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Abstract—Since time-delay estimation is a fundamental task
in various engineering fields, several expressions for the CRB
and MLE have been developed over the past decades. In all of
these previous studies, a common assumption was that the wave
transmission process introduced an unknown phase component,
which made it impossible to exploit the phase component related
to the delay from the carrier signal. However, there are practical
scenarios where this unknown phase can be estimated and
compensated for, enabling the utilization of the delay phase
component from the carrier signal. In this context, we pro-
vide a comprehensive treatment of this scenario, including the
derivation of the MLE and the associated CRB. This approach
allows us to analyze the impact of each signal component (carrier
frequency and baseband signal) on the achievable MSE of delay
estimation relative to the SNR. It also reveals five distinct regions
of operations, in contrast to the well-known three.

Index Terms—Cramér-Rao bound, maximum likelihood esti-
mation, time-delay, band-limited signals.

I. INTRODUCTION

Time-delay estimation is a critical task in numerous engineer-
ing fields, including navigation, radar, reflectometry, sonar,
and communications, among others [1]–[9]. Estimating this
parameter serves as a crucial initial step in the receiver’s op-
eration [5], [8], [9]. In the design and evaluation of estimation
techniques for these applications, it is imperative to understand
the ultimate achievable performance in terms of Mean Squared
Error (MSE). This valuable information can be provided by
Cramér-Rao bounds (CRB) [10], the most widely used lower
bound on MSE due to its ease of calculation for various prob-
lems (see [4, §8.4] and [11, Part III]). Furthermore, the CRB
accurately estimates the MSE of the Maximum Likelihood
Estimator (MLE) in the asymptotic region of operation under
certain conditions, such as the large sample regime and/or
high Signal-to-Noise Ratio (SNR) regime of the Gaussian
conditional signal model (CSM) [12], [13]. As a result, it is
not surprising that several CRB expressions have been derived
for the delay-Doppler estimation problem over the past few
decades. These expressions cover a range of signal types,
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including finite narrow-band signals [2], [14]–[22], finite wide-
band signals [14], [17], [20], [23]–[26], and infinite bandwidth
signals [27]. In all of these prior studies, a common assumption
is made: the wave transmission process introduces an unknown
phase component, which hinders the utilization of the time-
delay term associated to the carrier-phase. This unknown phase
component stems from the assumption of imperfect knowledge
of the propagation medium, of the transmitter and/or receiver
antenna characteristics (including center of phase and hyper-
frequency electronics) and/or the radio-frequency electronics.
In these studies, all phase components are aggregated and
combined with the amplitude component, resulting in an
unknown complex amplitude. This perhaps explains why a
comprehensive treatment of scenarios in which this unknown
phase component can be estimated and compensated for seems
to be lacking in the existing literature. However, a case of
interest is, for instance, a ground-based navigation scenario
where the transmitter remains static, and the receiver plans
to move from one known location to another (way-points).
At each known location, the receiver can estimate the phase
component attributable to the transmission process [3] and
compensate for it as it travels towards the next known location.
This would enable the leverage of the carrier-phase term for a
finer time-delay estimation performance assessment, since the
resulting signal model would characterize better the received
signal in the receiver’s end. To simplify matters, it is first
considered the case where the Doppler effect, mainly a carrier
frequency shift in general, can be neglected (e.g., in the case of
a static or slowly moving transmitter and receiver). Given the
specific CSM in such scenarios, this communication presents
a novel MLE and CRB, and extends the known relationship
for the standard CSM between the CRB and the ambiguity
function [2, § 10] [5, § 3.9.4]. The results presented herein
allow us to analyze the impact of each signal component
(carrier frequency and baseband signal) on the achievable
MSE of time-delay estimation concerning SNR, revealing five
regions of operation instead of the commonly known three
[28], [29].



