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ABSTRACT

This paper studies a new fusion method designed for mag-
netic resonance (MR) and ultrasound (US) images, with a spe-
cific focus on endometriosis diagnosis. The proposed method
is based on guided filtering, leveraging the advantages of this
technique to enhance the quality of fused images. The fused
image is a weighted average of base and detail images from
the MR and US images. The weights assigned to the US
image account for the presence of speckle noise, a common
challenge in US imaging whereas the weights assigned to the
MR image allow the contrast of the fused image to be en-
hanced. The effectiveness of the method is evaluated using
synthetic and phantom data, showing promising results. The
image provided by the proposed fusion method holds poten-
tial for enhancing visualization and aiding decision-making
in endometriosis surgery, offering a valuable contribution to
the field of medical image fusion.

Index Terms— Image fusion, MRI, ultrasound imaging,
endometriosis, guided filtering, despeckling.

1. INTRODUCTION

Endometriosis is a debilitating medical disease characterized
by the abnormal growth of endometrial tissue outside the
uterus, causing significant pain and affecting more than ten
percent of women worldwide. One prominent challenge is
the prolonged diagnosis period, averaging seven years, during
which the endometrial tissue can extensively spread and im-
pact various pelvic organs. It is linked to severe pelvic pain,
infertility risks, and an increased susceptibility to ovarian
cancers. The primary treatment for endometriosis is the la-
paroscopy. The success of this surgery relies significantly on
the accurate insights provided by preoperative medical imag-
ing workup, such as the precise localization of the endome-
trial lesion and its depths of infiltration. Imaging modalities,
mainly magnetic resonance (MR) and ultrasound (US), play
a crucial and complementary role in precisely identifying and
assessing the extent of endometriosis lesions, enabling sur-
geons to make informed decisions, avoid unnecessary radical
procedures and enhance the efficiency of the intervention.
MR and US images have been used in many clinical diagno-
sis and guided surgery applications. They exploit different
physical phenomena and thus have their own advantages and

limitations. In particular, depending on the choice of the
probe central frequency, US imaging offers well-resolved
images and high frame rate compared to MRI. However, this
comes at the expense of a notably low signal-to-noise ratio
(SNR), reduced contrast, presence of speckle noise, and a
restricted field of view. On the contrary, MR images provide
a wide field of view of the patient anatomy with a good SNR
ratio, a high contrast but a limited spatial resolution.
Previous observations greatly support the need for MR/US
image fusion. Efficient fusion methods have been proposed
for MR and single-photon emission computed tomography
(SPECT) [1], MRI and computed tomography (CT) [2], or
positron emission tomography (PET) and CT [3]. An in-
novative US-MR image fusion algorithm, combining two
inverse problems for MR image super-resolution and US
image despeckling was also proposed for endometriosis diag-
nosis [4] [5], yielding a fused image with comparable spatial
resolution to US images, along with signal-to-noise ratio and
contrast close to MR images.
Image fusion with guided filtering was also proposed to pro-
duce highly informative images through merging multiple
images [6], [7]. It is based on a two-scale decomposition of
an image into a base layer containing large scale variations in
intensity, and a detail layer capturing small scale details. The
guided filtering-based weighted average technique studied
in [7] makes full use of spatial consistency for fusion of the
base and detail layers.
This paper studies a new MR/US fusion method exploiting
the principles of guided filtering. The proposed approach in-
corporates properties of the two imaging modalities. Specifi-
cally, Gaussian noise associated with MR images and speckle
noise affecting US images are taken into account when de-
termining the weights for fusion, ensuring the fused image
is an enhanced informative image, which is very useful for
endometriosis diagnosis. The proposed fusion method is
evaluated on an experimental phantom and realistic data gen-
erated from an in vivo MRI volume. The remainder of the
paper is organized as follows. Section 2 briefly reviews the
principles of guided image filtering. The proposed fusion al-
gorithm is introduced in Section 3. Experiments are presented
and discussed in Section 4. Conclusions and perspectives are
finally reported in Section 5.



