⋅ .�� has to be bounded to prevent 
high attenuations due to the sinc rolloff. In order to prevent 
high frequency-derived attenuations, the X��,� offset must be 
reduced in the same proportion as ./01 is increased, leading to 
a demanding requirement in terms of frequency resolution 
and, consequently, number of candidate points to be searched. 
In order to avoid both high attenuations in the final detection 
metric and high computational burden, transition from 
coherent to postcoherent processing is usually applied. The 
next sections will detail the postcoherent differential 
integration processing. 

III.  STATISTICAL CHARACTERIZATION OF DIFFERENTIAL 

INTEGRATION 

Given that coherent integration is limited by several factors, 
transition to postcoherent integration is required in order to 
efficiently detect the presence of weak signals. While the 
statistical characterization of noncoherent integration is well 
established and used in GNSS literature, a similar and 
practical evaluation is still needed for differential integration. 
As mentioned in the introduction, the attempts to characterize 
detectors employing postcoherent differential integration 
found in literature have repeatedly resulted in either highly 
complex expressions or simplifications through Gaussian 
approximations. This fact becomes even more significant 
considering the variety of such detectors that can be 
envisaged. Three different differential detection schemes are 
considered in the course of this work: 

 

 
Fig. 2.  Coherent processing block of a GNSS signal 
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• Pair-wise coherent differential detector (PWD) [16]: 
 

S^_`���	 , ���!� � ?a � S�R���	 , ���!� ∙ S�R�&∗ ���	 , ���!�c%d �⁄ e
R'& f (8)

 
• Coherent differential detector (CDD) [15]: 

 

Sg``���	 , ���!� � ?a� SR���	 , ���!� ∙ SR�&∗ ���	 , ���!�%d
R'� f (9)

 
• Noncoherent differential detector (NCDD) [17]: 

 

S%g``���	 , ���!� � h� SR���	 , ���!� ∙ SR�&∗ ���	 , ���!�%d
R'� h� (10)

 
where .g  represents the number of available coherent outputs. 
The differences between these three detectors are firstly on the 
accumulation of the differential outputs (note the 2Q index for 
each coherent integration output for the PWD detector) and 
secondly on the generation of the final detection metric, 
coherent or noncoherent, depending if the phase is removed 
prior to detection or not. The PWD form is the simplest to 
analyze due to the absence of dependency terms both in the 
differential outputs accumulation as well as in the generation 
of the detection metric. On the contrary, the most difficult one 
to characterize statistically is the NCDD detector. In this 
section, we analyze statistically the PWD detector which will 
afterwards allow advancing to the characterization of the CDD 
and NCDD detectors. 

In both its original publication as in [19] and [26], the PWD 
detection metric has been expressed as the difference of two χ� random variables (central under T( and noncentral under T&) to attempt its characterization. In this work, we follow a 
different approach for the characterization of this detector, 
making use of the Laplace nature of the differential operation 
output under T(, and employing the Gaussian approximation 
under T&. We will first demonstrate that these are appropriate 
characterizations for this detection metric. 
 

A. PWD Probability Density Function under H0 

Modeling the output of a detector under no signal present, 
only noise, allows establishing a threshold for deciding if a 
candidate signal is present or not with a certain degree of 
confidence, established by the acceptable probability of false 
alarm, j�k. In this case, the coherent integration outputs 
consist solely of the accumulation of Gaussian noise terms, 
and the output of the PWD detector is: 
 

S^_`l( ���	 , ���!� � ?m� S�R���	 , ���!� ∙ S�R�&∗ ���	 , ���!�%ndop
R'& q	

� 	 � ?@w�R ∙ w�R�&∗ A%ndop
R'& �	 � ?stl(,Ru%ndop

R'& �	 � tl(,Rv%ndop
R'& 	, 

(11)

 
where .`ĝ_ � c.g 2⁄ e is the number of differential 
integrations that can be performed for this detector having .g 
coherent outputs available. As demonstrated in Appendix A, 
the tl(,Rv  term is a zero-mean Laplace-distributed random 
variable with diversity parameter, w, equal to FU� . Its 
probability density function (PDF) is given by [27]: 
 �xy6,\z >{C � 12w ∙ ��|}|~ � 12FU� ∙ ��|}|��� 	, (12)

 
and the corresponding cumulative density function (CDF): 
 �xy6,\z >{C � 12 �1 7 sgn>{C �1 � ��|}|~ ��	. (13)

 
This way, the PWD detection metric under T( is obtained 

as the sum of .`ĝ_ such tl(,Rv  terms. Given the independency 
between the consecutive differential outputs characteristic of 
the PWD detector, the PDF of Ŝ _`l(  is that of the sum of 
independent Laplacian random variables. This PDF is known 
from [28] as: 
 

��opny6 >{C � � �.`ĝ_ 7 - � 1- � ��|}|~ ⋅ �|{|w �%ndop���&2%ndop4� ⋅ >.`ĝ_ � - � 1C! ⋅ w
%ndop�&
�'(  (14)

 
and the respective CDF is found by integrating (14) with 
respect to {: 
 

��opny6 >{C � 12 7 sgn>{C � �.`ĝ_ 7 - � 1- � γ%ndop�� �|{|w �2%ndop4�
%ndop�&
�'( 	. (15)

 
where γk>⋅C is the lower incomplete Gamma function of order �. The accuracy of this formulation can be asserted by 
comparing the histogram of simulation results with the 
theoretical distribution given by (14). This comparison is 
shown in Fig. 3 for .`ĝ_ � 10. As can be seen in this figure, 
the PDF corresponding to the sum of Laplace random 

 
Fig. 3.  Distribution of S^_`l(  for .`ĝ_ � 10 and PDF of sum of 10 
independent Laplace random variables with w � FU�  
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variables accurately matches the simulation results. It is now 
possible to set the detection threshold,	��1, for the PWD 
detector according to the specified j�k by using (15) and 
solving: 
 j�k � 1 � ��opn,y6>��1C	. (16)
 
This characterization of the PWD detector under T( can be 
used as an alternative to the existing formulas in [16] and [19]. 
 

