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ABSTRACT

This paper presents an algorithm based on sparse representation for
fusing hyperspectral and multispectral images. The observed im-
ages are assumed to be obtained by spectral or spatial degradations
of the high resolution hyperspectral image to be recovered.Based
on this forward model, the fusion process is formulated as aninverse
problem whose solution is determined by optimizing an appropri-
ate criterion. To incorporate additional spatial information within
the objective criterion, a regularization term is carefully designed,
relying on a sparse decomposition of the scene on a set of dictionar-
ies. The dictionaries and the corresponding supports of active coding
coefficients are learned from the observed images. Then, condition-
ally on these dictionaries and supports, the fusion problemis solved
by iteratively optimizing with respect to the target image (using the
alternating direction method of multipliers) and the coding coeffi-
cients. Simulation results demonstrate the efficiency of the proposed
fusion method when compared with the state-of-the-art.

Index Terms— Image fusion, hyperspectral image, multispec-
tral image, sparse representation, alternating directionmethod of
multipliers (ADMM).

1. INTRODUCTION

Fusion of multi-resolution images has been a very active research
topic during recent years [1]. When considering remotely sensed
images, an archetypal fusion task is the pansharpening, which gener-
ally consists of fusing a high spatial resolution panchromatic (PAN)
image and a low spatial resolution multispectral (MS) image. In re-
cent years, hyperspectral (HS) imaging, acquiring a same scene in
several hundreds of contiguous spectral bands, has opened anew
range of relevant applications such as target detection [2]and spec-
tral unmixing [3]. Naturally, to take advantage of the newest ben-
efits offered by HS images, the problem of fusing HS, MS or PAN
images has been explored widely [4–6]. The fusion of MS and HS
differs from traditional MS or HS pansharpening since both spatial
and spectral information is contained in multi-band images. There-
fore, a lot of pansharpening methods, such as component substitu-
tion [7] and relative spectral contribution [8] are inapplicable or in-
efficient for the HS/MS fusion problem. Since the fusion problem
is ill-posed, Bayesian inference offers a convenient way toregular-
ize the problem by defining an appropriate prior distribution for the
scene of interest. Following this strategy, various estimators have
been implemented in the image domain [9–11] or in a transformed
domain [12].
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Recent progress in sparse representations and dictionary learn-
ing (DL) have offered new efficient tools to address the multi-band
fusion problem. Indeed, the self-similarity, which is prominent in
natural images, implies that the patches extracted from natural im-
ages can be effectively represented with very few atoms coming
from over-complete dictionaries [13–15]. More specifically, learn-
ing the decomposition dictionary from the images themselves, in-
stead of resorting to predefined ones (e.g., wavelets), has recently
led to state-of-the-art results for numerous low-level image process-
ing tasks such as denoising. DL has also been investigated toanalyze
multi-band images [16]. More recently, Liuet al. proposed to solve
the pansharpening problem based on a DL strategy [17].

In this paper, we propose to fuse the HS and MS images within
a constrained optimization framework, by incorporating sparse reg-
ularization using dictionaries learned from the observed images. Af-
ter learning the dictionaries and the corresponding supports of the
codes from these observed images, we define an optimization prob-
lem which is solved by the optimizing alternately with respect to
the target image and the sparse code. The optimization with re-
spect to the image is achieved by the split augmented Lagrangian
shrinkage algorithm (SALSA) [18], which is an instance of the al-
ternating direction method of multipliers (ADMM). By a suitable
choice of variable splittings, SALSA enables to decompose ahuge
non-diagonalizable quadratic problem into a sequence of convolu-
tions and pixel decoupled problems, which, in both cases, are solved
efficiently. The estimation of the code is performed using a standard
least-square (LS) algorithm which is possible because the supports
have been fixed a priori. The whole algorithm is summarized inAl-
gorithm 1.