II. SIGNAL MODEL AND MLE

We consider the transmitter-to-receiver direct transmission
of a band-limited signal a (t) with bandwidth B

a (t) =

N2∑
n=N1

a (nT ) sinc (πB (t− nT )) , T = 1/B, (1)

over a carrier with frequency fc. If the transmitter to receiver
distance is constant (constant propagation delay τ ) during
observations, the baseband signal at the output of the receiver’s
Hilbert filter with bandwidth Fs ≥ B can be modelled as [2],
[12], [21], [30]:

x (t) = αejϕa (t− τ) + n (t) , ϕ = ψ + φ(τ), (2)

where αejψ is the transmission loss complex amplitude, α ∈ R
and α > 0, φ(τ) = −2πfcτ for constant transmitter to
receiver distance, and n(t) is a complex centered circular
Gaussian noise, white within the bandwidth Fs with variance
σ2
n. If ψ can be measured, i.e., calibrated, and compensated

for, then (2) becomes

x (t) = αejφ(τ)a (t− τ) + n (t) , φ(τ) = −2πfcτ, α > 0.
(3)

The discrete vector signal model is build from N ′ = N ′
2 −

N ′
1 + 1 (N ′

1 ≪ N1, N ′
2 ≫ N2) samples at Ts = 1/Fs,

x = αejφ(τ)a (τ) + n, (4)

with signal samples x = [x (N ′
1Ts) , . . . , x (N

′
2Ts)]

⊤, noise
samples n = [n (N ′

1Ts) , . . . , n (N
′
2Ts)]

⊤, code samples
a (τ) = [a (N ′

1Ts − τ) , . . . , a (N ′
2Ts − τ)]⊤. Actually, signal

model (4) is a particular instantiation of the general CSM [12],
[31]

x = s(ζ) + n, s(ζ) = a′(τ)α, ζ = (α, τ)T , α > 0, (5)

where a′(τ) = a (τ) ejφ(τ) and φ(τ) = −j2πfcτ , the
unknown deterministic parameter vector to estimate being
ϵ = (σ2

n, τ, α). It is noteworthy that the MLE of {τ, α} in
(5) is partly constrained

(τ̂ , α̂) = arg min
τ,α>0

{
∥x− a′ (τ)α∥2

}
, (6)

which is a different setting than the one usually assumed
in the CSM [12], [31], and for the MLE with vector pa-
rameter equality constaints [32]. In the following, let ϵ0 =((
σ2
n

)0
,
(
ζ0
)T)T

, ζ0 =
(
τ0, α0

)T
, be the selected (true)

value of ϵ, i.e.,

x = a
(
τ0
)
ejφ(τ

0)α0 + n, n ∼ CN
(
0,
(
σ2
n

)0
IN

)
, (7)

and let a′ (τ)T =
(
ℜ{a′ (τ)}T ,ℑ{a′ (τ)}T

)
,

xT =
(
ℜ{x}T ,ℑ{x}T

)
and nT =

(
ℜ{n}T ,ℑ{n}T

)
∼

N
(
0, (σ2

n/2) · I2N
)
, such that

x = a′ (τ)α+ n ⇔ x = a′ (τ)α+ n. (8)

A. MLE with inequality constraint

Since1

a′ (τ)
T
a′ (τ) = a′ (τ)

H
a′ (τ) , a′ (τ)

T
x = ℜ

{
a′ (τ)

H
x
}
,

∥∥Πa′(τ)x
∥∥2 = xT

a′ (τ)a′ (τ)
T

a′ (τ)
T
a′ (τ)

x = ℜ

{
a′ (τ)

H

∥a′ (τ)∥
x

}2

, (9a)

and
∥x− a′ (τ)α∥2 = ∥x− a′ (τ)α∥2 , (9b)

then

∥x− a′ (τ)α∥2 = ∥x− a′ (τ)α∥2

=
∥∥Πa′(τ) (x− a′ (τ)α)

∥∥2 + ∥∥∥Π⊥
a′(τ) (x− a′ (τ)α)

∥∥∥2
= ∥a′ (τ)∥2 (α̂u (τ)− α)

2
+
∥∥∥Π⊥

a′(τ)x
∥∥∥2 ,

where

α̂u (τ) =
a′ (τ)

T
x

a′ (τ)
T
a′ (τ)

=
ℜ
{
a′ (τ)

H
x
}

a′ (τ)
H
a′ (τ)

,

denotes the usual unconstrained estimator [31] (that is, the
estimator of α if the constraint α > 0 is relaxed). Hence,

(τ̂ , α̂) = arg min
τ,α>0

{
(α̂u (τ)− α)

2 ∥a′ (τ)∥2 +
∥∥∥Π⊥

a′(τ)x
∥∥∥2} ,

⇒ ∀τ : α̂ = argmin
α>0

{
(α̂u (τ)− α)

2
}
. (10)