B. PWD Probability Density Function under H1 

Under T&, the signal under test is considered to be present 
and the detection performance of the detector as function of 
the input signal power, and the threshold set via the T(  
analysis, is assessed. In the presence of signal the PWD 
detection metric results as: 
 

S^_`l& ���	 , ���!� � ?m� S�R���	 , ���!� ∙ S�R�&∗ ���	, ���!�%ndop
R'& q	

� 	 � ?@��R��R�&∗ 7 ��R8�R�&∗ 78�R��R�&∗ 78�R8�R�&∗ A%ndop
R'& 	

� 	 � ?s�R 7 8x,R 7 tl(,Ru%ndop
R'& �	 � ?stl&,Ru%ndop

R'& 	. 
(17)

 
The first term, �R, is the deterministic component 

originating from the product of the two signal components and 
the third term, tl(,R, was analyzed in the previous section. 
The remaining term, 8x,R, is obtained as the sum of the 
products of the deterministic signal with Gaussian noise, and 
is therefore a Gaussian random variable. Thus, the statistical 
analysis of the differential integration output under T& 
involves analyzing the sum of a Laplace and a Gaussian 
random variable, dependent between them. If these two terms 
were independent, their distribution could be directly 
expressed as a Normal-Laplace random variable [29], 
however, this is not the case. In [16] as in [19], it is suggested 
to rewrite ?stl&,Ru as the subtraction of two Chi-square 
random variables, but this approach does not lead to a closed-
form expression, having to resort to numerical methods to 
compute the integral term and obtain the final result. Instead in 
[20] it is proposed to approximate ?stl(,Ru by a Gaussian 
random variable, under the claim of the Central Limit 
Theorem (CLT) through which the summation of several such 
terms will tend to a normal distribution with variance equal to 
that of the individual terms. While this is not a recommended 
approach to follow under T( given the low precision at the 
tails of the Gaussian approximation vis-à-vis the requirement 
for the accurate threshold determination, it can be considered 
an acceptable approach under T&. Furthermore, in [21] four 
different PDFs are fitted to the actual distribution of the 
differential integration outputs under T&, concluding that the 
Gaussian distribution is the one that most accurately matches 
the true detector output distribution in these conditions. This 
will be especially true when the input signal power is high, 

and the Gaussian noise term becomes much more significant 
than the Laplacian one. 

From [27] the variance of a Laplace-distributed random 
variable is 2w�, which leads to: 
 var �?stl(,Ru� � 	2FU� 	. (18)

 
Assuming stationarity of all parameters during the signal 
integration time, the variance of ?s8x,Ru can be easily seen to 
be given by: 
 var �?s8x,Ru� � 2 ⋅ vars?@�R8RAu � 2 ⋅ |�R|� ⋅ FU� 	. (19)
 
This way, Ŝ _`l&  can be modelled as a noncentral Gaussian 
random variable with mean �Sopny�  and variance F

Sopny��  given 

by: 
 �

Sj��T1 ≃ .`ĝ_ ∙ ?@�RA � .`ĝ_ ∙ |�R|� ∙ cos�2EΔ��,�.��� (20) 

FSopny�� ≃ .`ĝ_ ∙ �?s8x,Ru 7 ?stl(,Ru�	� .`ĝ_ ∙ 2FU� ⋅ >|�R|� 7 FU�C (21) 

 
where once again the approximate equalities are obtained 
assuming stationarity of all parameters during the signal 
integration time. Evidently this is not the case when dealing 
with real signals, but it is an essential assumption for the 
characterization of the detectors’ performance. 

The drawbacks of the PWD detection metric are now 
remarked in (20), as not only .`ĝ_ is approximately only half 
of the number of differential integration outputs that can be 
generated, but also given X��,� ≠ 0 a portion of the signal 
power is allocated to the imaginary part of tl&,R, and is 
therefore not useful. The expression for the probability of 
detection, j�, for the PWD detector is finally obtained as: 
 

j�,^_` � 1
�2EFSopny�� ∙ � exp �� >  � �Sopny� C�2FSopny�� ¡ 3 ¢

£¤¥
�	

� 12 erfc§
¨��1 � �Sopny�

�2FSopny�� ©
ª	. (22)

 
where erfc>∙C is the complementary error function, 
representing the tail probability of the standard normal 
distribution. To assess the accuracy of the fit provided by this 
expression, a comparison between the predicted and simulated 
detection rate for a GPS L1 C/A signal sampled at twice the 
chip rate is shown in Fig. 4 for .`ĝ_ = 1, 5 and 10, employing 
1ms coherent integration (. � 2046) and Δ��,� � Δ� � 0. 
The theoretical analysis is carried by first calculating the 
threshold using (16) and then employing (22) to predict the 
detection probability, while the simulation analysis calculates 
the threshold based on the simulated noise distribution and 
then measures the detection rate as the percentage of threshold 
crossings for each Carrier-to-Noise (C N0⁄ ) value. 
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As shown in Fig. 4, the predicted pair-wise detector 
performance according to (22) is very close to the one 
observed in the simulations, what validates the Gaussian 
approximation under T&. The accuracy of this approximation 
can also be observed by comparing the normal PDF and the 
histogram of the detector outputs. Two examples are shown in 
Fig. 5. From the plots in this figure it is clear that the Gaussian 
approximation is very accurate for high input C N0⁄  values 
even for a low number of accumulations. This is due to the 
higher influence of the cross noise-signal multiplication, 8x,R 
in (17), with respect to the noise-only Laplacian term. 
Contrarily, for weak signals and a low number of 
accumulations, the Gaussian fit is not an accurate 
representation of the detector output distribution, but the 
closeness between the two distributions is still high. In fact, 
the area matched in the top plot of Fig. 5 is close to 90%. This 
also explains why the difference between the predicted and 
simulated results in Fig. 4 is not substantial even for low 
C N0⁄  values. Additional simulations confirm that the 
Gaussian approximation becomes gradually more accurate for 
a higher number of accumulations, being the area match in 
these cases even greater than for the two presented here. 
Alternatively, one may estimate the PDF of the detector under T& from data using nonparametric kernel estimation with a 
cost of additional computation [30]. 

The expressions of the probability of false alarm and 
probability of detection derived in this section completely 
characterize the pair-wise differential detector. The derivation 
of similar expressions for the CDD and NCDD detectors is 
significantly more complex due to the rise of dependency 
between terms. Therefore, we follow a different approach in 
the next section to assess the performance of these two 
detectors by evaluating their sensitivity gain. 

