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University of Toulouse

Toulouse, France

Abstract—The monitoring of abnormal ship behavior is an
important task for maritime surveillance for which the automatic
identification system (AIS) has been widely exploited. Several
works have proposed graph-based anomaly detection (AD) meth-
ods on spatial AIS points to provide further information regard-
ing the interactions between the observed data through graph
structures. This paper studies a new AD framework on graphs
constructed from AIS trajectories. This framework considers
a diffusion kernel at multiple scales of the graph Laplacian
matrix, referred to as multiscale AD for AIS trajectories (MAD-
AIS). MAD-AIS builds an attributed graph from a set of AIS
trajectories, where nodes encode spatio-temporal trajectories and
edges connect them via a similarity measure. In a second stage,
AD is performed by computing scaled versions of the graph
Laplacian matrix that are used to assess the graph connectivity.
Simulation results are first conducted on synthetic data with
controlled ground truth showing that the proposed MAD-AIS
can effectively detect the abnormal behavior of ships in terms
of spatio-temporal irregularities. Simulations conducted on real
AIS subtrajectories (i.e., segments of AIS trajectories) show that
abnormal features/attributes can be localized along AIS paths.

Index Terms—Graph anomaly detection, multiscale diffusion
graph, automatic identification system, maritime surveillance

I. INTRODUCTION

Data from the automatic identification system (AIS) is
collected from vessels and record the dynamic and static
information of the ships. Anomaly detection (AD) based on
AIS trajectories is nowadays a relevant research field for mar-
itime surveillance [1]–[4]. Different state-of-the-art approaches
focus on modeling and extracting the sailing routes or normal
traffic patterns from historical AIS data [5]. By modeling
vessel behavior as graphs, where nodes correspond to positions
and edges capture spatial and temporal connections, graph-
based methods have resulted in powerful frameworks for
detecting anomalies in maritime traffic [1], [3], [6].

Heat diffusion on graphs has been studied for optimal
data embedding in manifolds and for measuring the graph
connectivity via the heat equation [7], [8]. In the context of
AD, the diffusion process via the heat kernel can be leveraged
to identify anomalous nodes in the graph. Nodes that exhibit
unusual rapid or high energy concentration compared to their
neighbors may indicate anomalous behavior or structural ir-

Fig. 1. Multiscale anomaly detection for AIS trajectories (MAD-AIS)
framework, where spatio-temporal trajectories (left) are encoded on graph
nodes V and connected by edges E given by a similarity node measure,
yielding the graph G (center). The data-based graph is then input to the
MAD algorithm for detecting space-time deviated trajectories exploiting the
Laplacian matrix of the graph (right). Abnormal scores indicate the potential
abnormal trajectories.

regularities within the graph [9]–[11]. However, up to our
knowledge, there are no previous studies considering this
diffusion concept for AD in spatio-temporal trajectories using
graphs to analyze their behavior.

This paper investigates a new graph-based AD framework
to analyze spatio-temporal AIS trajectories. These trajecto-
ries are encoded in a graph structure for the detection of
potential abnormal paths by heat diffusion on an appropriate
graph Laplacian matrix. The Laplacian matrix captures the
correlation between trajectories via node adjacency and the
attributes or characteristics input to the graph. Then, using
scaled versions of the Laplacian through the localized heat
kernel at a specific node enables the quantification of dense
or weakly connected nodes relative to the entire network
graph. The proposed methodology is evaluated using both
synthetic and real trajectories. In the real-world scenario, an
additional step is implemented to address the issue of having
different trajectory lengths. Spatio-temporal subtrajectories are
extracted as a set of of trajectory segments that can be
processed using the proposed framework.

Figure 1 summarizes the proposed MAD-AIS framework
divided into a graph trajectory construction and a multiscale
anomaly detection (MAD). Note that the constructed graph is
geo-spatio-temporal dependent, representing and modeling ac-
tual trajectories from the dataset, while state-of-the-art graphs
models the most common stay point of vessels. The contribu-
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tions of this paper are twofold: first, a graph representation for
modeling spatio-temporal trajectories within a graph structure
is proposed to capture the route vessel behavior. In a second
step, the effectiveness of the heat diffusion concept for AD
in AIS data is evaluated, which is of interest for maritime
surveillance.

