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ABSTRACT Hyperbolic geometry has recently garnered considerable attention inmachine learning due to its
ability to embed hierarchical graph structures with low distortions for further downstream processing. This
paper introduces a simple framework to detect local outliers for datasets grounded in hyperbolic 2-space,
which is referred to as Hyperbolic Local Outlier Probability (HLoOP). Within a Euclidean space, well-
known techniques for local outlier detection are based on the Local Outlier Factor (LOF) and its variant, the
LoOP (Local Outlier Probability), which incorporates probabilistic concepts to model the outlier level of a
data vector. The proposed HLoOP combines the notion of finding nearest neighbors, density-based outlier
scoringwith a probabilistic, statistically oriented approach. Therefore, themethod computes the Riemmanian
distance of a data point to its nearest neighbors following a Gaussian probability density function expressed
in a hyperbolic space. This is achieved by defining a Gaussian cumulative distribution in this space. The
proposed HLoOP algorithm is tested on the WordNet dataset and desmonstrated promising results. The code
and data will be made available upon request for reproducibility.

INDEX TERMS Outlier detection, hyperbolic embedding, LoOP, HLoOP.

I. INTRODUCTION AND PRIOR WORK
From social interaction analysis in social sciences to sensor
networks in communication, machine learning has gained
importance in the last few years for analyzing large and
complex datasets. Applying machine learning algorithms in
an Euclidean space is efficient when data have an underlying
Euclidean structure. However, in many applications such
as computer graphics or computer vision, data cannot be
embedded in a Euclidean space, which prevents the use of
conventional algorithms [1]. As an example, in datasets with
a hierarchical structure, the number of relevant features can
grow exponentially with the depth of the hierarchy; thus,
these features cannot be embedded without distortions in an
Euclidean space. In the quest for amore appropriate geometry
of hierarchies, hyperbolic spaces and their models (Poincaré
disk or upper-half plane conformal models, Klein non-
conformal model, Beltrami hemisphere model and Lorentz
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hyperboloid model among others [2]) provide attractive
properties that lead to substantial performance and efficiency
benefits for learning representations of hierarchical and
graph data. Among several potential advantages, we can
highlight [3] 1) a better generalization capability of the
model, with less overfitting, computational complexity, and
requirement of training data; 2) a reduction in the number
of model parameters and embedding dimensions; 3) a
better model understanding and interpretation. Based on
these geometric properties, hierarchical embeddings have
recently been investigated for complex trees with low
distortions [4], [5], [6], [7]. This has led to rapid advances
in machine learning and data science across many disciplines
and research areas, including but not limited to graph
networks [8], [9], [10], [11], computer vision [12], [13],
[14], [15], [16], network topology analysis [17], [18], [19],
[20], quantum science [21], [22]. Finally, it is interesting
to mention the recent boom in hyperbolic neural networks
and hyperbolic computer vision, which has been reported in
recent reviews [3], [23].
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FIGURE 1. Illustration inspired from [24] of local outlier probabilities in a hyperbolic model: A hierarchical
structure (left) is embedded in a hyperbolic space with low-distortion (middle). Note the middle figure illustrates
that the metrics used in the Euclidean space and a hyperbolic space are different, which results in a modification
of the distance between each point. The right figure illustrates the way the local outlier probabilities can be
displayed in this hyperbolic space.

Motivated by these recent advances, identifying and
dealing with outliers is crucial for generating trustworthy
insights and making data-driven decisions in hyperbolic
spaces, e.g., providing information about which nodes are
highly connected (and hence more central) or which nodes
correspond to outliers such that embedding methods can
realistically be used to model real complex patterns. In this
study, we focus on local outlier detection, which describes
local properties of the data, which is relevant in many
applications involving Euclidean spaces. An overview of
local anomaly detection methods can be found in the
literature from many surveys or books [25], [26], [27],
[28]. Initially, research related to local outlier detection was
focused on intrusion detection [29], [30], [31], fraud detec-
tion [32], [33], [34], [35] and medical applications [36], [37].
Intrusion detection involves detecting abnormal traffic in
networks caused by suspicious data or violations of network
management policies. Fraud detection detects unexpected
activities in banking or insurance data, such as fraudulent
online payments by credit cards or inconsistent insurance
claims. In the wake of other disciplines, local outlier detection
algorithms have been used for medical data, e.g., to detect
abnormal QRS complexes in electrocardiograms due to
certain diseases (such as premature ventricular contraction).