IV. SENSITIVITY OF DIFFERENTIAL DETECTORS 

In the previous section, the pair-wise differential detector 
has been studied, highlighting its drawbacks for GNSS signal 
acquisition, particularly in the presence of a nonzero residual 
Doppler offset in the coherent output. A more suitable detector 
in presence of Doppler frequency shift is the noncoherent 

differential detector (NCDD) whose detection metric removes 
the phase information by a squaring operation as [17]: 
 

S%g``���	 , ���!� � h � SR���	 , ���!� ∙ SR�&∗ ���	 , ���!�%nd4&
R'� h�, (23)

 
where .`g � .g � 1 is the number of differential integrations 
achievable with this detector form having .g correlation 
outputs available. The advantage of this detector with respect 
to the PWD can be directly observed in simulations. In Fig. 6, 
the two detectors’ detection performance is compared for three 
different simulation scenarios whose details are shown in 
Table 1. For scenario S1, where the residual Doppler offset is 
null and the same number of accumulations is performed for 
both detectors, the PWD detector outperforms the NCDD, due 
to the of the squaring loss paid by the NCDD. However, this 
gain with respect to the NCDD will be limited as the Doppler 
offset grows, according to (20). For scenario S3 in particular, 
where cos�2EΔ��,�.��� � 0, the nonzero detection rate for 
the PWD detector at high input signal power is achieved 
merely due to the influence of the cross signal-noise Gaussian 
terms 8x,R in (17). 

 
Fig. 4.  Comparison between theoretical and simulated detection probability 
for .`ĝ_ = 1, 5 and 10 (1ms coherent integration, Δ��,� � Δ� � 0C 
 

 
 

 
 

Fig. 5.  Accuracy of Gaussian approximation of differential integration 
output under T& for .`ĝ_ � 1, C N0⁄ � 34dB-Hz (top) and C N0⁄ �44dB-Hz (bottom) 
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As the statistical characterization of the NCDD detector is 
not easy to accomplish, works in literature commonly use the 
Gaussian approximation under both T( and T& hypotheses. 
However, as previously noted, this cannot be considered a 
reasonable option under T( for a low number of differential 
accumulations given the required precision at the tails of the 
distribution. Instead we propose to follow an alternative to the 
formal statistical analysis of this detector, establishing a 
comparison with a reference scheme whose analysis is 
mathematically viable. This approach is followed in [31] for 
the characterization of the noncoherent detector applied to 
radar systems. In [31], a sensitivity loss term is defined that 
allows predicting the detection performance of a noncoherent 
detection scheme operating at a target receiver working point �j� , j�k�, with respect to the one which would be obtained if a 
coherent solution was instead applied. The formula provided 
in [31] is usually adopted in GNSS literature for analysis of 
the squaring loss of noncoherent integration [1], [4], [7]. The 
same procedure is followed in this section to propose a loss 
formula for the noncoherent differential detector, °%g``. This 
procedure was previously followed in [22] and [32], but given 
the lack of accurate expressions for the statistical 
characterization of the differential operation, the formulas 
proposed were solely based on simulation data. Recurring to 
the analysis described in the previous section, an analytical 
approach can now be followed to validate and complement the 
work in [22]. 

This section starts by reviewing the optimal GNSS detector 
as well as the procedure to derive a sensitivity loss formula 
with respect to this detector. Next, a formula for the 
differential integration loss is proposed, and the sensitivity 

loss of the NCDD detector is obtained as a combination of the 
differential and squaring losses. 

 

A. Sensitivity Loss of a Nonoptimal GNSS Detector 

1. Methodology of Evaluation 
The optimal detector in the presence of a stationary signal 

and known signal phase is the purely coherent detector (CD) 
[8]. The detection metric for the coherent detector is defined 
as: 
 

Sg`���	 , ���!� � ?a� SR���	 , ���!�%d
R'& f	. (24)

 
It should be noted that this detector is only possible to apply 

in theory given the assumption of knowledge of the input 
signal phase. However it serves as a reference for the 
evaluation of the detection loss of nonoptimal, but practical, 
detectors. The equation that characterizes this detector’s 
performance is [31]: 
 j�,g` � 12 erfc�erfc�&�2j�k� � ±.g 	.�	snrin�	� 12 erfc�erfc�&�2j�k� � ±snrcoh�	, (25)

 
where snrin and snrcoh are, respectively, the Signal-to-Noise 
Ratio (SNR, expressed in linear dimensions) at the detector 
input and after coherent integration (in this case coincident 
with the detector output), and .� the number of samples per 
code period. Inverting (25), the SNR at the coherent 
integration output can be expressed as function of the target 
working point: 
 snrcoh � �erfc�&�2j�k� � erfc�&>2j�C��	� Dc�j� , j�k�	. (26)

 
This SNR is also known as ideal detectability factor, Dc, 

and represents the minimum SNR at the coherent integration 
output that allows detection of signal at the target receiver 
working point �j� , j�k�. The minimum input precorrelation 
SNR is then expressed as a function of Dc as: 
 snrin,min � Dc./.�	. (27)

 
The product ./.� in this equation corresponds to the gain 

of coherently integrating the ./.� signal samples and is the 
maximum achievable signal integration gain. Consequently, 
the required input SNR, snrin,req, for achieving a similar 
working point with detectors employing other integration 
approaches (such as noncoherent or differential integration), 
must always be higher than snrin,min, given the nonideality of 
the operations involved. A sensitivity loss characteristic of the 
nonideal detector, °�¶�¶/�0·, with respect to the ideal coherent 
one may then be expressed as [31]: 
 

TABLE 1 
SIMULATION SCENARIOS FOR DETECTORS COMPARISON IN FIG. 6 

Simulation Parameters Simulation Scenario 
S1 S2 S3 

Signal GPS L1 C/A 
Sampling Frequency 2.046MHz 
Coherent Integration Time 1 code period – 1ms/2046 samples 
Number of Code Periods 2 6 11 

Differential Integrations 
NCDD 1 NCDD 5 NCDD 10 
PWD 1 PWD 3 PWD 5 

Residual Doppler Offset 0Hz 125Hz 250Hz 
    

 
Fig. 6.  Comparison of pair-wise and noncoherent differential detectors for 
simulation scenarios described in Table 1 
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°�¶�¶/�0· � snrin,reqsnrin,min � snrin,req ∙ .�Dc ./⁄ 	. (28)

 
Given the linearity of the correlation operation, °�¶�¶/�0· 

can also be interpreted as the ratio of the two correlation 
output SNRs (Fig. 7). This can also be noted in (28) as the 
product snrin,req ∙ .� corresponds to the SNR at the correlation 
output of the nonoptimal detector, and Dc ./⁄  corresponds to 
the SNR at the correlation output of the coherent detector. 
Finally, the required SNR to acquire a signal at a given 
working point with the nonoptimal detector can be expressed 
as: 

 SNRin,req,dB � SNRin,min,dB 7 °�¶�¶/�0·,»¼ � 10 ∙ log&( � Dc.�./� 7 °�¶�¶/�0·,»¼	. (29)

 
The ratio Dc .�⁄  corresponds to the input SNR that would 

be required by the CD detector if only 1 code period would be 
available and can be denoted as snrin,min,%¾�1. Equation (29) 
can then be rewritten as: 
 SNRin,req,dB � SNRin,min,%¾�1,dB� �10 ∙ log&(>./C � °�¶�¶/�0·,»¼�	� SNRin,min,%¾�1,dB � ¿�¶�¶/�0·,»¼>./C	, (30)

 
where ¿�¶�¶/�0· corresponds to the detector sensitivity gain of 
integrating a number ./ of code periods and is defined as the 
difference between the ideal gain of coherent integration and 
the loss of the nonoptimal operations performed with respect 
to the ideal detector. 
 