The paper is organized as follows. Section 2 formulates the fu-
sion problem within a constrained optimization framework.Section
3 introduces the proposed sparse regularization and the method used
to learn the dictionary and the support of the code. The optimiza-
tion scheme proposed to solve the resulting optimization problem is
detailed in Section 4. Simulation results are presented in Section 5
whereas conclusions are reported in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider the fusion of HS and MS images. The
HS image is supposed to be a spatially blurred and down-sampled
version ofX (corrupted by additive Gaussian noise) whereas the
MS image is a spectrally degraded noisy version ofX. As a con-
sequence, the observation model associated with the HS and MS
images can be written as follows [9,19]

YH = XBS+NH,

YM = RX+NM

(1)



where

• X ∈ R
mλ×n is the full resolution unknown image withmλ

bands andn pixels,

• YH ∈ R
mλ×m andYM ∈ R

nλ×n are the HS and MS images,

• B ∈ R
n×n is a cyclic convolution operator acting on the bands,

• S ∈ R
n×m is a downsampling matrix (with downsampling fac-

tor denoted asd),

• R ∈ R
nλ×mλ stands for the spectral response of the MS sensor,

• NH ∈ R
mλ×m andNM ∈ R

nλ×n are the HS and MS noises.

Note thatB is a sparse symmetric Toeplitz matrix for a symmet-
ric convolution kernel andm = n/d2. In this work, we assume that
B, S andR are known. The elements of matrixNH andNM are
assumed to be independent zero-mean white Gaussian noises with
variancess2h ands2m respectively.

The imageX can be decomposed asX = [x1, · · · ,xn], where
xi = [xi,1, · · · , xi,mλ

]T is themλ × 1 vector, also named hyper-
pixel, corresponding to theith spatial location (withi = 1, · · · , n).
Because the HS bands are usually spectrally correlated, theHS vec-
tor xi usually lives in a subspace whose dimensionm̃λ is much
smaller thanmλ [3]. This property has been extensively exploited
when analyzing HS data, in particular to perform spectral unmixing.
More precisely, the image can be rewritten asX = VU whereV ∈
R

mλ×m̃λ has normalized orthogonal columns andU ∈ R
m̃λ×n is

the projection ofX onto the subspace spanned by the columns of
V. Incorporating this decomposition of the HS imageX into the
observation model (1) leads to

YH = VUBS+NH

YM = RVU+NM.
(2)

In this work, we assume that the signal subspace denoted as
span {V} has been previously identified, e.g., obtained from avail-
able a priori knowledge regarding the scene of interest, or after con-
ducting a principal component analysis (PCA) of the HS data.Then,
the considered fusion problem is solved in this lower-dimensional
subspace, by estimating the projected imageU. The estimation of
the projected imageU from YH andYM is herein addressed by
solving the inverse problem

min
U

1

2

∥∥YH−VUBS
∥∥2

F
+

λm

2

∥∥YM−RVU
∥∥2

F
+λdφ(U), (3)

where the two first terms are linked with the MS and HS images
(data fidelity terms) and the last term is a penalty term ensuring ap-
propriate regularization. The parameterλm is equal to the ratio of
the noise variancess2h/s

2

m that is supposed to be a priori known and
λd is the regularization parameter. Various regularizationsrelying on
ℓ1, ℓ2 or total variation [20] norms have been widely used to tackle
this ill-posed problem. In this work, we derive an appropriate regu-
larization term exploiting a sparse representation of the target image
on a dictionary. More details are given in the next section.

3. DICTIONARY-BASED REGULARIZATION

The regularization proposed in this paper relies on the assumption
that the target imageU can be sparsely approximated on a given
dictionary. Based on the self-similarity property of natural images,
modeling images with a sparse representation has been shownto be
very effective in many signal processing applications [13]. Based on
these works, we propose to define the regularization term of (3) as

φ(U) =
1

2

∥∥U− Ū (D,A)
∥∥2

F
(4)

whereD is the dictionary,A is the sparse code, and̄U is the ap-
proximation ofU derived from the dictionary and the code. Gen-
erally, an over-complete dictionary is proposed as a basis for the
image patches. In many applications, the dictionaryD is fixed a
priori, and corresponds to various types of bases constructed using
atoms such as wavelets [21] or discrete cosine transform coefficients
[22]. However, these bases are not necessarily well matchedto nat-
ural or remote sensing images since they do not necessarily adapt
to the nature of the observed images. As a consequence, learning
the dictionary from the observed images instead of using predefined
bases generally improves signal representation [23]. Moreprecisely,
the strategy advocated in this paper consists of learning a dictionary
D from the high resolution MS image to capture most of the spatial
information contained in this image. To learn a dictionary from a
multi-band image, a popular method consists of searching for a dic-
tionary whose columns (or atoms) result from the lexicographically
vectorization of the HS3D patches [16, 24]. However, this strat-
egy cannot be followed here since the dictionary is learned on the
MS imageYm ∈ R

nλ×n composed ofnλ bands to approximate
the target imageU composed of̃mλ spectral bands. Conversely, to
capture most of the spatial details contained in each band ofthe MS
image, we propose to approximate each band of the target imageU

by a sparse decomposition on a dedicated dictionary. In thiscase,
the regularization term (4) can be written as