2. IMAGE GUIDED FILTERING

Using the notations of [7], the guided filter involves a guid-
ance image I = (Ii), an input image P = (Pi) and an output
image O = (Oi) that are vectorized, where i is the pixel in-
dex. This filter assumes that the output O is a linear transfor-
mation of the guidance image I in a local window ωk, i.e.,

Oi = akIi + bk, ∀i ∈ ωk, (1)

where ωk is a window of radius r centering the pixel k, and
(ak, bk) are some coefficients assumed to be constant in ωk,
that can be estimated by minimizing the squared difference
between the output image O and the input image P :

E(ak, bk) =
∑
i∈ωk

[
(akIi + bk − Pi)

2 + ϵa2k
]
, (2)

where ϵ is a regularization parameter that needs to be ad-
justed by the user. Straightforward computations detailed in
[6] show that the coefficients ak and bk have the following
closed-form expressions:

ak =

1
|ωk|

∑
i∈ωk

IiPi − µkP̄k

δk + ϵ
, (3)

bk = P̄k − akµk,

where µk and δk are the mean and variance of the guidance
image I in ωk, |ωk| is the number of pixels in ωk, P̄k is the
mean of the input image P in ωk, and ϵ represents the blur de-
gree of the guided filter. Considering that pixel i is involved in
all the overlapping windows ωk that cover i, the value of Oi in
(1) is not identical when it is computed in different windows.
A simple strategy is to average all the possible values of Oi,
which means that, after computing (ak, bk) for all windows
ωk in the image, the filtered output is:

Oi =
1

|ωk|
∑

k|i∈ωk

(akIi + bk). (4)

Finally, according to [6], (4) can be further converted as

Oi =
∑
j

Wi,j(Ii)Pj , (5)

where Wi,j is a function of the guidance image I , assumed
independent of P . In this paper, the guided filter operation
will be denoted as GFr,ϵ(P, I).

3. IMAGE FUSION WITH A GUIDED FILTER

The image fusion model introduced in this section assumes
that the MR and US images to be fused, denoted as Imri and
Ius, are already aligned, i.e., Imri is a 2D image extracted from
the MRI volume that best matches Ius and there is no geo-
metric distortion between them, which can be obtained after

an appropriate pre-registration [8]. Inspired from prior work
in image fusion using guided filtering [7], the proposed al-
gorithm is based on MR and US image decompositions and
subsequent weight computations. First, two-scale representa-
tions are obtained by applying an average filter to the MR and
US images yielding base and detail images. Then, the base
and detail MR and US images are weighted. A novel aspect
is introduced by incorporating speckle-related considerations
in the weight assignment for the US image.

3.1. Proposed fusion algorithm

Algo. 1 summarizes the different steps of the fusion model
as detailed in the following sections: 1) Two-scale decompo-
sition. 2) Weight construction for the MR image. 3) Weight
construction for the US image. 4) MRI and US image fusion.

Algorithm 1 Fusion of MR and US images.

1: Input: Ius, Imri and parameters r1, ϵ1, r2, ϵ2, patch size
|ω|, Z, K1 and K2

2: Two-scale decompositions of Ius, Imri with (7)
3: Calculate B̄mri and D̄mri as explained in (9)
4: Calculate B̄us and D̄us:
5: a) Construct guidance images Bg

us and Dg
us using 3×3

averaging of Bus and Dus.
6: b) Compute Wi,j(Bus, B

g
us), Wi,j(Dus, D

g
us) in (11)

7: c) Compute B̄us and D̄us in (12)
8: Combine the base and detail layers for fusion

F = B̄mri + D̄mri + B̄us + D̄us. (6)

9: Output: Fused Image F

3.2. Two-scale decomposition

The base and detail layers of each image are obtained as:

Bmri = Imri ∗ Z ; Bus = Ius ∗ Z
Dmri = Imri −Bmri ; Dus = Ius −Bus

(7)

where Z is an average filter [9] and ∗ denotes 2D convolu-
tion. This two-scale decomposition is designed to partition
each source image into a base layer capturing the significant
variations in intensity at a larger scale, and a detail layer con-
taining the finer details at a smaller scale.

