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ABSTRACT
We develop a parametric high-resolution method for the esti-
mation of the frequency nodes of linear combinations of com-
plex exponentials with exponential damping. We use Kro-
necker’s theorem to formulate the associated nonlinear least
squares problem as an optimization problem in the space of
vectors generating Hankel matrices of fixed rank. Approxi-
mate solutions to this problem are obtained by using the alter-
nating direction method of multipliers. Finally, we extract the
frequency estimates from the con-eigenvectors of the solution
Hankel matrix. The resulting algorithm is simple, easy to im-
plement and can be applied to data with equally spaced sam-
ples with approximation weights, which for instance allows
cases of missing data samples. By means of numerical sim-
ulations, we analyze and illustrate the excellent performance
of the method, attaining the Cramér-Rao bound.

Index Terms— frequency estimation, nonlinear least
squares, Hankel matrices, Kronecker’s theorem, missing
data, alternating direction method of multipliers

1. INTRODUCTION

Spectral estimation constitutes a classical problem that has
found applications in a large variety of fields (including as-
tronomy, radar, communications, economics, medical imag-
ing, spectroscopy, . . . , to name but a few). One important cat-
egory of spectral estimation problems arises for signals that
can be well represented by the parametric model

fc(t) =

P−1∑
p=0

cpe
ζpt + e(t), cp, ζp ∈ C, (1)

where e(t) is an additive noise term. Given a vector of (typi-
cally equally spaced) samples,

f(j) = fc (t0 + jts) , 0 ≤ j ≤ 2N
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where ts is the sampling period, the goal is to estimate the
complex frequency nodes ζp = 2π(γp + iνp), i.e., the damp-
ing and frequency parameters γp and νp. Note that once the
parameters ζ = (ζ0, · · · , ζP−1)T have been computed, de-
termining c = (c0, · · · , cP−1)T reduces to a simple linear
regression problem. Thus, the focus lies on the estimation of
the nodes ζ. The signal model (1) includes the case of expo-
nentially damped signals defined by γp < 0. This case has
recently received significant interest, notably in applications
involving nuclear quadrupole resonance signals for which the
γp (together with νp) are used as a signature of the chemical
composition of an analysed substance (see for instance [1]
and references therein).

The literature on methods for estimating ζ in this setting
is rich, cf. [2] for an overview. Here, we focus on so-called
high-resolution methods, i.e., methods whose frequency res-
olution are not tied to a pre-defined grid (and can attain nu-
merical precision in the noise free case).
One important class of techniques is based on the principle
of nonlinear least squares (NLS) [3] and aims at solving the
nonlinear regression problem associated with (1), i.e., at min-
imizing θ(c, ζ) =

∑2N
j=0

∣∣f(j)−
∑P−1
p=0 cpe

ζpj
∣∣2 with respect

to the parameter vectors c and ζ. Although NLS enjoy desir-
able theoretical properties (e.g., those of maximum likelihood
estimators when e(t) is a Gaussian white noise; robustness
to coloured noise), their practical use remains limited due to
the extreme difficulty of globally minimizing θ(c, ζ) due to
its pronounced multimodal shape with one very sharp global
minimum (cf., e.g., [2] and references therein).
A second prominent and popular class is given by subspace
methods (such as MUSIC [4], ESPRIT [5] and min-norm [6]).
These methods are based on estimates of the covariance of f
and rely on the assumption that the noise e is white.

In the present contribution, we develop a novel high-
resolution methodology for the estimation of ζ in (1). Similar
to NLS, we aim at approximating f as well as possible by a
linear combination of complex exponentials. However, the
proposed methodology fundamentally departs from any of
the above methods in the following ways:

First, it is based on Kronecker’s theorem for complex sym-
metric matrices, which essentially states that if a function fc



is uniformly sampled, then the Hankel matrix that is gener-
ated by the vector of samples f has rank P if and only if fc
coincides at the sample points with a function that is a lin-
ear combination of P exponential functions. This fact has
been used for the sparse approximation of functions by sums
of exponentials in the con-eigenvalue approach [7] and the
alternating projections method [8]. Here, it is used to formu-
late an NLS type minimization problem in which the model
(and its parameters c and ζ) does not enter explicitly. Instead,
the model is imposed implicitly by constraining the rank of
the Hankel matrix generated by the vector g approximating f
to equal P . Consequently, residual minimization is not per-
formed over the parameter space {c, ζ} directly, but over the
space of vectors g which generate Hankel matrices of rank P .
The frequency nodes ζ are then obtained by considering the
con-eigenvectors of the solution Hankel matrix.