φ(U) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
(5)

where

• Ui ∈ R
n is theith band (or row) ofU ∈ R

m̃λ×n,

• Di ∈ R
np×nat is the dictionary dedicated to theith band of

U (np is the patch size andnat is the number of atoms) and
D = [D1, · · · ,Dm̃λ

],

• Ai ∈ R
nat×npat is the ith band’s code (npat is the number of

patches associated with theith band) andA = [A1, · · · ,Am̃λ
],

• L(·) is a linear operator that averages the overlapping patches of
each band to restore the target image.

Note that each column ofDi is a basis element of sizenp (corre-
sponding to the size of a patch). The dictionary is supposed to be
fixed before addressing the fusion problem. The learning procedure
used to estimate the dictionary is detailed in the followingparagraph.

3.1. Learning the dictionaries and sparse coding

We propose to learn the set of dictionariesDi from a rough esti-
mation ofU, constructed from the MS imageYM, following the
strategy used by Hardieet al. [9] and Zhanget al. [12]. More pre-
cisely, assuming that the hyperpixels of the target imageU and MS
data are jointly Gaussian distributed, the probability density function
(pdf) of U conditionally uponYM is also Gaussian

p(U|YM) =
n∏

i=1

[
(2π)m̃λ

∣∣∣Cui|ym,i

∣∣∣
]−1/2

× exp

{
−
1

2

(
ui − µ

ui|ym,i

)T

C
−1

ui|ym,i

(
ui − µ

ui|ym,i

)}

whereYM =
[
ym,1, · · · ,ym,n

]
andU = [u1, · · · ,un]. The con-

ditional meanµ
U|YM

= E [U|YM] =
[
µ

u1|ym,1
, · · · ,µ

un|ym,n

]

can be computed using joint pdfp (U,YM) and approximated as



in [9]. It provides a first approximation of the target imageU to be
restored. We propose to estimate the dictionariesDi introduced in
(5) by applying a DL algorithm on the patches ofµ

U|YM
. Many DL

methods have been studied in the recent literature. These methods
are for instance based on K-SVD [14], online dictionary learning
(ODL) [15] or Bayesian learning [16]. In this study, we have consid-
ered the ODL method to learn the set of over-complete dictionaries
D = [D1, · · · ,Dm̃λ

]. Once the dictionaries are learned, the orthog-
onal matching pursuit (OMP) is adopted to estimate the sparse code
Ai for each band ofUi. A maximum number of atoms, denoted
asnmax, is assumed to represent each patch ofUi. Generally, the
maximum number of atoms is much lower than the number of atoms
in the dictionary, i.e.,nmax≪ nat. The positions of the non-zero ele-
ments of the codeAi, namely the supportΩi ⊂ N

2, i = 1, · · · , m̃λ

are also detected.

3.2. Re-estimation of the sparse code

Once the dictionariesD and codesA have been learned following
the procedure detailed in the previous paragraph, it can be interesting
to make the approximation in (5) more flexible for the fusion task.
Interpreting the minimization problem in (3) as a standard maximum
a posteriori estimation in a Bayesian framework, the regularization
term (5) can be interpreted as a Gaussian prior distributionfor the
target imageU, with hyperparametersD andA. Inspired by hier-
archical models frequently encountered in Bayesian inference, we
propose to include the codeA within the estimation process. One
strategy would consist of defining a new regularization term

φ(U,A) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
+ µa

∥∥Ai

∥∥
0

(6)

where‖.‖0 is theℓ0 counting function (orℓ0 norm) andµa is a reg-
ularization parameter. Theℓ0-norm of codeA is naturally chosen to
enforce the sparsity of the codeAi ∈ R

nat×npat. However, the re-
sulting optimization problem would become NP-hard. Conversely,
in this work, we propose to fix the supportsΩi to the values com-
ing from the sparse coding step detailed in the previous paragraph.
Therefore, theℓ0 norm becomes a constant and the final regulariza-
tion term (5) reduces to

φ(U,A) =
1

2

m̃λ∑

i=1

∥∥Ui − L (DiAi)
∥∥2

F
s.t.Ai,\Ωi

= 0, (7)

whereAi,\Ωi
= {Ai(l, k) | (l, k) 6∈ Ωi}. The resulting objective

criterion, which combines (7) with (3), is minimized using an al-
ternate optimization procedure introduced in the following section.