3.3. Weight construction for the MR image

The weights for the MR image are constructed as in [7]. First,
a Laplacian filter is applied to each source image to obtain the
high-pass filtered images:

Hmri = Imri ∗ L, Hus = Ius ∗ L,

where L is the 3 × 3 Laplacian filter. Then, the local aver-
age of the absolute value of these high-pass images is used to



construct the following saliency maps:

Smri = |Hmri| ∗ grg,σg
, Sus = |Hus| ∗ grg,σg

,

with g a Gaussian low-pass filter of size (2rg + 1) × (2rg +
1) and standard deviation σg . Subsequently, the weights are
determined by constructing the following indicator:

P k
mri =

{
1 if Sk

mri = max
(
Sk

mri, S
k
us

)
,

0 otherwise,

where Sk is the saliency value of the pixel k. The weight
maps often exhibit noise that may produce artifacts to the
fused image. This issue is usually addressed by incorporating
spatial consistency, i.e., adjacent pixels with similar bright-
ness or color should have comparable weights. This can be
achieved by using guided filtering. Referring to (1) and (3), it
becomes apparent that when the local variance at a position is
very small, which means that the pixel is in a flat region in the
guidance image, ak tends to 0 and the filtering output tends
to P̄k, i.e., the average of adjacent input pixels. In contrast, if
the local variance at a pixel is significant, suggesting an edge
region, ak becomes very different from 0, so only the weights
on one side of the edge are averaged. In both scenarios, pix-
els with similar brightness will have similar weights. Guided
filtering is performed on the weight map Pmri with the source
image Imri serving as the guidance image:

WB
mri = GFr1,ϵ1(Pmri, Imri), W

D
mri = GFr2,ϵ2(Pmri, Imri),

(8)
where r1, ϵ1, r2, and ϵ2 the parameters of the guided filter,
and WB

mri and WD
mri are the resulting weight maps of the base

and detail images. The final results for the MRI are:

B̄mri = WB
mri Bmri, D̄mri = WD

mri Dmri. (9)

3.4. Weight construction for the US image

The guided filter has shown good results for images corrupted
by additive Gaussian noise. However, in practical applica-
tions such as US imaging, where the most prominent noise,
i.e., speckle, is non-Gaussian, its performance is limited. Re-
cent works on despeckling extended the linear guided filter to
a nonlinear filter [10], whose expression can be derived using
Bayesian Non-Local Means (NLM). We propose to use the
results of [10] to define the US weights.
To illustrate the derivation of the final closed-form weights, a
simplified notation will be used by considering an observed
speckled image y and a speckle-free image x. The final
weights will be subsequently applied to both the base and de-
tail layers (Bus, Dus) of the US image. Using these notations,
the nonlinear filter is:

x̂i =
∑
j

Wi,j(y, x
g) yj , (10)

where x̂, y, xg are the despeckled image, the speckled ob-
served image, the guidance image, yj is the jth pixel of y,

and Wi,j(y, x
g) is a non-linear weight kernel, where i and j

are the pixel positions. We propose to define the guidance im-
age using a simple averaging over every patch in the observed
image. In [10], the modified Bayesian NLM is expressed as:

x̂i =

∑
j∈ωi

p(yi|yj , xi = xj , x
g) p(yj , xi = xj , x

g) yj∑
j∈ωi

p(yi|yj , xi = xj , xg) p(yj , xi = xj , xg)
,

where yi and yj are the vectorized patches of size M × M
centered at pixels i and j, xi and xj are the noise-free patches
corresponding to the speckled patches yi and yj , and xg is
the corresponding patch in the guidance image. For image
with fully developed and independent speckle, the conditional
probability p(yi|yj , xi = xj , x

g) (denoted as πij(x,y,x
g)

for brevity) is:

πij(x,y,x
g) =

M×M∏
m=1

p(yi,m|yj,m, xi,m = xj,m, xg
m),

where yi,m, yj,m, xi,m, xj,m and xg
m are associated with the

mth pixel in the corresponding patches. Without knowledge
of p(yi,m|yj,m) and assuming the event yi,m|yj,m, xi,m =
xj,m independent on xg

m, Bayes rule leads to:

p(yi,m|yj,m, xi,m = xj,m, xg
m) p(yj,m, xi,m = xj,m, xg

m)