Second, we reformulate the minimization problem such
that it can be effectively solved by the alternating direction
method of multipliers (ADMM) [9]. ADMM is an iterative
technique that is recently gaining popularity due to its ro-
bustness, versatility and applicability to large-scale problems.
Moreover, this technique enjoys performance comparable to
problem-specific state-of-the-art methods. While the opti-
mization problem considered here is nonconvex, it is shown
numerically that the solutions obtained with the ADMM pro-
cedure generically provide excellent approximations and pa-
rameter estimates for the model (1).

The resulting Hankel matrix ADMM frequency estima-
tion procedure is practically extremely appealing due to its
simplicity and ease of implementation. It enjoys excellent
performance, outperforming subspace methods while at the
same time alleviating the practical limitations of classical
NLS. Unlike subspace methods, it does not rely on a specific
noise model. Another interesting property is that it applies to
situations with missing (or censored) data.

The remainder of this work is organized as follows. In
Section 2, we define an optimization problem based on Kro-
necker’s theorem for the approximation by sums of complex
exponentials and formulate the ADMM-based procedure for
obtaining its solution. Section 3 summarizes the procedure
for obtaining frequency node estimates from the solution
Hankel matrix. In Section 4, we analyze the performance of
the method by means of numerical simulations. Section 5
concludes this contribution and points to future work.

2. APPROXIMATION BY SUMS OF EXPONENTIALS
USING ADMM

In this section, we approximate the vector f as well as pos-
sible by a vector g that is a linear combination of complex
exponential functions. Using Kronecker’s theorem, we ex-
press the solution to this approximation problem in terms of
the vector g whose Hankel matrix has rank P and minimizes
the residual. The resulting optimization problem will then be

reformulated and solved by ADMM.

2.1. Hankel matrices and Kronecker’s theorem

For completeness, we recall that a Hankel matrix A has con-
stant values on the anti-diagonals, i.e., A(j, k) = A(j′, k′) if
j + k = j′ + k′. It can thus be generated elementwise from a
vector g(j), such that A(j, k) = g(j + k), 0 ≤ j, k ≤ N . We
denote this by A = Hg.

Kronecker’s theorem [10, 11] states that if the Hankel ma-
trixA = Hg generated by the vector g is of rank P then, with
the exception of degenerate cases, there exists {ζp}P−1p=0 and
{cp}P−1p=0 such that

g(j) =

P−1∑
p=0

cpe
ζpj , cp, ζp ∈ C. (2)

The converse holds as well.
It follows that the best approximation (in the l2 sense) of

f by a linear combination of P complex exponentials is given
by the vector g which satisfies rank(Hg) = P and minimizes
the l2 norm of the residual r = f − g. In other words, g can
be obtained as the solution to the optimisation problem

minimize
g

1

2
‖r‖22 =

1

2
‖f − g‖22

subject to rank(Hg) = P.

(3)

The parameter P can be selected by considering the sin-
gular values of the Hankel matrix Hf generated by the sam-
ples f , cf., [7]. At this stage, we assume P to be given.

2.2. A solution based on ADMM

Let RP be the indicator function for square matrices S given
by

RP (S) =

{
0 if rank(S) = P,

∞ otherwise.