4. ALTERNATE OPTIMIZATION

With known D, Ω andV learned from the HS and MS data, the
problem (3) is a constrained quadratic optimization problem with
respect toU andA. However, this problem is difficult to solve due
to the large dimensionality ofU and due to the fact that the linear
operatorsV(·)BD andL(·) cannot be easily diagonalized. To cope
with this difficulty, we propose an optimization technique that alter-
nates optimization with respect toU andA.

Conditional onA, the optimization with respect toU can be
achieved efficiently with the SALSA algorithm [18]. Conditional on
U, the optimization with respect toA under the support constraint is
an LS problem for the non-zero elements ofA, which can be easily

solved. The overall resulting scheme that includes learning D, Ω
andV is detailed in Algorithm 1. The alternate SALSA and LS
steps are detailed below.

Algorithm 1: Alternate Optimization

Input : YH, YM, SNRh, SNRm, m̃λ (HS subspace
dimension),R, nmax (number of maximum atoms
for the support of each image patch)

Output : X̂ (high resolution HS image)

1 /* Estimate the conditional mean */
2 Approximateµ

U|YM
usingYM andYH following the

method of [9]
3 /* Online dictionary learning */

4 D̂← ODL(µ̂
U|YM

)

5 /* Sparse image coding */

6 Â← OMP(D̂, µ̂
U|YM

, nmax)

7 /* Computing support */

8 Ω̂← Â 6= 0
9 /* Computing subspace transform matrix */

10 V̂← PCA(YH, m̃λ)
11 /* Start alternate optimization */
12 for t = 1, 2, . . . to stopping ruledo
13 Ût ∈ {U : L(U, Ât−1) ≤ L(Ût−1, Ât−1)} ;

/* solved with SALSA */

14 Ât ∈ {A : L(Ût,A) ≤ L(Ût, Ât−1)} ;
/* solved with LS */

15 end
16 X̂ = V̂Û

4.1. SALSA Step

After introducing the splittingsV1 = UB, V2 = U andV3 = U

and the respective scaled Lagrange multipliersG1,G2,G3, the aug-
mented Lagrangian associated with the optimization ofU condi-
tional onA can be written as

L(U,V1,V2,V3,G1,G2,G3) =

1

2

∥∥YH −VV1S
∥∥2

F
+

µ

2

∥∥UB−V1 −G1

∥∥2

F
+

λm

2

∥∥YM −RVV2

∥∥2

F
+

µ

2

∥∥U−V2 −G2

∥∥2

F
+

λd

2

∥∥Ū(D,A)−V3

∥∥2

F
+

µ

2

∥∥U−V3 −G3

∥∥2

F
.

The update ofU is achieved with the SALSA algorithm [18], which
has aO (nitm̃λn log (m̃λn)) computational complexity, wherenit

is the number of iterations for SALSA.

4.2. LS step

The objective of this step is to solve the following optimization prob-
lem with respect toAi (i = 1, · · · , m̃λ) conditional onUi

min
Ai

∥∥Ui − L(DiAi)
∥∥2

F
s.t.Ai,\Ωi

= 0.

It is a standard LS problem, which can be solved analytically. To
tackle the support constraint efficiently, the optimization with re-
spect toAi considers only the non-zero elements ofAi, denoted
as Ai,Ωi

= {Ai(l, k) | (l, k) ∈ Ωi}, which allows the compu-
tational complexity of the algorithm to be generally reduced to
O (nmaxnpnpat).



5. SIMULATION RESULTS

This section studies the performance of the proposed sparserepre-
sentation based fusion algorithm. The reference image considered
here as the high spectral and high spectral image is an HS image ac-
quired over Moffett field, CA, in 1994 by the JPL/NASA airborne
visible/infrared imaging spectrometer (AVIRIS) [25]. This image is
of size128 × 128 and was composed of224 bands that have been
reduced to177 bands after removing the water vapor absorption and
noisy bands.