A well-known technique for local outlier detection is the
Local Outlier Factor (LOF) [38], [39] and its variant the LoOP
(Local Outlier Probability) [40] with probabilistic concepts
allowing the outlier level of a data point to be defined. The
properties of these methods make the detection of historical
data attractive, particularly because they provide local outlier
scores based on the degree to which each vector is isolated
from the neighborhood. While the LOF detects outlier data
points using the score of an outlier, the LoOP detects them
by providing for each data point p an outlier score (belonging
to the interval ]0, 1[) corresponding to the probability that p
is an anomaly. Because the distances have positive values,
the LoOP algorithm assumes a half-Gaussian distribution
for these distances. Based on Bayesian inference, the outlier
score is directly interpreted as the outlier probability.

Probabilistic inference for data embedding in hyperbolic
spaces is a young research area, in which the first main
contributions can be dated from the beginning of 2020
(see [24], [41], [42], [43] and the references therein). These
insights led, for instance, to define the so-called Souriau
Gibbs in the Poincaré disk with its Fisher information
metric coinciding with the Poincaré Riemannian metric [44].
A novel parametrization for the density of Gaussian on
hyperbolic spaces has been presented in [41]. This density can
be calculated analytically and differentiated using a simple
random variate generation algorithm. An alternative is to use
a simple Gaussian distribution in hyperbolic spaces, e.g.,
[45] and [46] introduced Riemannian normal distributions
for the univariate normal model, with an application to the
classification of univariate normal populations. Along with
the wrapped normal generalization used in [41] and [47]
studies a thorough treatment of the maximum entropy normal
generalisation. Meanwhile, many applications combining
hyperbolic geometry and Variational Auto-Encoders (VAEs)
were investigated in [43], [47], [48], and [49] based on the fact
that VAE latent space components embedded in hyperbolic
space help to represent and discover hierarchies. This work
introduces an original framework to detect local outliers for
datasets grounded in hyperbolic 2-space, which we refer to as
HLoOP (Hyperbolic Local Outlier Probability). To the best
of our knowledge, this is the first existing algorithm to detect
outliers in data embedded within a hyperbolic space.

II. CONTRIBUTIONS AND PAPER ORGANIZATION
The key contributions of this paper are:

(1) We extend the Local Outlier Probabilities (LoOP)
algorithm to make it applicable to hyperbolic models,
e.g, the Poincaré disk model, leading to Hyberbolic
2-space Local Outlier probabilities (HLoOP). Figure 1
illustrates the pipeline to obtain local outlier probability
distributions in hyperbolic geometry from hierarchical
structures.

(2) We derive an expression of a Gaussian cumulative
distribution in hyperbolic spaceswhich ensures that the
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Probabilistic Local Outlier Factor (PLOF) is performed
by fully exploiting the information geometry of the
observed data.

The remainder of this paper is organized as follows:
section IV briefly outlines some concepts from Riemannian
geometry for univariate models. In Section V we introduce
local outlier probability detection in hyperbolic spaces and
discuss how this probability can be computed. Section VI
evaluates the proposed approach on the benchmark dataset
‘‘taxonomy embedding from WordNet’’.

III. MOTIVATION FOR THIS WORK
The first question that may arise when reading this paper
is Why perform outlier detection in hyperbolic space rather
than Euclidean space?

