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Abstract—In this work, we investigate the construction of
channel decoders based on machine learning solutions, and
more specifically, Support Vector Machines (SVM). The channel
decoding problem being a high-dimensional multiclass classifi-
cation problem, previous attempts were made in the literature
to construct SVM-based channel decoders. However, existing
solutions suffer from a dimensionality curse, both in the number
of SVMs involved –which are exponential in the block length–
and in the training dataset size. In this work, we revisit SVM-
based channel decoders by alleviating these limitations and prove
that the suggested SVM construction can achieve optimal Bit
Error Probability (BEP) by attaining the performance of the bit-
Maximum A Posteriori (MAP) decoder in the Additive White
Gaussian Noise (AWGN) channel.

Index Terms—SVM, channel coding, Maximum A Posteriori
decoding, machine learning, communication systems.

I. INTRODUCTION

Since the deployment of 5G, there has been an increasing
interest in the beyond-5G and 6G communication technolo-
gies, with a particular emphasis on the usage of machine
learning both at the physical layer and at the above layers of
the communication protocol stack [1]–[3]. The introduction
of machine learning aims at handling complex and time-
consuming communication problems in a data-based approach,
as opposed to the traditional model-based approach [4]. This
alleviates the limitations of sub-optimal mathematical mod-
eling and relegates the traditional online complexity to an
offline, possibly complex, training procedure.

Of particular interest in this work is the physical layer
Forward Error Correction (FEC), and more specifically, the
decoding operation at the receiver which can be described as
a high-dimensional classification problem. The design of low
complexity and low latency decoding solutions for a given
error correction code based on machine learning dates back to
the 80s [5]–[7]. However, with recent advances in computer
science and computing power, their interest has increased
dramatically ever since but is often directed towards deep
learning solutions (neural networks [8]–[10], attention-based
networks [11], etc.). In this work, we investigate an alternative
to neural networks for high-dimensional classification, namely,
Support Vector Machines (SVM).

SVMs were introduced in the 90s in [12], [13], and present
three main advantages with respect to deep neural network
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solutions: (i) they are maximum margin classifiers and are thus
more robust to mismatches between training and application
channel conditions [14]; (ii) the optimization algorithm to be
solved is convex and therefore converges to a global minimum
and; (iii) due to the nature of the optimization problem, there
is very little risk of overfitting. This motivated the application
of SVMs to channel decoding as was undertaken in [15]–[17].
However, the therein one vs. one and one vs. rest suggested
approaches produce a number of SVMs exponential in the
block length, and hence, become quickly intractable when
the latter increases to more than a few bits. This is because
these methods need to produce at least one decision function
per valid codeword, and the number of possible codewords
increases exponentially with the size of the code.

In this work, we revisit SVM-based channel decoding by
means of (i) suggesting a bit-wise approach that reduces the
number of SVMs necessary for decoding from exponential
to linear in the number of information bits; (ii) reducing the
complexity of the optimization process by reducing the size
of the training dataset to a single codeword per class and; (iii)
proving that the suggested SVM bit-wise classifier can attain
the optimal bit-wise Maximum A Posteriori (MAP) decoding
over an Additive White Gaussian Noise (AWGN) channel.

The remainder of this work is organized as follows. Section
II describes the system model and the channel decoding
problem. Section III gives an overview on the use of SVMs for
binary classification and methods for non-linear separability
of the data, along with previous works on SVM decoding.
In section IV we introduce our solution and its advantages
compared to previous works, and investigate the optimality
of SVM for channel decoding. In section V, we illustrate our
results with numerical simulations and analyze the complexity
and robustness of the system. Conclusions and future direc-
tions are drawn in section VI.

Notations: Upper-case Roman and bold letters (e.g. X and
X) will denote random variables and vectors, and lower-
case (e.g. x and x) their realizations. P(·) represents the
event probability, 1(·) the Boolean indicator operator and i.i.d.
means independent and identically distributed. R(y) and I(y)
denote respectively the real and imaginary parts of y ∈ C;
[a, b] denotes the concatenation of the vectors a and b, while
In is the identity matrix of size n. |S| denotes the cardinality



of the set S while {1...k} denotes the integers from 1 to k.

II. PROBLEM STATEMENT

A. The channel coding problem

Let us consider a coded and modulated transmission over
an AWGN channel as depicted in Figure 1.