II. RELATED WORK

A. Anomaly Detection for Ship Trajectories

Several works have presented solutions based on machine
learning or statistical methods to detect anomalous behavior
in ship trajectories using, for example, AIS or radar data.
Anomaly detectors can be either point-based, following clus-
tering methods such as K-means or DBSCAN (density-based
spatial clustering of applications with noise) [12] or trajectory-
based, where the clustering is performed on the entire tra-
jectories based on similarity measures [13]. Furthermore,
classical AD methods have been adapted to detect anomalies
in trajectories such as one-class support vector machines [14],
isolation forest [3], among others.

B. Graph Anomaly Detection (GAD)

Graphs have been used to represent the structural/relational
information, in which nodes/vertices represent objects and
edges characterize their relationships. Graph anomaly detec-
tion (GAD) aims at exploiting this structural information to
detect abnormal graph objects (nodes, edges, subgraphs) [15].
AD on graph-structured data can be done via deep learning
techniques, where large and labeled datasets are required [15].
Alternatively, statistical models, matrix factorization and k-
nearest neighbors have been used to extract structural patterns
for detecting anomalous nodes [15]–[17]. On the other hand,
spectral graph analysis has also been exploited for finding
anomalies, where the Laplacian matrix is the central subject of
the analysis [18]. In this line, a multiscale graph-based AD was
studied in [10] to detect anomalies at different neighborhood
levels, i.e., locally or globally, with respect to multiples scales.

C. From trajectories to graph structure

Ship trajectories are not naturally graph structured. Thus,
one should analyze what is the most representative charac-
teristic from the underlying data that provides a significant
feature vector for detecting anomalies in trajectories and then
build the graph considering this feature vector. A graph can
be built from the data in different ways in order to promote
the detection of anomalies. Abnormal ship trajectories are
usually associated with the positions of ships, hence, state-
of-the-art methods rely on a graph built from the spatial data,
i.e., longitude and latitude information. However, there are also
anomalies related to the speed, travel time, among others [1],
[4], [6]. Typical spatial-related anomalies include the deviation
from a standard route, two vessels having too close trajectories,
at a given time, or vessels entering restricted areas such as
marine protected areas or exclusions zones [2].

In the literature, there are mainly two strategies for con-
structing an undirected graph from trajectories. A point-based

similarity/distance strategy that relies on the distance or sim-
ilarity measure between the data points, and a strategy based
on spatial grids, which considers that the trajectory lies on a
spatial grid to map each trajectory point to a point within the
grid [19]. Other strategies considered in the literature seek to
learn or estimate the graph structure from the data using an
optimization problem [3].

D. GAD for AIS Trajectories

Different approaches have shown the interest of exploiting
graphs for detecting abnormal AIS trajectories [1], [3], [20].
In [3], a trajectory graph-based representation is employed to
construct maritime routes that vessels are likely to traverse.
An abnormal behavior regarding these routes is detected by
using a Rayda criterion on the spatial positions and the
isolation forest algorithm on the route attributes (such as speed
or acceleration). Graphs can also be used to represent the
connection between vessels [1]. The graph edges jointly with
the AIS data can then be fed into a recurrent neural network
to detect different kinds of anomalies including unusual vessel
turns, loss of the AIS signal, and AIS anomalous trajectories.

III. MULTISCALE AD FOR AIS TRAJECTORIES

A. Embedding Trajectories in Graphs

AIS data store vessel information such as ship identifier
(ID), longitude (lon), latitude (lat), speed over ground (sog),
course over ground (cog), a coordinate universal timestamp
(time), and others. Formally, an AIS trajectory can be ex-
pressed as a sequence {x1, ...,xT } of T consecutive discrete
state vectors describing the vessel state, where at a given
time instant t ∈ {1, ..., T}, the vector can be defined as
xt = [lon, lat, cog, sog, time]⊤, with xt ∈ Rd, where d is
the number of features. For N trajectories, let X ∈ RN×T×d

denotes the set of time-features containing the AIS data.
Graph Definition. Considering N trajectories, let G =

(V,E,W) denote an undirected weighted graph constructed
from the set of trajectories, in which an AIS trajectory is
mapped to a node vi ∈ V , where V = {v1, ..., vN} is a set of
N nodes, E is the set of edges, and W ∈ RN×N is a matrix
containing the edge weights (with [W]i,i = 0,∀i = 1, ..., N ).
The degree of the graph D ∈ RN×N is a diagonal matrix
whose ith element is the sum of all edge weights incident to
a node i, i.e., Di,i =

∑N
j=1[W]i,j .