Simply because certain data are better analyzed within a
hyperbolic space (e.g., Google maps [50]) and often, there is
often no rationale to convert this representation into Euclidian
space. For instance and without loss of generality, many
recent applications in computer networking are represented
in hyperbolic space, including:

• network topology: hyperbolic geometry can be used to
model complex networks with a hierarchical structure,
such as the internet or social networks. By representing
these networks as hyperbolic spaces, it is possible
to capture their underlying geometry and study their
properties and dynamics. In [51], the authors illustrate
how heterogeneous degree distributions and strong
clustering naturally arise from the negative curvature
of the underlying hyperbolic geometry. The authors
show that if a network has a metric structure and
a heterogeneous degree distribution, then it has an
effective hyperbolic geometry. This allows the authors to
establish a mapping between the geometric framework
and statistical mechanics of complex networks;

• routing algorithms: hyperbolic geometry can also
be used to design efficient routing algorithms for
large-scale networks. In hyperbolic space, the distance
between two points grows exponentially as they move
away from each other, which can be exploited to
design routing algorithms that minimize the number
of hops needed to transmit data between two nodes.
In [17], the authors propose a reliable routing algorithm
for wireless networks and sensor-nets, able to assign
virtual coordinates to each node in the hyperbolic
plane, allowing for successful and consistent routing
of packets to a destination point. Similarly, in [18],
the authors designed an algorithm for online greedy
graph embedding in the context of dynamic multihop
communication networks. Several other proposals exist
in the context of overlay networks [19] or satellites
networking [20];

• network visualization: hyperbolic geometry can be
used to visualize complex networks in two or three
dimensions, thereby allowing researchers to explore
the structure and properties of these networks in a

more intuitive manner. This can be especially useful
for large-scale networks that are difficult to visualize
using traditional methods. As shown in [50], the authors
demonstrate that Googlemaps on a cell phone represents
an example of hyperbolic geometry;

• distributed systems: finally and as shown in [52]
and [53], hyperbolic geometry can be used to design
distributed systems that are more fault-tolerant and
scalable than traditional systems. By representing the
system as a hyperbolic space, it is possible to distribute
the load across the network in a more efficient manner,
which reduces the risk of overload or failure.

These examples motivated the present study, which aims
to introduce a well-known and efficient outlier detection tool:
LoOP [40]), to the hyperbolic space.

IV. UNIVARIATE NORMAL MODEL FOR HYPERBOLIC
SPACES
This section briefly reminds some concepts of Riemannian
geometry [46], [47], [54] for the univariate normal model,
which are necessary to formally extend the LoOP detection
algorithm. Note that similar to [45], the main assumptions is
that the data used, must belong to a hyperbolic space with a
well-defined hyperbolic geometry.

A. RIEMANNIAN GEOMETRY AND RAO DISTANCE
A Riemannian manifold is a real and smooth manifold
denoted as M equipped with a positive definite quadratic
form gx : TxM × TxM 7→ R at each point x ∈ M, where
TxM is the tangent space defined at the local coordinates
x = (x1, . . . , xn)T . Intuitively, it contains all the possible
directions in which one can tangentially pass through x.
A norm is induced by the inner product on TxM : ∥ · ∥x =
√

< ·, · >x . An infinitesimal volume element is induced on
each tangent space TxM. The quadratic form gx is called
a Riemannian metric and allows us to define the geometric
properties of spaces, such as the angles and lengths of a curve.
The Riemannian metric gx is an n-by-n positive definite
matrix such that an infinitesimal element of length ds2 is
defined as:

ds2 =
(
dx1 · · · dxn

)
gx

dx1...
dxn

 . (1)

The Riemannian metric is a well-known object in differential
geometry. For instance, the Poincaré disk with a unitary
constant negative curvature corresponds to the Riemannian
manifold in the hyperbolic space (H, gH

x ), where H = {x ∈

Rn
: ∥x∥ < 1} is the open unit disk.1 Its metric tensor

can be written from the Euclidean metric gE = In and the
Riemannian metric such that gH

x = λ2xg
E , where λx =

2
1−∥x∥2

is the conformal factor. The Rao distance between two points

1A d-dimensional hyperbolic space, denoted Hd , is a complete, simply
connected, d-dimensional Riemannian manifold with constant negative
curvature c.
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z1 = (x1, y1)T and z2 = (x2, y2)T in H is given as:

dH (z1, z2) = arcosh
[
1 + 2

||z1 − z2||2

(1 − ||z1||2)(1 − ||z2||2)

]
, (2)

where arcosh denotes the inverse hyperbolic cosine and ∥ · ∥

is the usual Euclidean norm. Unlike the Euclidean distance,
the hyperbolic distance grows exponentially fast as the points
move toward the boundary of the open unit disk. There exist
many models of hyperbolic geometry including the Klein
non-conformal model, the Beltrami hemisphere model and
the Lorentz hyperboloid model among others. One model
of hyperbolic geometry can be transformed into another one
by using a one-to-one mapping, which yields an isometric
embedding [55].