Fig. 1. The system model.

In such a setting, a random binary input message B ∈
{0, 1}k consisting in k independent bits uniformly distributed,
is mapped through an (n, k) linear block error correction code
into a codeword C ∈ {0, 1}n of n bits. The obtained codeword
is mapped through a linear modulation scheme (e.g. PSK or
QAM) of order q, thus yielding a complex vector X ∈ Cn′

,
where n′ = n/q. The channel output Y results from the
transmission of the input X through a memoryless AWGN
channel, i.e., Y ≜ X +W where W

i.i.d∼ CN (0, σ2In′).
In order to feed real-valued vectors to the decoder, we first

perform a preprocessing stage of the complex-valued channel
output Y ,

Ỹ ≜ [R(Y ), I(Y ) ], (1)

which yields a real-valued signal Ỹ ∈ R2n′
. This signal is then

fed to a decision rule (decoder) g(·) which produces an esti-
mate of the original message of k bits B̂ ≜ g(Ỹ ) ∈ {0, 1}k.

For a fixed (n, k) linear block code, the channel decoding
problem consists in developing a decoding rule g(·) that
minimizes the average Bit Error Probability (BEP) defined by

P b
e ≜

1

k

k∑
j=1

P(B̂j ̸= Bj), (2)

where Bj and B̂j are binary random variables corresponding
to the jth element of the message B and estimated message
B̂, respectively.

B. The bit-MAP decoding rule

The theoretically optimal decoding rule g(·) from a BEP
point of view is the so-called bit-Maximum A Posteriori (bit-
MAP) decoding rule which we state in the following lemma.

Lemma 1 (Bit-MAP decoding rule).
The optimal decoding rule for the BEP defined in (2) is
given by the concatenation of k bit-MAP decoding rules
{g(j)(·)}1≤j≤k where, for all j ∈ {1...k}

g(j)(y) ≜ argmax
b∈{0,1}

P(Bj = b|Y = y). (3)

Proof. The proof follows from classical tools from detection
theory and is omitted here due to space limitation.

The bit-MAP decoding rule can be further simplified under
the assumption of i.i.d. and uniformly distributed input bits.

Lemma 2 (Bit-MAP simplification).
Under the assumption of i.i.d. and uniformly distributed bits
{Bj}1≤j≤k, the bit-MAP decoding rule can be simplified as

g(j)(y) = 1

{∑
b/

bj=1

PY |X(y|x(b))>
∑
b/

bj=0

PY |X(y|x(b))
}
, (4)

where PY |X(y|x) denotes the channel conditional probability
density function (p.d.f.) and x(b) denotes the modulated
codeword associated with the message b.

Proof. Let y be a received sequence Let us assume y has a
non-zero marginal p.d.f., i.e., PY (y) ̸= 0. Then, we have by
definition for all j ∈ {1...k},

g(j)(y) =

1 if
P(Bj = 0|Y = y)

P(Bj = 1|Y = y)
< 1

0 else
. (5)

Next, by observing that for b ∈ {0, 1},

P(Bj = b|Y = y) =
∑

b/bj=b

P(B = b|Y = y) (6)

=
2−k

PY (y)

∑
b/bj=b

PY |X(y|x(b)) (7)

where we have used Bayes’ identity along with the assumption
of i.i.d. uniformly distributed input bits P(B = b) = 2−k,
and the fact that the encoding and modulations are one-to-one
mappings, i.e., PY |B(y|b) = PY |X(y|x(b)). The proof of the
lemma follows from simplifying the likelihood ratio in (5) and
rewriting it using an indicator operator.

Under the formulation in (4), the summations imply a
marginalization over binary sequences of length k − 1, ren-
dering the complexity of the bit-MAP decoder exponential
in k. Hence, for generic codes for which the marginalization
cannot be done on graphs or trellises, the bit-MAP remains an
impractical algorithm.

In this work, we will investigate the construction of SVM-
based decoders and study their connection to the MAP decod-
ing rule in the case of AWGN channels.