Attributed Graph. An attributed/weighted graph is
defined as G = (V,E,W,X), with node attributes X =
{x1, ..., xN}, with xn ∈ RM , and M is the dimension of the
attributes. The weighted adjacency matrix is then defined using
a similarity measure between the attributes as

[W]u,v =

exp

(
− ∥Xu−Xv∥2

2σ2

)
, if (u, v) ∈ E

0, otherwise,
(1)

where σ is the standard deviation of the attributes in the set
X. In practice, the edge set E is built via the well-known ϵ-
graph, where two nodes are connected if a given distance or
similarity measure is less than a threshold ϵ. Finally, the graph
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Laplacian matrix is defined in terms of the degree and weight
matrices as L = D−W, where L encodes information about
the connectivity and structure of the graph [21].

B. Heat Diffusion Kernel for Multiscale Concentration

This paper assumes that weighted edges connect trajectories
that are locally/spatially close, where each weight represents
a similarity measure between two trajectories of the set. An
edge weight [W]u,v is associated with a heat energy that can
be measured by localizing a kernel H at a given node [11].
If the edge weight is large, then, the heat can flow easily
between two connected nodes. This concept has been studied
in diffusion processes in which the heat equation describes
how the energy is diffused over a geometry [11], [22].

It is well-known that the heat equation is solved via the heat
kernel, which has been expressed in terms of the Laplacian
matrix as [21], [22]:

Hτ = e−τL, (2)

where τ represents the scale/time in which the energy is
diffused. The heat kernel can be localized at the node i ∈ V
by a delta function δi, such that it is possible to measure
the connectivity of the node regarding its neighbors as a
concentration measure.

The heat concentration at the node i is then defined as the
ℓ2 norm of the heat Kernel H applied to node i as [11]:

Γi,τ =
∥∥e−τLδi

∥∥
2
, (3)

where τ belongs to a set of scales {τ1, ..., τR}. Then, relatively
high concentrations measured in (3) will indicate weakly con-
nected nodes, i.e., trajectories that are potentially dissimilar to
most trajectories. To detect the nodes with high concentration
in the graph, a detector is defined as:

Bi,τ =

{
1, if Γi,τ ≥ κτ

0, otherwise
, for τ ∈ {τ1, ..., τR}, (4)

where κτ = µΓτ + 2σΓτ is a threshold given in terms of the
mean µΓτ and standard deviation σΓτ of the values of Γi,τ

[10]. Then, different scale values at a given node i lead to
measure its connectivity locally and globally in the graph [10],
[11]. Finally, a multiscale abnormal score can be computed to
rate the abnormality level of each node as εi = 1

R

∑τR
τ=τ1

Bi,τ ,
such that ε ∈ [0, 1]N . Algorithm 1 summarizes the steps for
computing the multiscale abnormal score using a diffusion on
the Laplacian matrix.

IV. SIMULATION RESULTS

To evaluate the proposed framework for graph construction
and graph AD, experimental results on both synthetic and real-
world data sets are conducted.

A. Experimental Setup

Datasets. The synthetic dataset of [14] is first considered.
This dataset contains randomly generated trajectories gathered
in N = 1000 sets. Each set contains 260 trajectories: 250
normal trajectories grouped in 5 main rails or routes, and 10

Algorithm 1: MAD: Multiscale AD via Heat Diffusion

Input : Laplacian matrix L ∈ RN×N , scale values
{τ1, ..., τR}, number of nodes N

Output: Abnormal node scores ε ∈ RN , Γ ∈ RN×R

1 for i = 1 to N do
2 for τ = τ1 to τR do
3 Γi,τ =

∥∥e−τLδi
∥∥
2

4 κτ = µΓτ
+ 2σΓτ

5 Compute B using Eq. (4)
6 εi =

1
R

∑τR
τ=τ1

Bi,τ

outliers. An individual trajectory has 16 points defined as pairs
of spatial coordinates (x, y). The performance of the proposed
framework is evaluated on the first 600 trajectories from the
whole set.