B. RIEMANNIAN PRIOR ON THE UNIVARIATE NORMAL
MODEL
A Gaussian distribution in H, denoted asNH (µ, σ ), depends
on two parameters, the Fréchet mean µ ∈ H (i.e., the center
of mass) and the dispersion parameter σ > 0, similar to
the Gaussian density in the Euclidean space. The Gaussian
probability density function (pdf) in the hyperbolic space,
denoted as pH (x|µ, σ ) is defined as follows [45]:

pH (x|µ, σ ) =
1

Z (σ )
exp

[
−
d2H (x, µ)
2σ 2

]
. (3)

Several remarks can bemade from (3): (i.) themain difference
between the hyperbolic density pH (·) and the Gaussian
density in the Euclidean space is the use of the squared
distance d2H (x, µ) in the exponential (referred to as Rao
distance) and a different dispersion-dependent normalization
constant Z (σ ) which reduces to

√
2πσ 2 in the Euclidean

case. Note that the constant Z (σ ) is linked to the underlying
geometry of the hyperbolic space (ii.). To define a Gaussian
distribution NH (µ, σ ), through its pdf, it is necessary to
have an exact expression for the normalizing constant Z (σ ).
This constant can be determined using hyperbolic polar
coordinates r = dH (x, µ) (i.e, a pulling-back) to calculate
Z (σ ) using an integral depending on the Riemannian volume
element include a reference here (iii.). By introducing the
parametrization z = (x, y)T where x = µ/

√
2, y = σ

and the Riemannian metric for the univariate Gaussian model
ds2(z) = (dx2 + dy2)/y2, since H is of dimension 2, the
Riemannian area is dA(z) = dxdy/y2 or dA(z) = sinh(r)drdϕ

in polar coordinates. For a two-dimensional parameter space,
the normalization constant Z (σ ) was computed in [45]:

Z (σ ) =

∫
H
exp

(
−

r2

2σ 2

)
dA(z)

= 2πσ

√
π

2
exp

(
σ 2

2

)
erf
(

σ
√
2

)
, (4)

where erf is the error function. This expression of Z (σ ) com-
pletes the definition of the Gaussian distribution NH (µ, σ ).
The authors of [47] have shown that when σ get smaller (resp.
bigger), the Riemannian normal pdf is closer (resp. further)
to the wrapped normal pdf [47].

FIGURE 2. (a) Examples of reachability distances for different data points
p with respect to o, when k = 5. (b) Examples of detected anomalies
using local density deviations of a given dataset, where the white and red
points indicate the normal points and the anomalies.

V. HYPERBOLIC 2-SPACE LOCAL OUTLIER PROBABILITY
A. DENSITY-BASED OUTLIER SCORE USING A
PROBABILISTIC APPROACH
This subsection briefly presents the main theoretical prin-
ciples of previous studies that considered local outlier
probability concepts. A local outlier is a data point that
differs from or is far from most elements of the entire dataset
compared to its local neighborhood, which is measured using
the k-Nearest Neighbors (kNN) algorithm [56]. Therefore,
local outlier detection covers a small subset of data points
at a given time (Figure 2a). To compute the degree of
outlier of a point p in a dataset D, several distances must be
introduced [57]. The k-distance of a point p ∈ D denoted
as dk (p) is the distance between p ∈ D and its k-nearest
neighbor. The notion of k-distance must be used to delimit
a neighborhood that contains the k-nearest neighborhood
of p. This neighborhood denoted as Nk (p) is defined as
Nk (p) = {q ∈ D\{p}|d(q, p) ≤ dk (p)}. The reachability
distance denoted as reachdistk (p, o) of a point p ∈ D
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with respect to a point o is defined as reachdistk (p, o) =