III. PRELIMINARIES ON SVM

A. Linearly separable data

Let us consider a labeled dataset {ỹi, li}1≤i≤N which
consists of N vectors ỹi ∈ R2n′

with their respective labels
li ∈ {−1,+1}. Let the class C0 (resp. C1) be the set of vectors
ỹi for which li = −1 (resp. li = +1). The dataset is said to
be linearly separable if there exists ξ ∈ R2n′

and ν ∈ R that
define a hyperplane P ∈ R2n′

P : {ỹ ∈ R2n′ | f(ỹ) = 0}, (8)

where f(ỹ) = ξT ỹ + ν, such that f(ỹ) < 0 for all ỹ ∈ C0
and f(ỹ) > 0 for all ỹ ∈ C1. The SVM principle consists in
producing a hyperplane P that satisfies the maximum margin
property, i.e., being at an equal and maximum distance from



Fig. 2. Non-linear transformation of the data via a function Φ.

the nearest points of each class (the so-called support vectors).
This hyperplane is given by the solutions ξ and ν of the
following optimization problem,

argmax
ξ

1

||ξ|| (9)

s.t. min
i=1,..,N

|ξT ỹi + ν| = 1. (10)

Finally, ỹ ∈ C1 if f(ỹ) > 0, and ỹ ∈ C0 otherwise.
See [18] for complete proof of this result. In sum, learning
a classifier from the labeled dataset amounts to learning a
decision function f(·) such that for all ỹ ∈ R2n′

,{
f(ỹ) > 0 =⇒ ỹ ∈ C1
f(ỹ) ≤ 0 =⇒ ỹ ∈ C0.

(11)

B. Linearly non-separable data
If the two classes are not linearly separable, we need to

resort to kernel methods in which the data points ỹ are pro-
jected into a high-dimensional space via a non-linear function
Φ(·) (see Figure 2), where they become linearly separable.
Given this mapping function Φ, its associated kernel function
is given by K(ỹ, ỹ′) = ⟨Φ(ỹ),Φ(ỹ′)⟩, where ⟨ , ⟩ denotes the
inner product in the space defined by {Φ(ỹ) : ỹ ∈ R2n′}.

Considering the kernel function K(·, ·) and the dataset
{ỹi, li}1≤i≤N , SVM training consists in first solving the
following optimization problem in α = (α1, ..., αN ):

argmin
(α1,...,αN )

1

2

N∑
i,j=1

αiαj liljK(ỹi, ỹj)−
N∑
i=1

αi

subject to: 0 ⩽ αi ⩽ C and
∑N

i=1 liαi = 0,

(12)

where C is a relaxing hyperparameter to be chosen1. The
obtained optimal parameters α are then used to define the
decision function f(·) in (11) as:

f(ỹ) =

N∑
i=1

liαiK(ỹi, ỹ) + ν, (13)

where ν is computed directly using any of the support vectors,
which are determined by the indices i for which αi > 0. In
this work, we will select C = +∞ –meaning no relaxation–
and as a kernel, the well-known Radial Basis Function (RBF)

K(ỹ, ỹ′) ≜ e−γ||ỹ−ỹ′||2 , (14)

where γ determines the slope of the exponential and is a
hyperparameter to be tuned.

1Readers interested in the full deduction are referred to [18].

C. SVM for decoding: previous works

Regardless of whether the dataset is linearly separable or
not, SVMs are by nature binary classifiers. To build a decoding
algorithm for a (n, k) linear block code, we need to resort to
multiclass classification. Previous solutions [15]–[17] for SVM
joint demodulation and decoding employ the so-called one vs
rest and one vs one approaches [19].

The one vs. rest method is based on producing 2k binary
SVM decision functions f (j) for j ∈ {1, ..., 2k}, each one
isolating one class (i.e., one codeword) against all the others.
All the SVMs are then applied to the received signal ỹ, and
the selected class Cj⋆ (codeword) is such that:

j⋆ = argmax
j∈{1,...,2k}

f (j)(ỹ). (15)

This corresponds to the class that has the largest distance
between the point ỹ and the separating hyperplane. If no
decision function f (j)(ỹ) gives a positive outcome, then the
nearest class is selected, i.e., f (j)(ỹ) with the negative value
closest to 0.