Then, problem (3) can be reformulated as follows

minimize
A,r

RP (A) +
1

2
‖r‖22

subject to A(j, k) + r(j + k) = f(j + k), 0 ≤ j, k ≤ N.
(4)

The optimization problem (4) has a cost function that consists
of two terms, each depending only on one of the variables A
and r, along with a linear constraint. The problem formula-
tion is therefore well suited to be addressed using ADMM.
ADMM is an iterative technique in which a solution to a large
global problem is found by coordinating solutions to smaller
subproblems. It can be seen as an attempt to merge the
benefits of dual decomposition and augmented Lagrangian
methods for constrained optimization. For an overview of the
ADMM method see [9]. For convex cost function ADMM



is guaranteed to converge to the unique solution. For non-
convex problems it can get stuck at local minima, although it
can work quite well in practice also in these situations, cf. [9,
Chapter 9]. Since the rank constraint RP is nonconvex, con-
vergence of an algorithm solving (4) is not guaranteed. Our
numerical simulations indicate that the method works sub-
stantially better than established high resolution techniques
like ESPRIT, and moreover that it can be applied to cases
where ESPRIT is non-applicable (e.g., missing data)1.

An ADMM iterative step (from iteration q to iteration q+
1) for (4) reads

Aq+1 = argmin
A

L(A, rq,Λq), (5)

rq+1 = argmin
r

L(Aq+1, r,Λq), (6)

Λq+1(j, k) = Λq(j, k) + ρ
(
Aq+1(j, k)

+ rq+1(j + k)− f(j + k)
)

(7)

where Λ = ΛR + iΛI are the Lagrange multipliers, and
L(A, r,Λ) is the augmented Lagrangian associated with (4),

L(A, r,Λ) = RP (A) +
1

2
‖r‖22+

N∑
j,k=0

[
ΛR(j, k)Re

(
A(j, k) + r(j + k)− f(j + k)

)
+ ΛI(j, k)Im

(
A(j, k) + r(j + k)− f(j + k)

)
+
ρ

2

∣∣A(j, k) + r(j + k)− f(j + k)
∣∣2].

The first minimization step (5) is nonconvex due to the pro-
jection onto a non convex set but can be solved analytically.
Deriving closed form expressions for both minimization steps
(5) and (6) is straightforward. The solution Aq+1 to the first
minimization step is equal to the best rank P approximation
of the matrix B defined elementwise by

B(j, k) = f(j + k)− rq(j + k)− ρ−1Λq(j, k).

Denoting byB = UΣV ∗ the singular value decomposition of
B, then by the Eckart-Young theorem,

Aq+1 = UΣPV
∗, (8)

where ΣP is obtained from the diagonal matrix Σ by replac-
ing the diagonal elements Σ(l, l) for l > P with zeros.
The solution to the second minimization step is given by

rq+1(l) =
ρQ(l)f(l)−

∑
j+k=l

[
Λq(j, k) + ρAq+1(j, k)

]
1 + ρQ(l)

,

(9)
where

∑
j+k=l stands for

∑
{0≤j,k≤N}∩{j+k=l} and

Q(l) =

{
l + 1 if l ≤ N,
2N + 1− l otherwise.

1A convex problem could be obtained by replacing the rank constraint
RP by the nuclear norm, at the cost of biased solutions.

With these explicit expressions for the ADMM minimization
steps, the procedure for the approximation by sums of expo-
nentials is given by the following simple MATLAB function:

1 function f_appro=expo_sum_admm(f,P,rho,it_max)
2 %Best approximation to f using P exponentials.
3 N=(length(f)-1)/2;r=zeros(2*N+1,1);
4 Lambda=zeros(N+1);Q=[1:N+1,N:-1:1]';
5 for iter=1:it_max,
6 B=form_hank(f-r)-Lambda/rho;[u,s,v]=svd(B);
7 s=diag(s);s(P+1:end)=0;A=u*diag(s)*v';
8 r=(rho*Q.*f-sum_hank(Lambda+rho*A))./(1+rho*Q);
9 Lambda=Lambda+rho*(A-form_hank(f-r));

10 end;
11 f_appro=sum_hank(A)./Q;
12
13 function H=form_hank(f) %form Hankel matrix
14 H=hankel(f(1:(end+1)/2),f((end+1)/2:end));
15 function f=sum_hank(H) %sum anti-diagonals
16 N=size(H,1)-1; f=zeros(2*N+1,1); H=flipud(H);
17 for j=-N:N, f(j+N+1,1)=sum(diag(H,j)); end;

Extension to the missing data case. It is straightforward
to replace ||r||22 in problem (4) by a weighted norm

||r||22,w =

2N∑
j=0

w(j)|r(j)|2

and to derive the corresponding ADMM procedure. The only
change in the above final expressions is that the denominator
in the second minimization step (9) (and in the corresponding
line 8 of the MATLAB code) is replaced by w(l) + ρQ(l).