5.1. Simulation Scenario

We propose to reconstruct the reference hyperspectral image from
two lower resolved images. First, we have generated a high-spectral
low-spatial resolution HS image by applying a5× 5 Gaussian low-
pass filter on each band of the reference image and downsampling
every 4 pixels in both horizontal and vertical directions. In a sec-
ond step, we have generated a4-band MS image by filtering the
reference image with the LANDSAT reflectance spectral responses
[26]. The HS and MS images are both contaminated by zero-mean
additive Gaussian noises with the signal to noise ratios (expressed

in decibels) SNRh = 10 log
(

‖XBS‖2F
‖Nh‖2

F

)
= 30dB (HS image) and

SNRm = 10 log
(

‖RX‖2F
‖Nm‖2

F

)
= 30dB (MS image). A composite

color image, formed by selecting the red, green and blue bands of
the reference image is shown in the bottom right of Fig. 1. The
noise-contaminated HS and MS images are depicted in the top left
and top right figures. (Note that the HS image has been interpolated
for better visualization and that the MS image has been displayed
using an arbitrary color composition).

The parameters used for the proposed fusion algorithm have
been specified as follows

• The ODL algorithm has been run with patches of size6×6, and
with a maximum number of atomsnmax = 4. These parameters
have been selected by cross-validation.

• The regularization parameter used in the ADMM method isµ =
0.05. Simulations have shown that the choice ofµ does not
affect significantly the fusion performance as long as the two
optimization steps have converged.

• The regularization coefficient isλd = 34s2h. The choice of this
parameter will be discussed in Sec. 5.3 and has been tuned by
cross-validation.

5.2. Comparison with other fusion methods

This section compares the proposed method with two other state-of-
the-art algorithms studied in [9] and [12] for the fusion of HS and
MS images. To evaluate the quality of the proposed fusion strat-
egy, different image quality measures are investigated. Referring
to [12], we propose to use RMSE (root mean square error), SAM
(spectral angle mapper), UIQI (universal image quality index) and
DD (degree of distortion) as quantitative measures. The definition
of these indexes can be found in [1, 27]. Larger UIQI and smaller
RMSE, SAM and DD indicate better fusion results. Fig. 1 shows
that the proposed method offers less color distortion comparing with
the other two methods. Quantitative results are reported inTable 1
which shows the RMSE, UIQI, SAM and DD for all methods. It
can be seen that the proposed method always provides the bestre-
sults for the considered quality measures (at the price of a higher
computational complexity).

Fig. 1. Fusion results. (Top left) HS image. (Top right) MS im-
age. (Middle left) MAP estimator [9]. (Middle right) Wavelet MAP
estimator [12]. (Bottom left) Proposed DL-based fusion method.
(Bottom right) Reference image.

Table 1. Performance of different MS + HS fusion methods: RMSE
(in 10−2), UIQI, SAM (in degree), DD (in 10−2) and Time (in sec-
ond)).

Methods RMSE UIQI SAM DD Time

Hardie 15.416 0.9770 8.1158 9.9937 3.2

Zhang 13.892 0.9807 7.2929 8.9801 74.4

Proposed 12.632 0.9848 6.8994 8.189 747.0

5.3. Selection of the regularization parameterλd

In order to select an appropriate value ofλd, we have tested the per-
formance of the proposed algorithm when this parameter varies. The
results are displayed in Fig. 2. Obviously, whenλd is approaching
to 0 (no regularization), the performance is relatively poor. Each
quality measure is convex with respect toλd. However, there is not
a unique optimal value ofλd for all the quality measures. In terms
of RMSE,λd = 38s2h provides the best fusion results. The value of
λd that has been used for all simulations presented before is selected
asλd = 34s2h, which is not too far from the ’optimal’ point in the
sense of RMSE.

6. CONCLUSIONS

This paper proposed a new dictionary learning based fusion method
for the fusion of multispectral and hyperspectral images. Asparse
regularization was introduced by considering that the image patches
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Fig. 2. Performance of the proposed fusion algorithm versusλd

(from left to right): RMSE, UIQI, SAM and DD.

of the target image can be represented by the atoms learned from
the observed images. The resulting target cost function wassimpli-
fied providing the support of the code is known a priori by sparse
coding. The target image and the values of the code were then de-
termined by an alternate optimization technique. The alternating di-
rection method of multipliers was finally investigated to solve the
optimization with respect to the unknown image projected onto a
lower dimensional subspace. Numerical experiments showedthat
the proposed method always outperforms other state-of-the-art fu-
sion methods. Future work includes the estimation of the HS and
MS degradation operatorsB andR, respectively, the validation of
the proposed method on other datasets including real multispectral
and hyperspectral images. Including the estimation of the regular-
ization parameter into the optimization algorithm would also be in-
teresting.
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