Thus

• if α̂u (τ) > 0 then:

min
α>0

{
(α− α̂u (τ))

2
}
= 0 and α̂ (τ) = α̂u (τ) ,

• if α̂u (τ) ≤ 0 then:

min
α>0

{
(α− α̂u (τ))

2
}
= α̂2

u (τ) and α̂ (τ) = 0,

which yields to

∥x− a′ (τ) α̂∥2 = ∥x∥2 −ℜ

{
a′ (τ)

H
x

∥a′ (τ)∥

}2

1ℜ{a′(τ)Hx}>0,

(11)
where 1D is the indicator function of subset D of R. Finally

τ̂ = arg min
{τ |ℜ{a′(τ)Hx}>0}

∥x∥2 −ℜ

{
a′ (τ)

H
x

∥a′ (τ)∥

}2
 ,

(12a)
or equivalently,

τ̂ = arg max
{τ |ℜ{a′(τ)Hx}>0}

ℜ

{
a′ (τ)

H
x

∥a′ (τ)∥

}2
 . (12b)

1Let S = span (A), with A a matrix, be the linear span of the set of
its column vectors, and S⊥ the orthogonal complement of the subspace S.
The orthogonal projector over S and S⊥ are ΠA = A

(
AHA

)
AH and

Π⊥
A = I−ΠA.



In the case of (4), (12b) becomes

τ̂ = arg max
{τ |ℜ{e−jφ(τ)(a(τ)Hx)}>0}

{
ℜ
{
e−jφ(τ)

aH (τ)x

∥a (τ)∥

}2
}
.

(13)

III. CRB FOR BAND-LIMITED SIGNALS

As shown in [33], in case of a parameter constraint, the
CRB is unchanged at a regular point, i.e. where no equality
constraint is active. Thus for α > 0, the CRB is obtained from
the standard Fisher Information Matrix (FIM) F

(
ϵ0
)
,

CRBϵ|ϵ
(
ϵ0
)
= F

(
ϵ0
)−1

, (14a)

derived from the Slepian-Bangs formula [10, (3.31)] where
x ∼ N

(
mx (ϵ) ,Cx (ϵ)

)
, ϵT =

(
σ2
n, α, τ

)
, mx (ϵ) = a′ (τ)α,

Cx (ϵ) = (σ2
n/2)I2N . Then

F (ϵ) =

 1
2 tr

((
σ2
n

2

)−2
1
2I2N

)
0⊤

0 F(ζ)

 , (14b)

F(ζ) =
2

σ2
n

 a′ (τ)
T
a′ (τ) α∂a

′(τ)
∂τ

T
a′ (τ)

α∂a
′(τ)
∂τ

T
a′ (τ) α2 ∂a

′(τ)
∂τ

T ∂a′(τ)
∂τ

 , (14c)

leading to

CRBτ |ϵ (ϵ) =
σ2
n

2α2
Φ−1
r , (15a)

Φr =
∂a′ (τ)

∂τ

T

Π⊥
a′(τ)

∂a′ (τ)

∂τ

=

∥∥∥∥∂a′ (τ)∂τ

∥∥∥∥2 − ℜ
{
a′ (τ)

H ∂a′(τ)
∂τ

}2

∥a′ (τ)∥2
. (15b)

More specifically, if a′ (τ) = a (τ) ejφ(τ), then

Φr =

∥∥∥∥∂a (τ)∂τ

∥∥∥∥2 − ℜ
{
a (τ)

H ∂a(τ)
∂τ

}
∥a (τ)∥2

2

+(
∂φ (τ)

∂τ

)2

∥a (τ)∥2 − 2
∂φ (τ)

∂τ
ℑ
{
a (τ)

H ∂a (τ)

∂τ

}
.