Let J denote the set of indices j of the missing data sam-
ples and set f(J ) = 0. The use of weights wJ defined by

w(j) = wJ (j) =

{
0 if j ∈ J
1 otherwise

yields an ADMM procedure for data with missing samples.

Convergence. In order to highlight the simplicity of the
proposed algorithm, the ADMM procedure was described
above to terminate after a preset number q∗ of iterations.
Commonly used stopping criteria are based on the magnitude
of the primal and dual residuals and are straight-forward to
incorporate in the ADMM procedure (cf., [9] for details).

The ADMM procedure would converge to the global so-
lution of the problem (4) if the problem was convex. Since it
is non convex, it is only guaranteed to converge locally and
can converge to different points depending on the choice of ρ
and initial points Λ0 and r0. Numerical experiments indicate,
however, that the ADMM solution g = f − rq∗ of the prob-
lem (4) provides in general an excellent approximation for f .
Here, we have initialized Λ0 and r0 with zeros.

3. FREQUENCY ESTIMATION

Once the solution Hankel matrix A = Hg to (4) has been
found, the parameter vector ζ can be obtained by considering



νp 1.86 6.59 7.49 19.84
γp 0.20 −0.28 0.04 −0.23
|cp| 1.00 0.40 1.50 0.70

νp 1.86 3.84 5.95 7.49 9.60 19.84 30.08
γp 0.05 0.14 0.06 0.01 0.16 0.08 0.07
|cp| 1.00 0.40 1.50 0.70 0.60 1.20 1.00

Table 1. Parameters for the P = 4 (top) and P = 7 (bottom)
complex exponentials used in the numerical simulations.

the so-called con-eigenvectors of A. Hankel matrices belong
to the class of complex symmetric matrices satisfying A =
AT , which generically can be decomposed as [12]

A =

N∑
p=0

spupu
T
p , sp ∈ R+, up ∈ CN+1, (10)

where s0 ≥ s1 ≥ · · · ≥ sN > 0 are the decreasingly ordered
con-eigenvalues of A and where the con-eigenvectors {up}
are orthogonal and satisfy the relationAup = spup. Similarly
to the Eckart Young theorem, it can be shown that the best
rank P ≤ N + 1 approximation of A is given by [12]

P−1∑
p=0

spupu
T
p . (11)

Since g is a pure sum of P exponentials, Hg can be ex-
pressed in the form (11), and therefore each con-eigenvector
up will also be a sum of the same exponentials. Let U =
(u0, . . . , uP−1). It is then possible to write U = V G, where
V is the N + 1 × P Vandermonde matrix generated by eζp
(i.e., V (j, p) = eζpj) and G is some (invertible) P × P ma-
trix. Denote as U (resp. U ) the matrix U whose first row
(resp. last row) has been dropped. Clearly, we have U =
V G, U = V G and the Vandermonde structure of V leads to
diag(eζ0 , . . . , eζP−1)V = V . It follows that

(U
∗
U)−1(U

∗
U) = U

†
U = G−1diag(eζ0 , . . . , eζP−1)G,

where ∗ stands for conjugate transpose. Therefore, we can
compute the nodes ζ by computing the eigenvalues of U

†
U .

