
Emerging trends in signal processing 
and machine learning for positioning, 
navigation and timing information: special issue 
editorial
Pau Closas1*, Lorenzo Ortega2, Julien Lesouple3 and Petar M. Djurić4 

Location-based services, safety-critical applications, and modern intelligent transporta-
tion systems require reliable, continuous, and precise positioning, navigation, and timing 
(PNT) information. Global Navigation Satellite Systems (GNSS) are the main source of 
positioning data in open sky conditions; however, their vulnerabilities to radio interfer-
ences and signal propagation limit their use in challenging environments. Consequently, 
enhancing conventional GNSS-based PNT solutions to incorporate additional sensing 
modalities and exploit other available signals of opportunity has become necessary for 
continuous and reliable navigation.

Articles in the special issue span detection methods, estimation algorithms, signal 
optimization, and the application of machine learning, providing comprehensive insights 
into enhancing navigation and positioning accuracy.

1 � PNT technology
Positioning, navigation, and timing (PNT) technologies form the backbone of many 
of today’s most critical applications, spanning various sectors and impacting everyday 
life. Modern PNT solutions rely on a sophisticated interplay of diverse sensors and sys-
tems to deliver precise and reliable information about position, navigation, and time 
[11]. In this introduction, we discuss the fundamental components that constitute these 
advanced PNT systems and explore their wide array of applications.

One of the cornerstones of PNT technology is Global Navigation Satellite Systems 
(GNSS) [31, 40]. GNSS involve satellite constellations that provide timing and posi-
tioning signals to receivers on Earth. These signals are pivotal in numerous domains, 
including personal navigation, geolocation services, agriculture, and search and rescue 
operations. GNSS enable users to determine their exact location anywhere on the globe 
with remarkable accuracy and reliability. Complementing GNSS are Inertial Naviga-
tion Systems (INS) [7], which consist of accelerometers, gyroscopes, and magnetome-
ters. These systems measure inertial forces to provide orientation, velocity, and position 
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data. This technology is particularly essential for applications such as aircraft navigation, 
autonomous vehicles, marine navigation, and robotics, where continuous and precise 
navigation information is critical, even in the absence of external signals.

Another key technology in modern PNT solutions is Light Detection and Ranging 
(LiDAR) [36]. LiDAR utilizes laser sensors to emit laser light and process the reflections 
to measure ranges. LiDAR is invaluable in autonomous vehicles, environmental moni-
toring, mapping, and geospatial analysis, providing high-resolution, three-dimensional 
information about the surroundings. Computer vision and camera systems [19] also play 
a crucial role in PNT. These systems are based on image sensors and advanced process-
ing algorithms, which analyze the environment. This technology finds applications in 
augmented reality, robotics, autonomous vehicles, and surveillance, enabling machines 
to interpret and respond to visual information with high precision.

Additionally, wired and wireless communication networks [30] are integral to mod-
ern PNT solutions. Technologies such as 5G, Wi-Fi, and Bluetooth enable data exchange 
between devices and systems. While some of these networks are not explicitly designed 
for PNT, they can be utilized as Signals of Opportunity (SoO) to enhance dedicated PNT 
systems. Typical applications include the Internet of Things (IoT), smart cities, real-time 
traffic management, and remote sensing.

In summary, modern PNT solutions represent an intricate blend of various advanced 
technologies. Each component—whether GNSS, INS, LiDAR, computer vision, or com-
munication networks—plays a vital role in delivering the precise and reliable PNT infor-
mation that underpins countless applications in our daily lives and across numerous 
industries. As these technologies continue to evolve, their integration and capabilities 
will expand, driving further innovation and transforming how we navigate and under-
stand the world.

2 � Challenges in PNT technology
Traditional PNT methods, while revolutionary, have inherent limitations that necessi-
tate the integration of diverse sensors and systems to achieve continuous and reliable 
information. Each of these traditional technologies, such as GNSS, INS, LiDAR, com-
puter vision, and communication networks, has its unique strengths and weaknesses, 
shaped by their inherent characteristics and environmental interactions. Understanding 
these limitations underscores the need for a multifaceted approach to PNT solutions.