(15c)

Moreover, according to the Nyquist-Shannon theorem,

lim
(N ′

1,N
′
2)→(−∞,+∞)

Φr =

Fs

(
w2 −

ℜ{w3}2

w1
+ 4π2f2cw1 + 4πfcℑ{w3}

)
,

where w1 =
∫ +∞
−∞ |a (t)|2 dt = aHa

Fs
, w2 =

∫ +∞
−∞

∣∣∣∂a(t)∂τ

∣∣∣2 dt =
Fsa

HVa, and w3 =
∫ +∞
−∞

∂a(t)
∂τ a (t)

∗
dt = aHΛa, with V a

symmetric positive definite real-valued matrix and Λ an anti-
symmetric real-valued matrix detailled in [24]. Finally Φr for
CRBτ |ϵ (ϵ) (15a) can be recasted as

Φr = F 2
s a

Ha

 aHVa
aHa

−ℜ
{

aHΛa
aHa

}2

+

4π2
(
fc
Fs

)2
+ 4π fcFs

ℑ
{

aHΛa
aHa

}
 , (15d)
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Fig. 1. Normalized ambiguity function for carrier signal Ξ
(
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)
(17) and

baseband signal Ξa
(
τ ; τ0

)
(20). Fs ∈ {1, 20}, fc = 100Fc, a (t) is 1 Gold

code sequence (1023 bits).

an expression which depends only on the carrier fc and the
baseband signal samples a. Note that if fc ≫ Fs, then Φr
reduces to Φr ≃ (2π ∥a∥ fc)2 and the CRBτ |ϵ (ϵ) depends
only on the energy carried by the baseband signal and no
longer on its temporal of frequential shape.

IV. AMBIGUITY FUNCTION AND SNR THRESHOLD

From (9a) and (12b),

τ̂ = arg max
{τ |a′(τ)Tx>0}

{∥∥Πa′(τ)x
∥∥2} , x = a′

(
τ0
)
α0 + n.

Thus the MLE score function reads∥∥Πa′(τ)x
∥∥2 =

∥∥Πa′(τ)a
′ (τ0)α0 +Πa′(τ)n

∥∥2 , (16)

which at high SNR tends to the so-called “ambiguity function”
[30]

Ξ
(
τ ; τ0

)
=
∥∥Πa′(τ)a

′ (τ0)α0
∥∥2

(17)

=
(
α0
)2 (a′ (τ)T a′

(
τ0
))2

a′ (τ)
T
a′ (τ)

=
(
α0
)2 ℜ

{
a′ (τ)

H
a′
(
τ0
)}2

a′ (τ)
H
a′ (τ)

.

A few lines of calculus (not detailed here) allow to prove that

Ξ
(
τ0 + dτ ; τ0

)
≃ Ξ

(
τ0; τ0

)
+

1

2

∂2Ξ
(
τ ; τ0

)
∂2τ

∣∣∣∣∣
τ0

dτ2

≃
(
α0
)2 ∥∥a′ (τ0)∥∥2(1− 1

2

(
2Φr

∥a′ (τ0)∥2

)
dτ2

)
(18a)

and according to (15a),

CRBτ |ϵ
(
ϵ0
)
= F (τ)

−1
, F (τ) =

−1

σ2
n

∂2Ξ
(
τ ; τ0

)
∂2τ

∣∣∣∣∣
τ0

,

(18b)



which generalizes the result known for the standard CSM [2,
§ 10] [5, § 3.9.4]. In the case of (4), (18a) becomes

Ξ
(
τ0 + dτ ; τ0

)
=
(
α0
)2 ∥∥a (τ0)∥∥2 ×

ℜ

{
a
(
τ0 + dτ

)H
a
(
τ0
)

∥a (τ0 + dτ)∥ ∥a (τ0)∥
ej(φ(τ

0)−φ(τ0+dτ))

}2

. (19)

At the vicinity of τ0, since

a
(
τ0 + dτ

)H
a
(
τ0
)

∥a (τ0 + dτ)∥ ∥a (τ0)∥
∈ R,

φ
(
τ0
)
− φ

(
τ0 + dτ

)
≃ −

∂φ
(
τ0
)

∂τ
dτ,

then

Ξ
(
τ0 + dτ ; τ0

)
≃ Ξa

(
τ0 + dτ ; τ0

)
cos

(
∂φ
(
τ0
)

∂τ
dτ

)2

,

Ξa
(
τ ; τ0

)
=
(
α0
)2 ∣∣∣∣∣a (τ)

H
a
(
τ0
)

∥a (τ)∥

∣∣∣∣∣
2

, (20)

where Ξa
(
τ ; τ0

)
in (20) is the ambiguity function of the base-

band signal a (t), which is essential to predict and characterize
the behaviour of τ̂ (13) with respect to the SNR.