∝ p(yi,m, yj,m|xi,m = xj,m)︸ ︷︷ ︸
likelihood

p(xi,m = xj,m|xg
m)︸ ︷︷ ︸

prior

p(xg
m),

where the likelihood is the data fidelity term, and the prior is
related to the probability of having xi,m = xj,m given the
corresponding value xg

m in the guidance image. Due to the
high dimensionality of image patches, the prior distribution
p(xg

m) is assumed to be uniform for simplicity. For US im-
ages corrupted by a multiplicative speckle noise distributed
according to a Rayleigh distribution [4], the following proba-
bility density function is obtained:

p(yi,m|xi,m) =
yi,m

x2
i,mσ2

η

exp

(
y2i,m

x2
i,mσ2

η

)
,

for yi,m > 0, where σ2
η is the noise variance. The condi-

tional density p(xi,m|xg
i,m) is also assumed to be Rayleigh

with a parameter σ2
g(x

g
i,m)2. The likelihood and prior intro-

duced before can then be computed as follows:

p(yi,m, yj,m|xi,m = xj,m) =

∫
D

p(yi,m|θ)p(yj,m|θ)dθ,

∝ yi,myj,m

(y2i,m + y2j,m)
3
2

,

p(xi,m = xj,m|xg
m) = exp

{
−KL[p(xi,m|xg

i,m), p(xj,m|xg
j,m]

}
,

∝ exp

{
−
[
(xg

i,m)2 − (xg
j,m)2

]2
(xg

i,m)2(xg
j,m)2

}
,

where D is the domain of pixel values and KL is the symmet-
ric Kullback-Leibler divergence between two Rayleigh distri-
butions (see Appendix A for computation details). The non-
linear weights are finally defined as [11]:



Wi,j(y, x
g) = exp

{
− 1

K1

∑
m

log

[
(y2i,m + y2j,m)

3
2

yi,m yj,m

]

− 1

K2

∑
m

[
(xg

i,m)2 − (xg
j,m)2

]2
(xg

i,m)2(xg
j,m)2

}
. (11)

Using the normalization parameters K1 and K2 measuring
the relative contributions of y and xg , one obtains:

x̄ =

∑
j∈ωi

Wi,j(y, x
g) y∑

j∈ωi
Wi,j(y, xg)

. (12)

This operation is applied to both base and detail US images.

4. EXPERIMENTS

4.1. Synthetic data from real MR acquisition

To demonstrate the efficiency of the proposed MR/US fu-
sion method, this section first considers a set of synthetic
images. The simulations presented hereafter have been ob-
tained using a real high-resolution MR image intentionally
degraded to simulate an image closely resembling that ob-
tained for endometriosis diagnosis. The 3D high-resolution
MR volume corresponds to an actual pelvic MRI capturing
the uterus, bladder, and endometriosis lesions. A blurred and
noisy 3D MRI is then generated from this high-resolution MR
volume. More precisely, the HR volume was blurred using a
2D Gaussian filter of standard deviation σ2 = 4, and then
was contaminated by an additive white Gaussian noise (SNR
= 18.17 dB), yielding the MR image displayed in Fig. 1(a).
A Rayleigh multiplicative noise was applied to the native MR
image, yielding the US image in Fig. 1(b) (SNR= 4.8 dB).
The size of the average filter was set to 31×31 and the guided
filter parameters were fixed to their best values by visual in-
spection of the fused images, leading to r1 = 7, ϵ1 = 1e−4,
r2 = 10, ϵ2 = 1e−6. The partial normalization parameters
were set to K1 = 30 and K2 = 40 as in [10]. This fixed
parameter setting was used for both datasets.

Fig. 1: (a) MR image (b) US image (c) Fused image.

The performance evaluation of the fusion method involved
both qualitative analysis through visual inspection of the re-
sultant image and quantitative analysis using the contrast-to-
noise ratio (CNR). For two patches extracted from distinct

structures, such as the uterus and bladder in this context, CNR
is defined as CNR =

|µi−µj |√
σ2
i+σ2

j

, where µi, µj , σ
2
i , σ

2
j are the

means and standard deviations of two blocks of pixels. The
fused image is displayed in Fig. 1(c). This image provides a
good compromise between the US and MR data. Specifically,
the fused image is less affected by US speckle and MRI blur,
provides well-defined contours and good contrast compared
to the native MR and US images. The CNR values for the
MR and the US images are 35.43 dB and 18.47 dB, whereas
the obtained fused image has a CNR equal to 37.54 dB.