GNSS are susceptible to several limitations that can impair its accuracy and reliabil-
ity. Signal obstructions and multipath effects, common in urban environments, forests, 
and indoor settings, lead to signal loss or degradation resulting in reduced positional 
accuracy and reliability. Additionally, GNSS signals are vulnerable to interference and 
jamming from other electronic devices or malicious users, which can lead to the loss 
or corruption of useful signals. Atmospheric conditions, particularly ionospheric and 
tropospheric delays, can also affect signal propagation, causing positioning errors, which 
are aggravated near the equator or during solar activity. Moreover, GNSS rely on the vis-
ibility of a sufficient number of satellites. In environments such as tunnels or urban can-
yons, the number of visible satellites can drastically reduce, hindering the system’s ability 
to resolve the navigation problem.
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INS, while powerful, face challenges primarily related to drift over time. The principle 
of INS involves integrating acceleration and angular rates over time, leading to cumu-
lative errors known as drifts. Without periodic calibration or correction from external 
sources, these errors can accumulate, reducing the system’s accuracy. Furthermore, 
high-precision INS are complex and expensive, limiting their suitability for low-cost 
applications.

LiDAR systems, though effective, encounter limitations due to environmental condi-
tions and intrinsic characteristics. Weather conditions such as rain, fog, or smog can 
degrade LiDAR performance, reducing its accuracy. LiDAR also has limitations in range 
and resolution, making it difficult to detect distant or small objects. Additionally, high-
quality LiDAR systems are often expensive and require significant power, posing chal-
lenges for low-cost or low-consumption applications.

Computer vision and camera-based systems are dependent on the lighting conditions 
of the scene they capture. Low light or highly dynamic lighting conditions can lead to 
poor quality images, affecting the system’s performance. Occlusion and field of view lim-
itations can result in incomplete images, hindering accurate analysis. Moreover, image 
processing algorithms are computationally intensive, requiring substantial power and 
memory, which can be challenging for real-time or low-cost applications.

Communication networks also face several limitations that impact PNT solutions. 
Latency and bandwidth constraints can affect real-time data transmission and pro-
cessing, introducing delays and bottlenecks, especially in data-intensive applications. 
Network coverage can be inconsistent, particularly in underserved areas, reducing the 
availability and reliability of PNT solutions.

The limitations of traditional PNT methods highlight the necessity of integrating a 
diverse array of sensors and systems. Each technology brings unique capabilities and 
constraints. By combining these technologies, we can mitigate individual weaknesses 
and enhance overall PNT performance. This multifaceted approach is essential to meet 
the growing demand for precise, reliable, and continuous PNT information across vari-
ous applications and environments.

3 � Emerging trends
The evolving landscape of PNT technology is driven by the need to overcome the limita-
tions of traditional methods. Emerging trends in signal processing, multi-sensor fusion, 
machine learning, and distributed networks offer promising solutions to enhance the 
accuracy, reliability, and robustness of PNT systems.

To address the shortcomings of individual sensors and provide more accurate and reli-
able PNT solutions, multi-sensor fusion algorithms have been developed. These algo-
rithms combine the strengths of various systems [5, 13]. However, improvements are 
also made at the single-sensor level. A remarkable example is in GNSS, where the pur-
suit of higher precision has led to the development of techniques such as Precise Point 
Positioning (PPP) and Real-Time Kinematic (RTK) [39]. PPP relies on highly accurate 
global correction models delivered to users in near real time, significantly enhancing 
positional accuracy. RTK, on the other hand, uses local correction models from a known 
reference station, providing precise positioning for nearby users.
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In a more general framework, modern signal processing techniques have also been 
adapted for PNT to improve robustness of solutions in degraded environments. Exam-
ples include misspecified estimation theory [15] and robust estimation techniques [27], 
which improve the resilience of PNT systems to outliers and improve overall data reli-
ability. Classical estimation methods are also used for attenuating and mitigating abnor-
mal phenomena [22] and for filtering techniques in degraded conditions [53].

Finally, the introduction of Riemannian estimation methods [1] has been a break-
through in filtering techniques for orientation estimation in navigation systems. This 
theory applies Riemannian geometry, which studies curved spaces (manifolds) where 
the usual rules of Euclidean geometry do not apply. An excellent example is the esti-
mation framework on Lie groups [2], which facilitates filtering techniques for attitude 
computation.

Moreover, Machine Learning (ML) has become a game-changing technology in the 
field of PNT. By utilizing extensive data sets and advanced algorithms, ML significantly 
improves the accuracy, robustness, and adaptability of PNT systems [25, 37]. Conse-
quently, the latest advancements in ML are overcoming the limitations of traditional 
PNT methods and creating new opportunities for application and innovation.