The one vs. one approach consists in producing an SVM
decision function for each possible pair of classes –i.e. valid
codewords– resulting in a total of C2k

2 = 2k−1(2k − 1)
binary classifiers. For the final decision, a voting system is
implemented, where each decision function decides between
two classes (codewords), and the class that gets the most votes
at the end is selected. Ties can be resolved either randomly
or by considering the mean of the votes’ reliabilities, i.e.,
the distance to the separating hyperplanes. More detailed
descriptions of these methods are given in [19].

IV. PROPOSED SOLUTION

In the following, we describe our suggested solution, which
combines bit-wise SVM with noiseless optimization.

A. Bit-wise SVM

The previous approaches present the main constraint of a
complexity that increases exponentially in the message length,
with at least 2k SVMs for a code of size (n, k). To alleviate
this constraint, we suggest a novel bit-wise approach that
resorts to only k SVM classifiers for an (n, k) linear block
code (see Figure 3). This method transforms the multiclass

Fig. 3. Visual representation of the proposed bit-wise approach.

problem generating one SVM per valid codeword, into a series
of k binary classifications necessitating one SVM per bit



position. To this end, for all j ∈ {1...k}, we divide the dataset
ỹ ∈ {ỹ1, ..., ỹN} into two non-intersecting classes:

• C(j)
1 corresponding to the vectors for which the transmit-

ted message b satisfies bj = 1;
• C(j)

0 corresponding to the vectors for which bj = 0.
Consequently, each decision function f (j)(·), for j ∈ {1...k},
will decide whether the jth bit of the estimated message b̂ is
a 0 or a 1. The suggested bit-wise SVM not only reduces
the number of SVMs necessary from 2k to k, but can be
implemented in parallel in order to reduce latency.

B. Proposed training: noiseless optimization

Fig. 4. Visual demonstration of noiseless optimization.

To further reduce the complexity with respect to the SVM-
based solutions in [15]–[17] we make use of a particularly
appealing feature of SVMs, namely, their maximum margin
property, which yields separating hyperplanes that are equidis-
tant from both dataset classes. As such, when investigating
symmetric channel models like the AWGN, this is equivalent
to a maximum margin classifier between only the original
noiseless codewords (i.e. the classes’ centroids). Consequently,
rather than the traditional training approach which considers
a dataset with randomly generated noisy codewords, it would
suffice to optimize –or train– the suggested bit-wise SVM on
only noiseless modulated codewords as shown in Figure 4.

The suggested noiseless optimization not only drastically
reduces the size of the training dataset but also allows to be
robust to possible mismatches between the training and actual
channel conditions (SNR for instance).

C. Proposed optimization problem
Combining the two suggested elements (bit-wise SVM and

noiseless optimization), the training dataset will be composed
of the 2k valid modulated codewords {x̃1, ..., x̃2k} with 2n′

elements each –where the same preprocessing (1) has been
applied to x–, and k binary classifiers will be produced follow-
ing the bit-wise approach of section IV-A. The classification
of an unlabeled vector ỹ consists of k classifiers f (j)(ỹ), each
determining the value of the jth bit of the estimated message
b̂, and given by

f (j)(ỹ) =

2k∑
i=1

l
(j)
i α

(j)
i K(x̃i, ỹ) + ν(j), (16)

where l
(j)
i = +1 if the jth information bit of the modulated

codeword xi is 1, and l
(j)
i = −1 otherwise. Lastly, α(j)

constitutes the solution to the following optimization problem:

argmin
α

1

2

2k∑
i,m=1

αiαml
(j)
i l(j)m K(x̃i, x̃m)−

2k∑
i=1

αi

subject to: αi ⩾ 0 and
∑2k

i=1 l
(j)
i αi = 0.

(17)

Each of the k bit-wise SVM optimization problems given in
(17) can be written as a quadratic programming problem with
linear constraints given by

argmin
α

1

2
αTQ(j)α− 1Tα

subject to: α ≥ 0 and αT l(j) = 0,
(18)

where Q(j) is a matrix such that Q(j)
i,m = l

(j)
i l

(j)
m K(x̃i, x̃m).

Since all Q(j) are definite positive matrices, these optimization
problems are all convex.

D. Optimality analysis and interpretation

Although obtaining closed-form solutions of (17) for
generic choices of the (n, k) linear block code, the constella-
tion, and the parameter γ might be challenging, we show that
under certain assumptions, the resulting SVM decision rule
can be obtained in closed-form and related to the Bit-MAP
decision rule.