CRB−1
τ |ϵ (ϵ) = SNRoutF

2
s

(
(2πfc/Fs)

2
+ aHVa/aHa

)
(21)

where SNRout =
(α0)

2∥a(τ0)∥2

(σ0
n)

2/2
= 2∥a∥2

(σ0
n)

2

(
α0
)2

is the SNR
at the ouput of the MLE (13) (a.k.a matched filter [30], [34])
for the true value τ0 of τ , and cos

((
∂φ
(
τ0
)
/∂τ

)
dτ
)2

=

cos (2πfcdτ)
2. Then, if fc ≫ B, cos

(
2πfc

(
τ − τ0

))2
be-

haves like a Dirac comb which samples the baseband signal
ambiguity function Ξa

(
τ ; τ0

)
(20). Firstly, this sampling

effect generates an ambiguity function Ξ
(
τ ; τ0

)
with multiple

local maxima within the main lobe of Ξa
(
τ ; τ0

)
(see Fig. 1).

Hence, since at high SNR, the MLE score function (16) tends
to a sampled version of Ξa

(
τ ; τ0

)
, the MLE τ̂ remains close

to the maximum maximorum of Ξ
(
τ ; τ0

)
, that is close to

τ0, with a variance linked to the curbature of Ξ
(
τ ; τ0

)
at

the vicinity of τ0 (18a), that is CRBτ |ϵ
(
ϵ0
)

(18b). This is
highlighted in Fig. 2 displaying the MSE of MLE τ̂ (13) and
the CRBτ |ϵ (ϵ) (21). Since fc/Fs ≥ 1540/20 = 77 ≫ 1,
then (21) becomes simply CRBτ |ϵ (ϵ) ≃ SNRout (2πfc)

2

and depends only on the energy carried by the baseband signal
and no longer on its temporal or frequential shape. Secondly,
when the SNR decreases, at one point, the contribution of
the noise in the MLE score function (16) allows to obtain
the maximum in the closest local maximum, generating a
”jump” of 1/fc in the estimation error (see Fig. 1), and
therefore a threshold effect on the MSE. As the SNR keeps on
decreasing, the maximum of the MLE score function (16) will
be located, due to the noise contribution, at other local maxima
of smaller values, amounting to a random sampling of the
baseband signal ambiguity function Ξa

(
τ ; τ0

)
. This behavior

of the estimation error is similar to that of the estimation
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error of MLE τ̂a of τ for the standard CSM (2) where the
phase of the complex amplitude is regarded as free parameter:
x = αejϕa (τ) + n [24]. In this situation the MLE score
function is

∥∥Πa(τ)x
∥∥2 which tends to Ξa

(
τ ; τ0

)
(20) at high

SNR. Hence, in this region of operation, the MSE of τ̂ is
expected to converge towards the CRB of τ̂a

CRBaτ = 1/F a, F a = SNRoutF
2
s

(
aHVa/aHa

)
. (22)

This is highlighted in Fig. 2 which also displays CRBaτ (22).
Note that the curvature of the ambiguity function Ξa

(
τ ; τ0

)
(20) of the code plays an important role in the SNR threshold



value. For a given BPSK like signal a (t), the curvature of
Ξa
(
τ ; τ0

)
, which is inversely proportional to CRBaτ (22),

depends on Fs, as it is illustrated in Fig. 1 (fc = 100/Fc
to improve the readibility of plots).
Thirdly, as the SNR keeps on decreasing, a second well-known
SNR threshold occurs leading to the last region of operation,
the a priori region [28] as illustrated by Fig. 3.

V. CONCLUSION

The specific CSM considered here is representative of a
class of nonlinear problems in which the likelihood function
displays numerous ambiguities that are closely spaced. This
observation suggests the presence of not just the well-known
three regions of operation but rather five distinct regions within
this class. From a practical perspective, this communication
equips us with the necessary tools to evaluate the advantages of
compensating for transmission phase when conducting delay
estimation.
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[22] D. Medina, J. Vilà-Valls, E. Chaumette, F. Vincent, and P. Closas,
“Cramér-Rao bound for a mixture of real- and integer-valued parameter
vectors and its application to the linear regression model,” Signal
Processing, vol. 179, 2021.

[23] P. C. C. X.X. Niu and Y. Chan, “Wavelet based approach for joint time
delay and Doppler stretch measurements,” IEEE Trans. on AES, vol. 35,
no. 3, pp. 1111–1119, July 1999.
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