Traditional PNT systems, like GNSS, frequently encounter issues like signal obstruc-
tions, interference, and atmospheric delays. To address these challenges, ML techniques 
have been employed to create data-driven positioning solutions capable of predicting 
and correcting these problems. For instance, ML models can analyze both historical 
and real-time data to detect patterns and anomalies, thereby enhancing the accuracy of 
position estimates even in challenging environments like urban canyons or dense for-
ests [50]. Additionally, ML algorithms can integrate data from multiple sensors to inter-
pret and adapt to the surrounding environment. This capability is especially beneficial 
in smart city applications, where integrating data from Internet of Things (IoT) devices 
facilitates more efficient traffic management and urban planning [16, 43, 47].

In this context, the integration of ML into PNT has significantly advanced the devel-
opment of autonomous systems. For self-driving cars, drones, and other autonomous 
vehicles, precise positioning is crucial for navigation and safety. ML algorithms enhance 
these systems by delivering real-time adjustments and predictions based on the vehicle’s 
surroundings and behavior [49].

Finally, ML also plays a crucial role in detecting and mitigating anomalies in sensor 
data that can compromise the accuracy of PNT systems. Techniques like supervised 
and unsupervised learning can identify outliers and inconsistencies in the data, enabling 
real-time correction and ensuring the robustness of the PNT solution [9, 42]. These 
methods can also enhance the resilience of PNT systems against threats like jamming 
and spoofing. By learning to identify and counteract these malicious activities, ML-ena-
bled PNT systems can maintain accurate positioning and timing information, which is 
crucial for defense and security applications.

The final emerging trend to be discussed is PNT for space localization and exploration, 
which aims to revolutionize methods for navigating and exploring the cosmos. Inno-
vations such as advanced GNSS adaptations, optical navigation, autonomous systems, 
quantum technologies, collaborative satellite networks, and AI integration are enhanc-
ing the precision, reliability, and autonomy of space missions. As these technologies 
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advance, they will be pivotal in facilitating humanity’s ventures to the Moon, Mars, and 
beyond, ensuring the success and safety of future space missions.

In this context, the creation of Low Earth Orbit (LEO) satellite constellations, like 
SpaceX’s Starlink and OneWeb, is paving the way for innovative PNT solutions [34]. 
These constellations offer continuous, high-precision positioning data by utilizing inter-
satellite links and ground-based infrastructure. Collaborative satellite networks contrib-
ute to more robust and resilient PNT systems, capable of functioning effectively even in 
challenging environments or during GNSS outages. Additionally, the design of distrib-
uted timing solutions in the context of LEO satellite swarm constellations is beginning to 
take shape [26].

4 � Applications and impact
The latest advancements in PNT solutions are significantly transforming various indus-
tries, driving innovation and enhancing capabilities across automotive, aerospace, urban 
planning, and more. These improvements address recent challenges and applications, 
and pave the way for smarter and more efficient systems.

PNT solutions are crucial for developing smart city infrastructure. In urban planning, 
precise positioning aids in the efficient layout and management of resources. Advanced 
PNT technologies facilitate real-time traffic management, reducing congestion and 
improving public transportation systems. Furthermore, integrating PNT with IoT 
enhances situational awareness and automation. IoT devices equipped with precise posi-
tioning capabilities can monitor and manage urban systems, from energy distribution to 
waste management, creating a more responsive and sustainable urban environment.

In the automotive industry, advanced PNT solutions are essential for the safe and effi-
cient operation of autonomous vehicles, including self-driving cars, drones, and other 
autonomous systems like public transportation and aircraft. These systems require pre-
cise positioning to navigate complex environments, avoid obstacles, and ensure passen-
ger safety. PNT advancements contribute to the reliability and accuracy of these systems, 
allowing them to function seamlessly in real-world conditions.

The maritime and aviation industries operate in some of the most challenging envi-
ronments, where reliable PNT is critical. Advanced PNT technologies enable precise 
navigation and ensure compliance with stringent regulations. In maritime contexts, 
accurate positioning guarantees safe passage through busy and often hazardous waters. 
For aviation, precise timing and positioning are essential for flight safety, navigation, and 
efficient air traffic management. The ability to maintain accurate positioning in these 
sectors enhances operational safety and efficiency, supporting both commercial and 
defense applications.

In defense and security, the resilience of PNT solutions is paramount, especially in 
GNSS-denied environments where traditional GPS signals may be unavailable or unreli-
able. Advanced PNT systems are designed to counteract jamming and spoofing, ensur-
ing that military operations can rely on accurate and secure positioning information. 
Resilient PNT technologies support mission-critical applications, from navigation and 
targeting to reconnaissance and communication, providing a strategic advantage in 
complex and contested environments.
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In conclusion, the latest advancements in PNT solutions are driving significant 
improvements across various industries. In smart cities, PNT enhances infrastructure 
and IoT integration, leading to more efficient urban management. For autonomous vehi-
cles, precise positioning is vital for safety and functionality. In maritime and aviation, 
advanced PNT ensures compliance and operational safety in challenging conditions. In 
defense and security, resilient PNT systems provide critical support in GNSS-denied 
environments. As PNT technologies continue to evolve, their impact will further 
expand, enabling more sophisticated and reliable applications across these and other 
sectors.