2. Application to the Squaring Loss 
These expressions can be used in the quantification of the 

squaring loss, °�À, that is incurred by the phase removal 
operation, representing the price to pay in terms of additional 
input SNR for not knowing the input signal phase. In this case, 

the optimal detector is the square-law detector (SLD), whose 
detection metric is expressed as [8]: 
 

S�Á`���	 , ���!� � h� SR���	 , ���!�%d
R'& h�. (31)

 
The equation that characterizes the detection performance 

of the SLD detector is [19]: 
 j�,�Á` � Â& �±2.g.�	snrin, ��2 ln�j�k��	

� Â& �±2	snrcoh, ��2 ln�j�k��	, (32)

 
where ÂÃ>�, ÄC is the Å�1 order Marcum Q-function. The 
squaring loss can now be expressed as the ratio between the 
input SNRs required by the two detectors in order to achieve 
similar detection performance: 
 °�À � snrin,SLDsnrin,CD � snrcoh,SLDsnrcoh,CD � snrcoh,SLDDc 	. (33)

 
This loss can be promptly obtained by solving (26) and 

(32), for any �j�, j�k� pair and using the results in (33). 
Nevertheless, solving these equations is a nontrivial 
mathematical process, and in [31] a simple approximation for °�À is suggested: 
 

°�À � snrcoh,SLDDc ≃ 1 7 2.3snrcoh,SLD ≃ 1 7 ±1 7 9.2/Dc2 	. (34)

 
The sensitivity gain of the SLD detector in the presence of ./ code periods is then given by: 

 ¿�Á`,�É>./C � ¿/01,�É>./C � °�À,�É 	, (35)

 
where ¿/01>./C � ./. As an example, the input signal power 
required by the SLD detector for the acquisition of a single 
GPS C/A code period, sampled at 2 times the chip rate 
(.� � 2046), and for a working point �j� , j�k� � >0.9, 10�ÊC 
can be found through: 
 Dc,dB>0.9, 10�ÊC � �erfc�&>2 ∙ 10�ÊC � erfc�&>2 ∙ 0.9C�� � 11.9	dB 

°�À,�É � 10 ∙ log&( J1 7 ±1 7 9.2/Dc2 K � 0.6	dB 

¿�Á`,�É>1C � ¿/01,�É>1C � °�À,�É � �0.6	dB 

SNRin,SLD,dB � 10 ∙ log&( �Dc.�� � ¿�Á`,�É>1C ≃ �20.6	dB 

 
Naturally, a very similar result is obtained by solving (32): 

 0.9 � Â& Ë±2 ⋅ 1 ⋅ 2046 ∙ snrin, ±�2 ln>10�ÊCÌ ⟺ ⟺ SNRin,dB ≃ �20.6	dB 
 

 
Fig. 7.  Coherent (optimal) and nonoptimal integration strategies diagram and 
SNR measuring points 
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This approach can be generalized to any number of squaring 
operations, and is the basis to obtain the loss of the 
noncoherent integration scheme in [31]. This method of 
evaluating the nonoptimal detectors’ sensitivity loss differs 
from the traditional approach of calculation of a deflection 
coefficient, as a measure of the output SNR. This approach 
has been followed for both the differential and noncoherent 
detection schemes in several publications such as [13] and 
[21], but its inapplicability in these cases is explicitly 
illustrated in [33] and, therefore, it is not considered here. 
 

B. Sensitivity Loss of the Differential Operation 

In order to be able to quantify exclusively the loss of the 
differential operation with respect to coherent summing, the 
detection scheme employed in this analysis must avoid any 
other operations, in particular the squaring of the signal for 
phase removal. This can be achieved by concentrating all the 
signal power on the in-phase branch of the differential 
integration output (zero residual Doppler offset) and then 
taking just its real part as the detection metric (Fig. 8). By 
comparing the required input SNRs for the two schemes in 
Fig. 8, it is guaranteed that the difference in performance 
between both is exclusively due to the nonoptimality of 
differential operation with respect to coherent summing. The 
differential detector employed in this case corresponds to the 
CDD detector: 
 

Sg``���	 , ���!� � ?a � SR���	 , ���!� ∙ SR�&∗ ���	 , ���!�%nd4&
R'� f (36)

 
As for the moment we are focusing in the assessment of the 

sensitivity loss of a single differential operation, the detection 
metric of interest is: 
 Sg``���	 , ���!� � ?sS����	 , ���!� ∙ S&∗���	 , ���!�u	. (37)

 
To characterize the sensitivity of this detector using its 

probability of detection, we need the PDF of the detection 
metric in (37) under T&. As this detection metric is equivalent 
to the pair-wise detector one for .`ĝ_ � 1, the results from the 
previous section can be directly applied. Making use of (13), 

(16), and (20)-(22), the equation that characterizes this 
detector for .`ĝ_ � 1 is: 
 j�,g`` � 12 erfc JË��1 � �Sopny� Ì �2FSopny��Î K		

� 12 erfc J� FU� ∙ ln�j�k� 7 |�R|�±	4FU� ∙ >|�R|� 7 FU�CK	� 12 erfc J� ln�j�k� 7 2FU� ⋅ .� ∙ snrin±8.� ∙ snrin 7 4 K	. 
(38)

 
According to (28), the sensitivity loss of a single differential 

operation as function of Dc, °�	��>1, DcC, can be expressed as: 
 °�	��>1, DcC � snrin,reqsnrin,min � 	snrin,req ∙ .�Dc 2⁄ 	, (39)

 
where snrin,req in this case is the input SNR required by the 
CDD detection scheme to achieve the working point specified 
by Dc. This required input SNR can be directly obtained by 
solving (38) for any pair �j� , j�k�, but it should be noted that 

 
Fig. 8.  Comparison for determination of differential operation sensitivity loss 
  

Fig. 9.  Comparison of Gaussian and Normal-Laplace approximations for the 
CDD detector for .`g � 1 
 