Theorem 1 (Optimal solution and equivalence to bit-MAP).
i) For γ ≫ 1, the optimal solution to (17) for all j ∈ {1...k}

is given by α∗ = (1, 1, ..., 1), and ν∗ = 0 .
ii) Furthermore, if γ = 1/σ2, this solution yields decision

functions f (j)(ỹ) equal to the bit-MAP decision rule
g(j)(ỹ) of Lemma 2.

Proof. To prove i), let us notice that if γ ≫ 1, then one can
show that for all i ̸= m, K(x̃i, x̃m) ≈ 0. Hence, one can
rewrite the objective function (18) for all j ∈ {1...k} as

1

2

2k∑
i=1

α2
i −

2k∑
i=1

αi =
1

2

2k∑
i=1

(α2
i − 1)2 − 2k−1. (19)

One can then easily show that the solution α∗ = (1, 1, ..., 1)
yields a lower bound to the objective function, since∑2k

i=1(α
2
i − 1)2 ≥ 0, and verifies the inequality constraints

αi ≥ 0 ∀i ∈ {1...2k}. The equality constraint is also verified,
since for all j ∈ {1...k}, each of the two classes C(j)

1 and C(j)
0

consist in 2k−1 sequences x̃i and hence,

2k∑
i=1

l
(j)
i = |C(j)

0 | − |C(j)
1 | = 0 ∀j ∈ {1...k}. (20)

Thus, for all j ∈ {1...k}, α∗ = (1, 1, ..., 1) is the solution
to the optimization problem in (17). As for ν(j), note that by
evaluating (16) for any x̃m using γ ≫ 1, we obtain

f (j)(x̃m) =

2k∑
i=1

l
(j)
i e−γ||x̃i−x̃m||2 + ν(j) = l(j)m + ν(j), (21)

which yields ν(j) = 0.



To prove ii), replacing the proposed solution {α∗ =
(1, 1, ..., 1), ν∗ = 0} in (13) yields

f (j)(ỹ) =

2k∑
i=1

l
(j)
i e−γ||x̃i−ỹ||2 . (22)

Let us divide the summation argument into the two classes
C(j)
1 and C(j)

0 . Hence, we can rewrite the decision function as

f (j)(ỹ) =
∑

x̃i∈C(j)
1

e−γ||x̃i−ỹ||2 −
∑

x̃i∈C(j)
0

e−γ||x̃i−ỹ||2 . (23)

From (23), it is easy to deduce the value of the jth bit as

g(j)(ỹ) = 1

{ ∑
x̃i∈C(j)

1

e−γ||x̃i−ỹ||2 >
∑

x̃i∈C(j)
0

e−γ||x̃i−ỹ||2
}
(24)

Selecting γ = 1/σ2 in (24) yields the bit-MAP rule in (4) for
an AWGN channel with noise power σ2 by noticing that

PY |X(y|x(b)) = 1

(πσ2)n′ e
−
||x(b)− y||2

σ2 . (25)

In the following, we will show that the assumption of γ ≫ 1
in Theorem 1, is valid even for moderate SNR values. Besides,
we will analyze the effect of relaxing the constraint γ = 1/σ2

on the obtained results with respect to the bit-MAP.

V. NUMERICAL RESULTS AND ANALYSIS

A. Effect of the hyperparameter γ

The suggested bit-wise SVM was implemented for both an
extended (32, 11) BCH code and a (32, 11) polar code [20],
each under a 16-QAM modulation scheme and an AWGN
channel with an Eb/N0 = n

k.q
1
σ2 . Let us define γs the value

of the exponential’s slope:

γs = 1/σ2
s , (26)

where σ2
s is the noise power such that Eb/N0 = s dB. This is

what is referred to as a value of γ adapted to a normalized
signal-to-noise ratio of Eb/N0 = s dB. In the following, we
will distinguish two training scenarios. In the first scenario,
the choice of γ in the RBF kernel is adapted to each Eb/N0,
i.e., γ = 1/σ2, where σ2 is the noise power corresponding to
each Eb/N0 ratio. In the second scenario, s is set to 0, i.e.
γ = γ0, for all values of Eb/N0.