4. ESTIMATION PERFORMANCE

We analyze the estimation performance of the proposed fre-
quency estimation algorithm by considering different numer-
ical simulations conducted with P = 4 and P = 7 com-
plex exponentials embedded in circular white Gaussian noise
(500 independent realisations) for different signal-to-noise ra-
tio (SNR, defined as 10 log10

( energysignal

energynoise

)
). The model pa-

rameters c and ζ are summarized in Tab. 1 (units correspond
to uniform sampling of the interval t ∈ [− 1

2 ,
1
2 ]). The perfor-

mance is compared with the theoretical Cramér-Rao bounds
(CRBs) for the estimation problem (see, e.g., [1, 2]).
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Fig. 1. Performance for the estimation of νp (left) and γp
(right), p = 0, · · · , 3, for ESPRIT (top) and the ADMM pro-
cedure (bottom). The CRBs are plotted in solid lines.
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Fig. 2. Performance for the estimation of νp, p = 0, · · · , 3,
for the ADMM procedure when 64 out of 321 samples are
missing at random positions (left) and as one consecutive
block (right). The solid lines indicate the CRBs.

Estimation performance for uniformly sampled data. In
Figure 1, the standard deviations (STDs) of the estimates of
γp and νp, p = 0, · · · , 3, obtained with the ADMM pro-
cedure and with the ESPRIT method, are plotted as a func-
tion of SNR together with the (square root of the) CRBs for
2N + 1 = 257 samples (bias is found to be much smaller
than STD and not reported here). Note that the components
p = 1 and p = 2 are close in frequency but significantly
differ in amplitude (cf., Tab. 1). We observe that the pro-
posed ADMM procedure provides estimates attaining the cor-
responding CRBs, indicating that the procedure realizes the
minimum variance estimator. It consistently outperforms the
ESPRIT method in terms of STD, and especially so for small
SNR and for the two components that are close in frequency.
Estimation performance for missing data. In Fig. 2, we
summarize the performance of the ADMM procedure for es-
timating νp, p = 0, · · · , 3, for 2N + 1 = 257 + 64 samples of
which 64 samples are missing at random positions (left) and
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Fig. 3. Approximation of P = 7 exponentials for 2N + 1 =
257 samples of which two blocks of 60 samples are missing
(SNR = 10dB). Real parts of noise-free available samples
(red dots) and missing samples (red circles); mean and±1.96
standard deviation error band (blue solid lines).

as one consecutive block centred at random position (right).
The STDs are again found to reach the (square root of the)
CRBs, demonstrating that the ADMM procedure is not af-
fected by missing data. Similar results are obtained for γp
and are not reported here for space limitation reasons.
Approximation for missing data. Finally, Figure 3 illus-
trates the approximation performance of the ADMM proce-
dure for 2N + 1 = 257 samples of P = 7 exponentials
of which two blocks of 60 consecutive samples are missing
(SNR = 10dB, mean over 100 realizations). Despite the fact
that 47% of the samples are missing, the obtained approxi-
mations are notably consistent with the underlying noise-free
function. The maximum observed differences |ν̂p − νp| are
found to be below 10−3 times the sampling frequency.

5. CONCLUSIONS

A high-resolution parametric frequency estimation procedure
that is based on approximation with sums of P complex ex-
ponentials was proposed. In the proposed algorithm, the Kro-
necker theorem was used to cast the approximation problem
in terms of generating functions for Hankel matrices of rank
P . The resulting optimization problem was addressed by an
ADMM procedure. The Hankel matrices obtained from the
ADMM procedure were then used to compute the parameters
of the complex exponential model. This is in contrast to other
methods, such as classical NLS or subspace methods. Al-
though the optimization problem considered in this paper is
non-convex (and the problems of local minima are inherited
with non-convexity, as is the case for classical NLS) numer-
ical simulations indicated that the ADMM procedure yields
excellent practical performance.

The ADMM procedure can be applied to equally spaced
samples, including situations with missing data, and does not
rely on explicit noise model assumptions. Despite its versatil-
ity, the resulting algorithm is simple and easy to implement.
The method has been presented here for complex-valued data.
However, its real-valued counterpart can be obtained in a sim-
ilar fashion as outlined in this work.

The procedure will be applied to frequency node estima-
tion in nuclear quadrupole resonance applications. Future
work includes the extension to multiple time series and to the
estimation of directions of arrival.
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