 
Fig. 10.  Sensitivity loss due to differential operation – theory, simulation and 
approximation 
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this expression is based on the Gaussian approximation under T&, which was seen not to be entirely accurate. Another option 
is simply to consider the Gaussian and Laplace terms 
independent, in which case a Normal-Laplace random variable 
is obtained [29]. The expression that characterizes this 
detector under this assumption is shown in Appendix B. The 
accuracy of these two approximations of j�,g``  can be 
assessed by comparing the predicted j� from (38) and (55) 
with the results obtained from simulation. This comparison is 
shown in Fig. 9 for the acquisition of a GPS C/A signal, 
sampled at 2 times the chip rate (.� � 2046), j�k � 10�Ê and X��,� � X� � 0. As expected, none of the approximations 
represents an entirely accurate prediction of the detector 
performance. In fact, the predicted performances according to 
both approximations are almost coincident, from which it can 
be concluded that the oddity of the differential detector 
behavior is mostly due to the dependence between the two 
stochastic terms under analysis. 

Fig. 10 shows °�	��>1, DcC calculated through (39) using 
the snrin,req values for the approximations and simulation 
values shown in Fig. 9. All curves are expressed as function of 
Dc 2⁄ . Although the difference between the approximations 
and simulation loss values is not considerable, the profile 
exhibited is significantly different. This fact complicates the 
proposal of an expression to °�	��>1, DcC based on the 
theoretical loss curves which is consistent at both high and 
low SNR values. The issue is with the sensitivity loss formula 
and not with the metric PDF approximation, meaning that 
even with a good model of the PWD distribution it is difficult 
to obtain a closed formula of the sensitivity loss °�	��>.`g , DcC. Therefore, the simulation-derived loss curve is 
considered. The theoretical analysis, nevertheless, is useful to 
validate the simulation results. Several different models can be 
employed in the attempt to approximate the simulation points 
of °�	��>1, DcC shown in Fig. 10. Although various 
approximations of different orders of 1 >Dc 2⁄ C⁄  offer a good 
fit in the SNR area under consideration in the figure, their 
behavior at high and, especially, low SNR values makes them 
unsuitable for the approximation sought. One approximation 
that closely matches the simulation results in the SNR range 
under consideration and that is consistent for both low and 
high SNR values is: 
 °�	��>1, DcC ≃ 1 7 0.2Dc 2⁄ 7 0.45±Dc 2⁄Ñ 	. (40)

 
This curve is also shown in Fig. 10, where its accuracy in 

predicting the sensitivity loss induced by one differential 
operation is verified. In order to generalize this loss formula to 

any number of differential operations, °�	��>.`g , DcC, it 
suffices to note that the SNR at the correlation output of the 
coherent detector is written as Dc .g⁄  or, for the case of the 
NCDD detector, Dc >.`g 7 1C⁄ . Equation (40) can then be 
rewritten as: 
 

°�	��>.`g , DcC ≃ 1 7 0.2 ∙ >.`g 7 1CDc 7 0.45 ∙ ±>.`g 7 1CÑ
±DcÑ  (41)

 
This formula expresses the sensitivity loss incurred by a 

number .`g  of differential integrations (employing .`g 7 1 
coherent outputs) and a receiver working point specified by Dc�j� , j�k�, with respect to the coherent operation. It should 
be noted that this simple passage from (40) to (41) does not 
actually take into account the dependence between the 
consecutive differential outputs. Nevertheless, as it will be 
seen further, it still seems to be a good approximation of the 
actual loss experienced by the NCDD detector. 
 

C. Sensitivity Loss of the NCDD detector 

After characterizing the loss of differential integration, we 
now extend the analysis to the NCDD detector loss, °%g``, 
which, according to the block diagram shown in Fig. 11, is a 
combination of both differential integration and squaring loss. 
According to the procedure previously described, the NCDD 
detector sensitivity loss is defined as the additional input SNR 
that is required by this detector with respect to the input SNR 
that is required by the coherent detection scheme to achieve a 
similar target working point. The sensitivity gain of the 
NCDD scheme having ./ coherent outputs available is then 
expressed as follows (Dc is omitted in the loss formulas for 
simplicity of notation and all the terms are in dB): 
 ¿%g``>./C � ¿/01>./C � °%g``>./C	� ¿/01>.gC � �°�	��>.`gC 7 °�À�	� ¿�Á`>.gC � °�	��>.`gC	. (42)

 
This way we can directly relate the sensitivity gain of the 

NCDD detector with that of the SLD detector by °�	��>.`gC. 
This will be particularly useful in the comparison of the 
NCDD and NCD detectors, as the sensitivity loss formula 
proposed in [31] for the latter (equation (47)) is also related to 
the SLD detector. It should be noted that, even if °�	��>.`gC 
was obtained for the CDD scheme by concentrating all the 
signal power in the real branch of the correlation output, it 
expresses the sensitivity loss of the differential operation as 
function of the SNR of the coherent output and it is 

 
Fig. 11.   Noncoherent differential detector block diagram and SNR measuring points 
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independent of its phase. This way, it can be directly applied 
in (42). 

It then suffices to express the differential operation loss as 
function of the SNR prior to the phase removal operation, snrdiff in Fig. 11. This can be done by recurring to the 
squaring loss formula: 
 

°�À � snrdiffsnrout ≃ 1 7 ±1 7 9.2/snrout2 	, (43)

 
where snrout is the SNR at the output of the NCDD detector as 
shown in Fig. 11. Given that all the loss formulas have been 
developed with respect to the coherent detector, it then follows 
that snrout � Dc and therefore: 
 

°�À � snrdiffsnrout � snrdiffDc ≃ 1 7 ±1 7 9.2/Dc2 ⟺	
⟺ snrdiff ≃ Dc ∙ 1 7 ±1 7 9.2/Dc2 	. (44)

 
The sensitivity loss of the NCDD detector with respect to 

SLD is finally given by: 
 

°�	��>.`gC ≃ 1 7 0.2 ∙ >.`g 7 1Csnrdiff 7 0.45 ∙ ±>.`g 7 1CÑ
±snrdiffÑ 	. (45)

 
The accuracy of this formula can be assessed by comparing 

the predicted and observed sensitivity losses obtained through 
simulations. Defining a target j� � 0.9, the predicted and 
observed sensitivity loss of the NCDD detection scheme with 
respect to the SLD detector in the acquisition of a GPS L1 
C/A signal (.� � 2046) is shown in Fig. 12 for three different 
values of j�k. From this figure it can be seen that there is a 
very close match between the observed and expected loss 
profiles for this detector. In fact, the prediction is accurate to 
within :0.3dB in the interval presented for each of the three j�k values considered. An example of the accuracy of this 
formula is shown in Fig. 12 for .`g  = 20. It can be noticed 
from this figure that the predicted NCDD sensitivity loss at �j� , j�k� � >0.9, 10�ÊC with respect to SLD is very close to 
the actual value. For .`g  between 50 and 100 the maximum 
error is still within :0.5dB. 