5 � Challenges and opportunities
These applications present several challenges and opportunities, which we discuss below.

When considering positioning, the primary goal is often estimating the most precise 
location. PPP and RTK, as mentioned earlier, can achieve centimeter-level position-
ing accuracy. However, these technologies require significant infrastructure develop-
ment and may not provide real-time positioning. One way to enhance these methods 
is through collaborative positioning, where information is shared between users [21, 
28, 33]. Another approach to achieving the best precision could involve increasing the 
number of sensors–such as GNSS, INS, LiDAR, or cameras–and developing new filter-
ing algorithms to fuse all the sensor data [45]. Ensuring intercompatibility among these 
sensors can be challenging due to different formats and communication protocols, and 
they may not be necessarily synchronized. Standardizing interfaces and developing mid-
dleware solutions can facilitate their integration. In addition, the development of open-
source platforms and frameworks can promote interoperability and collaboration.

Large-scale deployments also present new challenges, such as those encountered in 
smart cities, which require managing vast amounts of data and ensuring consistent per-
formance across diverse scenarios [46]. To address these scalability issues, the devel-
opment of cloud-based solutions, distributed computing, and scalable algorithms and 
architectures will be essential to maintaining consistent performance.

Regarding safety-critical applications, such as unmanned vehicles or civil aviation, 
providing a precise location is of utmost importance. However, it is even more impor-
tant for the system to offer a trust level for this position, known as integrity [52]. In nom-
inal conditions, it is straightforward to provide such levels, as observation and models 
follow Gaussian distributions with known covariance matrices. However, in more chal-
lenging scenarios, such as those involving signal obstructions, interference, or spoofing, 
this is no longer the case. Therefore, in such situations, advanced and adaptive signal 
processing and ML techniques are required to provide robust and reliable solutions.

When it comes to ML, it is common knowledge that data are the key. Therefore, data 
quality and availability present significant challenges. The processed data should be of 
high quality, sourced from various origins and highly trustworthy. Developing robust 
data preprocessing and cleaning techniques, as well as creating large, well-annotated 
datasets, is crucial. However, managing all these data can lead to high computational 
complexities and increased requirements for storage and power. Leveraging advance-
ments in hardware (e.g., use of GPUs) and optimizing algorithms (e.g., use of sparsity) 
can help reduce this computational burden. Cloud computing [35] and distributed 
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learning [10] are promising research areas to explore lowering computational demands. 
These two technologies involve sharing information between users, which is also true 
in emergent fields such as collaborative positioning or crowdsourcing-based solutions, 
where all the user knowledge is pooled together. Consequently, ensuring data privacy is 
of utmost importance. This requires advanced encryption and authentication methods 
[14, 20, 32], anomaly detection, or the use of federated learning—a family of privacy-
preserving ML methods [12, 24, 41, 48].

To address some of these challenges, we are pleased to present this special issue of the 
EURASIP Journal on Advances in Signal Processing entitled ‘‘Emerging Trends in Signal 
Processing and Machine Learning for Positioning, Navigation and Timing Information,’’ 
with contributions described in the following section.

6 � Summary of the special issue
This section provides a summary of the contributions the special issue received. We have 
received excellent papers that, after a careful peer-review process, were accepted for 
publication. We hope you find them interesting and, ultimately, that these papers help 
boost research on the timely topic targeted in this special issue.

One prominent theme is the detection and mitigation of GNSS signal interference and 
spoofing. In [6], deep learning models are employed at the acquisition stage to detect 
GNSS spoofing and, if applicable, to estimate spoofed signal parameters. The presented 
approach shows very encouraging results. Additionally, more traditional techniques 
based on expectation–maximization algorithms are applied in [23] to estimate GNSS 
parameters under constant modulus interference, demonstrating robust performances 
in simulations.

Another key area of research is the optimization of signal processing techniques. In 
[17], the co-design of orthogonal frequency-division multiplexing (OFDM) signals for 
both ranging and communication is analyzed, revealing fundamental trade-offs and 
optimal resource allocation strategies. Signal optimization for LEO satellites is tackled in 
[44], with research proposing efficient spreading code designs to minimize inter-channel 
interference and enhance navigation performance. Finally, [4] investigates novel meth-
ods for precise time-delay and Doppler estimation based on a calibration hypothesis and 
provides the corresponding estimation bounds.