A publicly available real dataset is also considered [23].
This dataset contains AIS winter vessel trajectories recorded
in years 2017-2019 from the Baltic Sea. These trajectories
were used to evaluate the proposed framework for graph
construction and AD. The dataset was preprocessed by the
following two steps: 1) AIS trajectories belonging to the
same vessel (i.e., data with the same ship ID number) but
exhibiting atypical behaviors were separated, 2) a trajectory
was divided into two parts if, at a specific time, a vessel has a
distance to the coast equal to less than 20 km while the time
difference between two consecutive AIS messages is greater
that 2 hours. These rules ensure that trajectories from the same
vessel makes sense. After this preprocessing step, a set of
80 trajectories with different numbers of spatio-temporal AIS
observations/points was obtained. Figure 4 (a) displays the set
of AIS trajectories on a map.

Metrics. There is a groundtruth for the synthetic dataset.
Thus, the AD performance is quantified using the well-known
precision, recall and F1-score metrics, which are defined in
terms of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) values. On the other hand, the
results were qualitatively analyzed for the real dataset.

State-of-the-art methods. The proposed framework is com-
pared against some standard AD methods such as DB-
SCAN and local outlier factor (LOF), which are adapted for
trajectory-based AD via a trajectory distance matrix [24]. The
DBSCAN method is a clustering method designed to identify
dense regions measured by the number of objects close to a
given point. The two hyperparameters that need to be adjusted
in DBSCAN are eps, defining the radius of the neighborhood
around a point, and MinPts, representing the minimum number
of neighbors within the eps radius. On the other hand, the
LOF method measures the local density deviation of each
observation with respect to its k nearest neighbors. LOF uses
two hyperparameters: the neighborhood size kLOF and the
contamination γ, which specifies the amount of contamination
or proportion of outliers in the dataset. Regarding the input
parameters to MAD algorithm, the scale range is set to a
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sequence of 200 evenly spaced numbers over the interval
[0, 1000] and the number of nodes N is set accordingly to
the dataset under analysis.

B. Synthetic Results

In the synthetic scenario, the constructed graph has 260
nodes and the number of edges depends on the specific
dataset. The graph weights are computed as in Eq. (1) with
node attributes defined as the (x, y, t) spatio-temporal points
of the trajectory. Spatio-temporal deviating trajectories with
respect to all the trajectories from the dataset are detected as
abnormal nodes in the graph. Table I illustrates a mean and
standard deviation (STD) performance comparison of the AD
methods, in which MAD-AIS exhibits slightly higher recall
rates, resulting in superior average F1-scores. Note that the
concurrent AD methods are highly competitive state-of-the-
art detectors.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT AD METHODS.

Precision Recall F1-score
Method MEAN STD MEAN STD MEAN STD
MAD-AIS 0.9875 0.0220 0.9687 0.0388 0.9767 0.0255
DBSCAN 0.9795 0.0284 0.9678 0.0413 0.9722 0.0283
LOF 0.9817 0.0266 0.9645 0.0379 0.9724 0.0309

Detection performance for specific trajectory subsets. The
two subsets #100 and #540, displayed in Fig. 2, have been
selected from the synthetic set of trajectories to illustrate the
detection performance. The performance for these subsets is
shown in Tables II and III, where the FN and FP rate are
provided for the different methods. The parameters used in
each method are shown in parenthesis, precisely, DBSCAN
(eps; MinPts), and LOF (kLOF,γ).

Figure 3 illustrates the multiscale trajectory concentrations
for the subset #540 at (a-b) two given scales and (c) the
multiscale ε scores, where the colors show the level of
abnormality that is given between 0 and 1: the closer to 1
(red), the more abnormal.