 

 
Fig. 12.  Predicted and observed losses for the NCDD detection scheme with 
respect to the SLD detector as function of .`g and j�k for j� � 0.9 
 

 
Fig. 13.  Illustration of NCDD detector sensitivity loss with respect to SLD 
detector for .`g � 20 and accuracy of loss formula 
 

 
Fig. 14.  Comparison between simulated and theoretical results for the 
NCDD detector for the simulation scenarios of Table 1 
 

 
Fig. 15.  Number of differential integrations required  for the NCDD 
detector to achieve detection at �j� , j�k� � >0.9, 10�ÊC as function of 
coherent integration time and input C N0⁄  
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D. Applications of the NCDD Sensitivity Loss Formula 

One of the applications of the proposed formula is for 
characterizing the detection performance of the NCDD 
detector. We can use this formula to construct the sensitivity 
curve of the detector using as reference the curve of the SLD 
detector given by (25), as was done in Fig. 13. The 
comparison between the simulated and predicted detector 
performance for the scenarios of Table 1 is plotted in Fig. 14. 
From this figure it can be seen that the NCDD sensitivity 
prediction curve is also accurate when a nonzero Doppler 
offset is accounted for in the curves of scenario S2 and S3. 
More details on the usage of this formula for a nonzero 
Doppler offset are given in section V.B. 

Another application of this formula is in the estimation of 
the number of differential integrations required for the 
acquisition of a GPS L1 C/A signal at a given input C N0⁄ . 
Fig. 15 shows this estimation for three different values of 
coherent integrations. Having obtained a loss formula capable 
of quickly providing an estimation of the NCDD detector’s 
performance, it is now of interest to compare this detector with 
its noncoherent counterpart. This analysis is carried in the next 
section. 

V. DIFFERENTIAL AND NONCOHERENT DETECTION SCHEMES 

COMPARISON 

The performance comparison of differential and 
noncoherent detection schemes has been the subject of several 
publications in recent years [8], [18]-[21], but to the authors’ 
best knowledge the first formal comparison between the 
NCDD and the noncoherent detector (NCD) is found in [22], 
recurring to (45). In this section, the results from [22] are 
reviewed and extended by evaluating the sensitivity loss of 
each detector for a nonzero Doppler offset. 
 

A. NCDD and NCD Sensitivity Loss in absence of Doppler 

The detection metric for the NCD detector is defined as: 
 

S%g`���	 , ���!� � �ÔSR���	 , ���!�Ô�%Õd
R'& 	. (46)

 
where .%g � .g is the number of noncoherently accumulated 
correlation outputs. The sensitivity loss of the NCD detector, °%g`, with respect to the SLD detector is given in [1] and [31] 
as an extension of the squaring loss formula in (34): 
 

°%g`>.%gC � 1 7±1 7 9.2 ∙ ..Ö Dc⁄1 7±1 7 9.2 Dc⁄ 	. (47)

 
If the Doppler offset is small enough for its effect on the 

coherent integration output to be disregarded, a direct 
comparison between the two loss formulas, (45) and (47), can 
be used to compare the relative performance of the detectors. 
In Fig. 16, the losses that would be observed by each scheme 
with respect to the SLD detector for three different working 
points are presented. The number of available code periods is 
varied from 2 to 50 to obtain the curves shown. According to 

Fig. 16, for a low number of differential integrations the 
combined effect of the differential and squaring loss leads to 
an inferior performance of the NCDD detector with respect to 
the NCD. This can also be seen in Fig. 17 where the curves for 
the sensitivity loss of each detector are shown for �j� , j�k� �>0.9, 10�ÊC. As the predictions from both loss formulas are not 
exact, conclusions about the precise crossing point should not 
be taken from these plots. In any case, it is safe to state that for 
the acquisition of weak signals, requiring a high number of 
postcoherent accumulations, the differential detector is a 
preferable choice. 

The effect of the inferior sensitivity loss of the NCDD 
detector with respect to the NCD for the acquisition of weak 
signals is reflected on the acquisition time that each detector 
needs to achieve the required degree of confidence in the 
detection of a given signal with a certain power. In the 
detection of the presence of signal, the allocation of the signal 
integration time between the coherent and postcoherent 
strategy involves a tradeoff between sensitivity and 
complexity. The ultimate practical restriction to the increase of 
the coherent integration time (considering no navigation data 
bit influence or dynamics and clock instability effects) is the 
number of frequency grid points, .� , to be evaluated in the 
acquisition process. The usual practice is to define a maximum 

 
 

 
Fig. 16.  Sensitivity loss of NCDD and NCD with respect to SLD for Δ��,� �0 and .%g � .`g 7 1 ∈ �2,50� (leftmost point corresponding to .%g � 2 and 
rightmost one to .%g � 50) 

 

 
Fig. 17.  Sensitivity loss of NCDD and NCD with respect to SLD as function 
of number of correlation outputs for Δ��,� � 0 and �j� , j�k� � >0.9, 10�ÊC 
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allowable frequency attenuation for the coherent output which 
should not be exceeded, resulting in a rule such as [1]: 
 .� � Δ��Ø�� � Δ��Ù �/01⁄ � �/01 Δ��Ù 	, 
 
where Δ�� is the width of the Doppler frequency search space 
(typically around 10kHz), Ø�� is the frequency grid resolution 
(not to be confused with Δ��, the residual frequency 
estimation error as defined in section II), and Ù is the 
coefficient resulting from the maximum desired amplitude 
attenuation [1]: 
 °Ú�,RkÛ 	�	sinc Ë�/01 ∙ Ø�� 2Ü Ì ⟺ Ø�� � Ù�/01  

• °Ú�,RkÛ,�É = 0.5dB ⟹ Ù � 1 2⁄  
• °Ú�,RkÛ,�É = 1.9dB ⟹ Ù � 1 

 
This way, even if the maximum integration gain is obtained 

through the increase of the coherent integration time, it 
directly impacts the acquisition process complexity (number 
of operations required). As an example, we consider a total 
signal observation time of 20ms. The highest sensitivity gain 
possible corresponds to coherently integrating throughout the 
20 code periods, that is: 
 ¿/01,�É>20C � 10 log&(>20C � 13dB	. 
 