A significant focus in modern PNT application is urban positioning, especially in 
the context of self-driving cars or Advanced Driver-Assistance Systems (ADAS). Here, 
cooperative localization algorithms, particularly under challenging conditions like iono-
spheric scintillation events, are developed to improve position estimates by leveraging 
message exchange between connected nodes [38]. Another crucial aspect is safety in 
these critical applications; integrity mechanisms should be implemented, as proposed 
in [18].

Filtering is also an important family of methods when it comes to navigation. The most 
well-known filtering solution is the Kalman filter, which is optimal under linear models 
with Gaussian noise. However, these assumptions may not hold in challenging environ-
ments. For example, the GNSS observation model is nonlinear, and outliers may occur 
due to multipaths. To address these issues, robust Kalman-type filters are designed to 
handle outliers in measurements and system dynamics, coupled with geometry aware 
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estimation to ensure reliable attitude estimation in the presence of anomalies [3]. 
Another example is spacecraft navigation, where images obtained with interferometry 
are used to estimate star powers and corresponding directions of arrival to position the 
vessel. However, corresponding observations are correlation matrices, which do not rely 
explicitly on the unknown sources. To overcome this, [8] proposes a Kalman filter cou-
pled with a linear fitting of the unknown state.

ML techniques are also covered, showcasing their potential to revolutionize GNSS-
based positioning. A survey of ML in GNSS is presented in [29], and a hyperspectral 
target detection framework based on 3D–2D CNN and transfer learning is proposed in 
[51] to solve the problems of traditional supervised methods.

7 � Future directions
In light of the contributions in this special issue, and our own views, we conclude this 
editorial by providing a non-exhaustive list of potential future directions in the PNT 
area.

•	 Artificial Intelligence: AI-driven PNT is in its early stages, and further integration of 
artificial intelligence techniques, including deep learning and reinforcement learning, 
to enhance the accuracy, robustness, and adaptability of PNT systems, will be a com-
pelling area of study. Another field where AI can help is that of context-aware PNT: 
ML algorithms could help to dynamically adjust to environmental changes and user 
requirements.

•	 Diversity of information sources: Multi-sensor fusion and hybrid positioning should 
be prioritized in the future. Enhanced fusion techniques to combine data from 
diverse sources (e.g., GNSS, INS, LiDAR, cameras) for improved accuracy and reli-
ability will be essential. Moreover, hybrid positioning systems—such as the integrat-
ing of different positioning technologies (e.g., GNSS with visual odometry, inertial 
sensors with environmental context)—will help mitigate the limitations of individual 
systems.

•	 Quantum technologies: It is envisioned that quantum technologies will be central to 
the next generation of computers. However, these technologies also pave the way for 
the development of new sensors, such as quantum clocks or quantum IMU, which in 
turn further motivate the ongoing research on s quantum signal processing.

•	 Edge Computing and Distributed PNT: Development of edge computing solutions to 
process PNT data closer to the source will help to reduce latency and improve real-
time performance. Moreover, exploring distributed PNT architectures that leverage 
decentralized processing and communication paradigms will enhance scalability and 
resilience.

•	 Security and Resilience: Advancements in techniques to detect and mitigate spoofing 
and jamming attacks on PNT signals, ensuring system integrity and reliability, are 
key aspects of future PNT developments. The creation of secure positioning tech-
nologies with robust encryption, authentication, and anomaly detection mechanisms 
to protect against cyber threats should also be considered.

•	 Advanced applications and use cases: As discussed in this editorial, future applica-
tions of PNT will include autonomous vehicles, drones, and robotic systems. Fur-
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thermore, future applications to consider are smart city infrastructure, IoT net-
works, and industrial automation, which will enhance urban planning, logistics, and 
resource management.

•	 Standardization and Interoperability: Promoting open standards and interoperability 
protocols for the seamless integration of PNT solutions across different platforms, 
devices, and environments will pave the way for future PNT fusion algorithms and 
facilitate their development. The development of middleware solutions and frame-
works will also enhance the interoperability and scalability of PNT systems in diverse 
applications.

•	 Privacy Considerations: Research and implementation of privacy-preserving ML 
and data handling techniques are crucial for protecting user privacy while leveraging 
PNT data for advanced applications. Ensuring privacy during the exchange of infor-
mation will be of utmost importance.

In a nutshell, future directions in signal processing and ML for PNT will focus on 
enhancing accuracy, robustness, and adaptability, while also addressing security and pri-
vacy concerns, developing new sensors, and increasing the range of applications.
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