4.2. Phantom data

This section evaluates the proposed fusion method on a phan-
tom data. The experimental phantom was designed to repli-
cate the responses of uterine and endometrial tissues to MR
and US imaging. It was made of a beef steak on top of
which was stuck a polyvinyl alcohol (PVA) phantom, using
cyanoacrylate instant glue. On the one hand, the beef meat
consists of muscular tissues, exhibiting echogenicity and a
response to MR similar to that of uterine tissue. On the other
hand, the PVA phantom has roughly the same echogeneicity
as the beef meet, but has a different response resulting in
high contrast in the MRI. From this viewpoint, its properties
are similar to this of endometrium. Finally, the glue between
the two structures is visible in US images due to their high
resolution but remains absent in MRI due to its limited res-
olution, simulating the depth of penetration information, a
crucial element for the surgery. Additional details about this
experiment can be found in [12].

Fig. 2: (a) MR image (b) US image (c) Fused image.

The fused image of Fig. 2(c) has a spatial resolution similar
to the US image, and a contrast equivalent to the MRI. In
particular, the different structures of interest are much better
highlighted: (i) the glue between the steak and the PVA phan-
tom, simulating the depth of penetration, that is indiscernible
in MRI due to resolution limitations, is distinctly visible in
both the US and fused images; (ii) the contrast between the
steak and the PVA is well defined in the MR and fused im-
ages, allowing a clear distinction of the parts of interest.

Conventional fusion methods are then compared to the pro-
posed method. Note that contrary to deep learning (DL) meth-



Fig. 3: Normalized pixel intensities of US, MRI, and fused
image for a vertical straight line.

ods, which typically require extensive datasets for training,
the proposed approach uses only two images (MRI and US) to
perform fusion. Acquiring datasets of registered MR and US
images for this specific application is challenging due to pri-
vacy concerns and the need for patient consent. Given these
constraints, opting for DL methods becomes impractical, re-
inforcing our decision to benchmark against established non-
DL fusion techniques. Quantitivative results are provided in
Table 1, which compares the CNR values between the PVA
phantom and the beef steak for the different images, with fu-
sion models from the literature.

MRI US [4] [7] This paper
CNR 54.21 18.91 43.17 44.5 45.17

Table 1: CNR (dB) values for the US, MR and fused images.

While the CNR achieved by the fused image may not match
that of the MRI, it represents the optimal compromise be-
tween contrast and resolution in our context. The CNR sur-
passes that of the US, enabling differentiation of various im-
age components. The glue separating the two structures and
symbolizing the boundary of the tumor to be incised is more
distinctly visible in both the US and fused image compared
to the MRI. This improved resolution is visually depicted in
Fig. 3, illustrating the differences in pixel intensities.

5. CONCLUSION

This paper introduced a new fusion method for magnetic res-
onance (MR) and ultrasound (US) images based on guided
filtering. The fused image obtained with this method brings
together the advantages of both modalities: resolution and
contrast. The combination of information arising from both
MRI and US into a single image may improve preoperative
mapping and surgical plan. An important perspective of this
work is to validate the model with other datasets. Future
work will be devoted to including the fused image with the
video stream collected during laparoscopy, allowing a safer
decision-making and therefore a more precise endometriosis
surgery.

A. KULLBACK LEIBLER DIVERGENCE BETWEEN
TWO RAYLEIGH DISTRIBUTIONS

The Kullback-Leibler divergence between two Rayleigh dis-
tributions of densities f1 and f2 with parameters σ2

1 and σ2
2

denoted as KLD(f1, f2) is defined by:∫ ∞

0

t

σ2
1

exp

(
− t2

2σ2
1

)[
t2

2

(
1

σ2
2

− 1

σ2
1

)
+ log

(
σ2
2

σ2
1

)]
dt,

which can be decomposed as the sum of two integrals

I1 = log

(
σ2
2

σ2
1

)∫ ∞

0

t

σ2
1

exp

(
− t2

2σ2
1

)
dt = log

(
σ2
2

σ2
1

)
,

and

I2 =
1

2

(
1

σ2
2

− 1

σ2
1

)∫ ∞

0

t3

σ2
1

exp(− t2

2σ2
1

)dt =
σ2
1

σ2
2

− 1.

The symmetric Kullback-Leibler divergence between the den-
sities f1 and f2 is:

KL(f1, f2) = KLD(f1, f2) + KLD(f2, f1) =
(σ2

1 − σ2
2)

2

σ2
1σ

2
2

.
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