The other alternatives imply trading-off the coherent and 
postcoherent integration gains according to the equations 
(values in dB): 
 ¿%g`>.%gC � ¿/01>.gC � °%g`>.%gC	¿%g``>.`gC � ¿/01>.gC � °%g``>.`gC 
 

In Table 2, the number of correlator outputs required for 
each different postcoherent integration strategy to achieve the 
13dB gain for a working point of �j�, j�k� � >0.9, 10�ÊC and 
for different number of coherent integrations is shown. The 
number of frequency grid points is calculated for a grid 
employing Ø�� � 1 �/01⁄ . Naturally, the strategy requiring the 
shortest observation time is the one employing the longest 
coherent integration time. It can also be seen that the 
performance of the NCDD and NCD schemes become very 
similar when low postcoherent integration gains are sought. 
The preferable solution from the ones presented in the table 
should be found as a compromise between integration time 
and complexity. 
 

B. NCDD and NCD Sensitivity Loss in presence of Doppler 

In the presence of a nonzero and stationary Doppler offset, 
the coherent processing output is affected by the sinc function, 
as in (6). This means that the SNR at the coherent processing 
output will be less than what would be expected for a zero 
Doppler offset [3], [34]. This way, the effective coherent 
output SNR, snrcoh,eff, is given by: 
 snrcoh,eff � snrcoh ∙ sinc��Δ��,� ⋅ .��� < snrcoh,ß� ,!'(	, 
 
This extra attenuation in the coherent processing is translated 
into (44) and (47) as an increase of Dc by 1 sinc��Δ��,� ⋅ .���⁄ . The comparison for a Doppler offset of 
500Hz (typically middle of a frequency bin for one coherent 
integration) is shown in Fig. 18. Although in this figure it can 
be seen that the crossing point between the NCD and NCDD 
sensitivity losses occurs at a higher loss value, this crossing 
occurs in fact for a lower number of accumulations, 
comparing Fig. 17 and Fig. 19. According to these plots it can 
be seen that the NCDD detector remains as the most suitable 
detector for the acquisition of weak signals. 

TABLE 2 
INTEGRATION STRATEGIES COMPARISON 

Integration 
Time (ms) 

Frequency Grid 
Points 

Correlation Outputs Required 
NCD NCDD 

1 10 64 40 
2 20 21 16 
4 40 8 7 
5 50 6 6 
10 100 3 3 
20 200 - - 
    

 
Fig. 18.  Sensitivity loss of NCDD and NCD with respect to SLD for Δ��,� �500Hz and .%g � .`g 7 1 ∈ �2,50� (leftmost point corresponding to .%g � 2 and rightmost one to .%g � 50) 

 
 

 
Fig. 19.  Sensitivity loss of NCDD and NCD with respect to SLD as function 
of number of correlation outputs for Δ��,� � 500Hz and �j� , j�k� �>0.9, 10�ÊC 
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VI. REAL DATA PROCESSING 

The validation of the theoretical analysis described in 
sections III and IV as well as the comparison between the 
differential and noncoherent detectors in section V have been 
carried using simulated data. In this section, the NCDD and 
NCD detectors’ performance is assessed with real GPS L1 
C/A signals collected at the Institut Supérieur de 
l’Aeronautique et de l’Espace (ISAE), Toulouse. The data 
acquisition was carried with a NordNav R30 receiver 
operating at a sampling frequency of 16.4MHz. 

The focus of this work is in the acquisition of weak signals, 
however the reception of such signals is unpredictable and 
their actual signal power difficult to assess. This way, an 
alternative approach is followed in which a strong signal is 
identified and then corrupted with an extra Gaussian noise 
component. For this purpose, it is essential to demonstrate that 
the noise environment is effectively Gaussian. As the signal 
provided by the NordNav R30 receiver is already digitized, 
this can be achieved by analyzing the noise distribution at the 
output of correlation when testing the presence of an absent 
PRN code, which, according to (5) enables us to estimate the 
input signal variance. The result of this analysis is shown in 
Fig. 20. From the histogram shown in this figure, the Gaussian 
nature of the environment noise is well-remarked. It should be 
noted that this Gaussian feature was verified in data 
collections also in deep urban scenarios, as in the city center 
of Toulouse. This validates the methodology employed for the 
emulation of weak signals and allows testing the algorithms 
under a wide range of signal strengths. 

Two types of analysis are carried. First the detectors are 
compared employing data blocks of fixed size, and their 
sensitivity curve is drawn, and in the second analysis a fixed 
attenuation is imposed and the detectors’ detection rate is 
plotted as function of the number of available code periods. 
The Doppler search grid considered in the following examples 
spans from -5 to 5 kHz and the frequency resolution in every 
case considered is 1/�/01. For each analysis a mean of 1 false 
alarm per 100 detections is fixed, so the detection thresholds 
are set by running the detectors for 100 independent data 
blocks extracted from the short collection time while testing a 
nonpresent PRN code. The detectors are then run for these 
same 100 blocks using the PRN code of the strong signal 

previously identified. This procedure is repeated for each Ö .(⁄  point shown in the plots. 
 

A. Detectors Sensitivity Comparison 

The first comparison of the performance of the NCDD and 
NCD detectors in real data acquisition is performed employing 
a coherent integration time of 1ms and 2, 5, and 10 correlation 
outputs. The signal C N(⁄  is varied as shown in the plots of 

 
Fig. 20.  Noise-only correlation output histogram 
 

 
a) 2 correlation outputs 

 
b) 5 correlation outputs 

 
c) 10 correlation outputs 

Fig. 21.  NCDD and NCD sensitivity comparison in acquisition of real signals 
using 2, 5 and 10 correlation outputs and 1ms coherent integration 
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Fig. 21. In these plots, it is clear that the NCDD detector 
becomes more effective than NCD as the input signal C N(⁄  
decreases and, consequently, a longer signal observation time 
is required for reliable signal detection. It should be noted that 
in this analysis no methods for attempting compensation of 
data bit transition were applied, so in several data blocks the 
change in data bit value is encountered. Given the long data 
bit duration for the GPS L1 C/A signal with respect to its code 
period, the data bit transition affects both detectors nearly in 
the same way, even if noncoherent integration is naturally 
more robust. Nevertheless, the data bit transition issue requires 
further attention in modern GNSS signals, as Galileo E1, in 
which the navigation data period is similar to the spreading 
code period. 