Fig. 2. Trajectory subsets #100 and #540 from the synthetic dataset [14].
The red dotted curves show the abnormal trajectories (positives) while the
green lines are the normal ones (negatives).

C. Application to Real Data

To apply the MAD-AIS framework on real data (shown
in Fig. 4-(a)), due to the diversity of trajectories depending

TABLE II
PERFORMANCE COMPARISON FOR THE SUBSET #100.

Method (params) FN FP Precision Recall F1-score
MAD-AIS 1 0 0.998 0.95 0.9727
DBSCAN (0.2;2) 1 1 0.948 0.948 0.948
LOF (9;1/26) 1 1 0.948 0.948 0.948

TABLE III
PERFORMANCE COMPARISON FOR THE SUBSET #540.

Method (params) FN FP Precision Recall F1-score
MAD-AIS 2 0 0.996 0.9 0.943
DBSCAN (0.2;2) 3 0 0.994 0.85 0.909
LOF (9;1/26) 1 2 0.940 0.898 0.918

Fig. 3. Trajectory concentration for the subset #540 using (3) at the scale
(a) τ80 and (b) τ100, and (c) the multiscale abnormal score, where the scores
(0,1) are mapped to the colors given the color bar (the closer to 1, the more
abnormal). The zoomed section shows a slightly deviated trajectory, which is
ranked as abnormal at different scales and its true label is shown in a black
rectangle in Fig. 2.

on the type of ship and route, we propose to analyze the
trajectories by segments, leading to different attribute sizes for
each node. This segment-based analysis also allows anomalies
to be localized along the path to detect in which part of the
trajectory the anomaly is present. Segments can be extracted
from the real trajectories by two manners: segments from a
sliding window (SW) or from the Ramer–Douglas–Peucker
algorithm (RDP) [25]. The multiscale abnormal scores ε for
the real trajectories using the two segmentations are displayed
in Fig. 4 (b-c), where the SW is fixed to a non-overlapping
window size of 32 points and the colors in the plot show
the level of abnormality. The abnormality scores highlight the
deviating segments or subtrajectories of the set that are likely
to be abnormal regarding the main rail trajectories (i.e., the
central trajectories marked in black).

Fig. 4. (a) Baltic sea AIS trajectories and the MAD-AIS scores ε when (b)
the nodes are encoded by considering subtrajectories from SW segments and
(c) from the RDP segmentation, where the colors in the plot show the level
of abnormality. Zoomed sections show deviated trajectory segments, where
the arrows indicate that RDP-based segments promote the detection of the
segment path after it starts to deviate.
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Fig. 5. (a) AD result comparison of the MAD-AIS detection against DBSCAN
and LOF. (b-c) Highlighted parts show some detected deviated paths in red,
where DBSCAN misidentifies main rails as abnormal (b-DBSCAN) and LOF
overlooks significant deviated portions.

Figure 5 shows the AD result comparison using the three
methods on RDP-based segments, where the encircled zoom
parts highlight spatio-temporal deviations from the main tra-
jectory rails (marked in red) and, the MAD-AIS shows the
detection by setting the abnormality scores to a fixed threshold
equal to 0.1, for comparison purposes. From the highlighted
parts in Fig. 5(b-c), one can observe that DBSCAN and LOF
are inconsistent since, for example, the main rail is marked as
an anomaly when using DBSCAN, Fig. 5(b-DBSCAN), and
highly deviated parts are not detected using LOF zoom, Fig.
5(c-LOF).

V. CONCLUSIONS

This paper studied a graph-based anomaly detection frame-
work for ship trajectories using AIS data, referred to as MAD-
AIS. MAD-AIS provides an effective way to evaluate the
connectivity of a vessel-based graph in which trajectories are
encoded. The performance of the proposed AD method was
assessed on synthetic and real datasets. Particularly noteworthy
is its adaptability demonstrated with real-world data, where
the approach not only detects anomalous trajectories but also
identifies subtrajectories deviating from the dominant paths via
subtrajectory analyses. Future work includes exploring other
AIS features (such as speed, direction, angle) encoded on
attributed AIS graphs for detecting other kinds of abnormal
trajectories. Generalizing the proposed framework to handle
labelled/unlabelled data would also be interesting.
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