The Bit-Error Rate (BER) curves of both the suggested
solution (bit-wise SVM) and the optimal solution (bit-MAP)
are given in Figure 5. We observe that, for the first scenario,
by adapting the value of γ to the corresponding Eb/N0, the
SVM decoder is matched to the bit-MAP decision rule, and
so their performances coincide as per Theorem 1. However,
for the second scenario in which γ = γ0, the resulting SVM
curve degrades in the high Eb/N0 (low-noise) regime.

To assess the effect of the choice of the parameter γ in the
second scenario, Figure 6 shows the Eb/N0 corresponding to
a BER of 10−3 as a function of s ∈ {−2, ..., 15} for both

0 2 4 6 8

Eb/N0 (dB)

10−5

10−4

10−3

10−2

10−1

B
E
R uncoded

Polar code, γ = γ0

Polar code, γ = 1/σ2

Polar code - MAP decoder

BCH, γ = γ0

BCH, γ = 1/σ2

BCH - MAP decoder

Fig. 5. BER of the suggested decoder for both a BCH and a polar code of
size (32, 11), with a 16-QAM modulation and under an AWGN channel.

−2 0 2 4 6 8 10 12 14

s (dB)

5.5

6.0

6.5

7.0

7.5

E
b
/N

0
(d
B
)

Polar

Polar - MAP decoder

BCH

BCH - MAP decoder

Fig. 6. Eb/N0 corresponding to a BER of 10−3 as a function of s.

the (32, 11) BCH code and the (32, 11) polar code. One can
observe that very low values of s –and thus their corresponding
values of γs–, display poorer performances in terms of BER.
However, above a threshold value of around 2dB, the SVM
achieves the objective BER of 10−3 at essentially the same
Eb/N0 as the MAP decoding solution. This phenomenon
suggests that training with large values of γ relaxes the need
to adapt γ to the current Eb/N0, generalizing in this way the
result of Theorem 1, ii).

Moreover, as previously discussed, the result of Theorem
1, i) is valid for γ corresponding to even moderate values
of Eb/N0. Figure 7 shows the solution to the optimization
problem (12) as a function of s ∈ {−2, ..., 15}. We observe
that, indeed, the optimal solution to (17) is given by α∗ =
(1, 1, ..., 1) and ν∗ = 0 for all s > 2dB, which corresponds to
relatively moderate values of Eb/N0.

B. Complexity analysis

Table I summarizes the decoding complexity of our method
and those in the literature. As we can observe, the bit-wise
approach is the first to enable a linearly growing number



Fig. 7. Optimal values of α and ν –i.e. solutions to the optimization problem
(12)– as a function of the adapted γ.

of SVMs, which is more easily scalable than exponentially
growing methods. The same goes for the dataset: for the
SVM to learn a decision rule between two classes, it has to
see at least one element of each class. With our noiseless
optimization, the dataset size has been reduced to its minimum
N = 2k.

Nevertheless, complexity is not only based on the number of
SVM classifiers but also on the number of operations required
to perform each one of these classifications. Even with our
method with reduced complexity, the size of the dataset is 2k,
with one element per valid codeword. This implies exponential
growth, as the size of the dataset determines the number of
terms in (13).

TABLE I
COMPLEXITY COMPARISON BETWEEN METHODS

bit-wise One vs rest One vs one

# of SVM classifiers k 2k 2k−1(2k − 1)

# of terms in (13) N N ≈ N
2k−1

# of terms in (13)
with noiseless opt. 2k 2k 2

VI. CONCLUSION

In this work, we investigated the design of SVM-based
channel decoders for modulated communications over noisy
channels. To this end, a novel bit-wise channel decoder was
introduced, which significantly reduces complexity compared
to previous solutions [15]–[17], both in the number of SVMs
to be generated and the size of the dataset. Then, it was
shown that the bit-wise SVM is equivalent to the bit-MAP
decoder under the assumption of an RBF kernel and an AWGN
channel model. The main limitation of the suggested solution
is that being equivalent to the bit-MAP channel decoder,
its complexity remains intractable for large codes. This is
because all the points in the dataset are support vectors

(αi = 1 ∀i ∈ {1, ..., 2k}). Future works may explore a way of
exploiting the structure of the particular code to reduce this
complexity, or even its application to more complex channels
that result in fewer support vectors to be evaluated.
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