 

B. Weak Signal Acquisition 

To show how detection of weak signals is achieved with the 
different detectors, a signal at an average C N(⁄  of 33dB-Hz is 
emulated by adding extra noise to the real signal. The 
attenuated signal is then attempted to be acquired with the 
SLD, NCD and NCDD detectors. The detection rate verified 
for each detector is shown in Fig. 22 as function of the number 
of code periods integrated. From this plot, it can be seen that 
this signal can be reliably acquired with any of the three 
detectors, provided the number of code periods to be 
integrated is sufficiently high. While the SLD detector is the 
best performing one, its complexity of execution is 
considerably higher than the other two detectors, employing 
only 1ms coherent integration, and consequently presenting a 
less stringent requirement on the frequency grid resolution. 
Also here the superior performance of the NCDD detector 
with respect to the NCD is observed. 

VII.  CONCLUSION 

In this paper, the performance of postcoherent differential 
detectors in the acquisition of weak GNSS signals was 
studied. First, we characterized statistically the PWD detector. 
Under the noise-only hypothesis, we made use of the fact that 
the output of pair-wise differential integration corresponds to a 
sum of independent Laplace random variables to propose a 
new expression for its characterization. Under the assumption 

that both signal and noise are present, it was shown that the 
approximation of the output of this detector by a Gaussian 
random variable matches closely its true distribution, and an 
expression for its probability of detection was derived. 

Given the complexity of following the similar procedure for 
the NCDD detector, we instead characterized this detector 
through its sensitivity loss with respect to the SLD detector. 
Firstly, the methodology to characterize a detector in this way 
was described, and subsequently a formula for assessing the 
sensitivity loss of the NCDD detector (combining both 
differential and squaring losses) with respect to the SLD 
detector was proposed. The theoretical results were validated 
by simulations, showing that this is a valid approach to follow 
in such cases when the statistical analysis of the detectors is 
overly complex. 

The results obtained enabled the comparison of the NCDD 
and NCD detectors, allowing deciding on the most adequate 
integration strategy for achieving a predefined sensitivity 
level. It was confirmed that differential integration is in fact 
preferable to noncoherent integration in the acquisition of 
weak signals. The theoretical conclusions were confirmed 
with the acquisition of real GPS L1 C/A signals, highlighting 
the potential of the NCDD detector in weak signal acquisition. 

APPENDIX A 

Under T(, the differential operation output, tl(, is expressed 
as: 
 tl( � 8R ∙ 8R�&∗ 	� �8Rv 8R�&v 7 8Rà8R�&à � 7 á�8Rà8R�&v � 8R�&à 8Rv �	� tl(v 7 átl(à  

(48)

 
The tl(v  term can be rewritten as: 
 tl(v � 8Rv 8R�&v 7 8Rà8R�&à 	� FU� 2⁄ ∙ �>â&� 7 âã�C � >â�� 7 â��C�	� FU� 2⁄ ∙ �Ù& � Ù�� (49)

 
where all the â" terms are Normal-distributed with zero mean 
and variance 1: 
 â& � >8Rv 7 8R�&v C √2FU⁄ , â� � >8Rv � 8R�&v C √2FU⁄  âã � �8Rà 7 8R�&à � √2FUÜ , â� � �8Rà �8R�&à � √2FUÜ  

(50)

 
and, as so, both Ù& and Ù� are independent å� random 
variables with two degrees of freedom [27]. From [35], the 
distribution of the subtraction of two independent random 
variables is given by: 
 

�æ>çC �
èéê
éëì �í�>ç 7 Ù�C	�í�>Ù�C¢

( 	dx�	,					ç ≥ 0
ì �í�>ç 7 Ù�C	�í�>Ù�C	¢
�ï dx�	,					ç < 0 (51)

 
where ç � Ù& � Ù�, and �í�>Ù&C and �í�>Ù�C are the PDFs of Ù& and Ù�, that is [35]: 
 

 
Fig. 22.   NCDD, NCD and SLD sensitivity comparison in acquisition of 
emulated signal at 33dB-Hz using 2 to 10 correlation outputs 
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�í>ÙC � Ù" �⁄ �&2" �⁄ ⋅ Γ>� 2⁄ 	C ��Û �⁄ � ��Û �⁄2 	,				Ù ≥ 0 (52)

 
with � � 2 the number of degrees of freedom of the å� 
distribution for both Ù& and Ù�. This way, �æ>çC can be easily 
rewritten as: 
 

�æ>çC � �&� ∙ ��ï �⁄ 	,					ç ≥ 0&� ∙ �ï �⁄ 			,					ç < 0 � &� ∙ ��|ï| �⁄  (53)

 
which corresponds to a Laplace distribution of zero mean and 
diversity or scale parameter, w, equal to 2 [27]. From this same 
reference it comes that the variance of the Laplace distribution 
is 2w�. Thus, the variance of � ∙ Laplace>wC is then �� ⋅ 2w� �2wñ�, implying that: 
 FU� 2⁄ ∙ Laplace>wC � Laplace>FU� 2⁄ ∙ wC 
 
It finally results that tl(v ~	Laplace>FU�C. The same reasoning 
can be followed to demonstrate that tl(à ~	Laplace>FU�C by 
simply defining a normal random variable Ù � �8Rà  and 
analyzing the distribution of 8Rà8R�&v 7 Ù8R�&v . 

APPENDIX B 

Given two independent random variables, ó and �, such that ó~.>�, F�C and �~Laplace>wC, their sum t � ó 7� 
results in a Normal-Laplace distribution, whose PDF and CDF 
are given by [29]: 
 �x>{C � <>ôC2w ⋅ �W>F w⁄ � ôC 7 W>F w⁄ 7 ôC� 
�x>{C � Φ>ôC � <>ôC ⋅ W>F w⁄ � ôC 7 W>F w⁄ 7 ôC2  

(54)

(55)

 
with ô � >{ � �C F⁄ , Φ>∙C and <>∙C the CDF and PDF 
functions of a standard normal random variable respectively, 
and W>∙C the Mills ratio, defined as [29]: 
 W>çC � Φö>çC<>çC � 1 � Φ>çC<>çC  (56)

 
Given a threshold ��1, the tail probability of t, equivalent to j� in detection of a signal distributed according to �x>{C is: 
 j� � 1 � �x>��1C (57)
 
This equation can be employed in the characterization of the 
output of the CDD detector under T&, considering the 
Gaussian and Laplace noise terms independent between 
themselves. For the case of a single differential operation, the 
terms in (55) and (57) are given by: 
 w � FU� 	� � �Sopny� ≃ |�R|�	F� � var �?s8x,Ru� ≃ 2FU� ∙ |�R|�	��1 � �FU� ⋅ ln�j�k� 
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