max {dk (p), d(p, o)}. Based on these definitions, the LOF
(Local Outlier Factor) algorithm has been introduced in [38]
to improve the kNN approach in the scenario where, e.g.,
in a two-dimensional dataset, the density of one cluster is
significantly higher (resp. lower) than another cluster. To do
this, it calculates the local reachable density of the data,
and calculates the local outlier factor score according to the
local reachable density. Figure 2b illustrates the local density-
based outlier scoring for a given dataset. LOF values are
converted into circle radius so that it is possible to set a
threshold (e.g., 0.1) to detect outlier samples. In this work,
we introduce the HLOF (Hyperbolic Local Outlier Factor)
algorithm by replacing d(q, p) with the Rao distance (2).

While the LOF (Local Outlier Factor) algorithm detects
outlier data points using the reachability distance, the
Local Outlier Probability (LoOP) algorithm introduces the
probabilistic distance of o ∈ D to a context set S ⊆ D,
referred to as pdist(o,S) with the following property:

∀s ∈ S : P[d(o, s) ≤ pdist(o,S)] ≥ ϕ. (5)

This probabilistic distance corresponds to the radius of a
disk that contains a data point of S, obtained from the
kNN algorithm, with a certain probability, denoted as ϕ. The
reciprocal of the probabilistic distance can be considered as
an estimation of the density of S, i.e, pden(S) =

1
pdist(o,S) .

Assuming that o is the center of S and the local density is
approximately a half-Gaussian distribution, the probabilistic
set distance of o to S can be defined as follows:

pdist(o,S) = λσ (o,S), (6)

where σ (o,S) = (
∑

s∈S d
2(o, s)/ |S|)1/2 is the standard

Euclidean distance of o in S. The parameter λ is linked to the
selectivity of detection through the quantile function of the
normal distribution via the relation λ =

√
2erfinv(ϕ), where

erfinv is the inverse error function.
To be detected as an anomaly for the set S, a data point

should deviate from the center of S for more than λ times the
standard distance. For example, λ = 3 means that a circle of
radius pdist(o,S) and center o contains any data point of S
with a probability ϕ ≈ 99.7%. The resulting probability is
the Local Outlier Probability (LoOP) given by

LoOPS (o) = max
{
0, erf

(
PLOFλ,S (o)

nPLOF
√
2

)}
, (7)

where the Probabilisitic Local Outlier Factor (PLOF)
is defined as PLOFλ,S (o) = (pdist(λ, o,S))/(Es∈S[
pdist(λ, s,S)

]
)−1 and a normalization factor nPLOF is such

that nPLOF = λ(E[PLOF2])1/2. The LoOP value is directly
interpretable as the probability of o being an outlier, i.e, close
to 0 for points within dense regions and close to 1 for density-
based outliers.

B. HLoOP ALGORITHM
This subsection presents the main contribution of this study,
which is an adaptation of the LoOP algorithm to data lying

in a hyperbolic 2-space. As mentioned above, the LoOP
algorithm in an Euclidean space exploits a probabilistic set
distance, called pdist(o,S) (see 6), to select the density
around o in the context set S with a probability of ϕ.
To define a local outlier probability adapted to hyperbolic
geometry, it is necessary to calculate a new parameter λH ,
which ensures that pdist(o,S) is performed considering the
hyperbolic geometry. To derive such a solution, the key idea
is to derive a new quantile function through an expression
of a Gaussian cumulative distribution function (cdf) that can
be obtained by integrating the pdf (3) in H. Using polar
coordinates (see subsection IV-B, remark iii.), it is possible to
calculate this Gaussian cdf explicitly. To find the parameter
λH , we consider the probabilistic distance of o ∈ D to a
context set S ⊆ D using a Riemannian distance dH (o, s) and
the following statistical property:

∀s ∈ S : ϕ = P[0 < dH (o, s) ≤ λHσr ] = GH (λHσr ), (8)

where GH is the cdf of dH (o, s). Assuming that o is the center
of S and the set of distances of s ∈ S to o is approximately
half-Gaussian in a hyperbolic space, one can compute the
standard deviation σr using the Riemannian distance r =

dH (o, s) with a mean dH (o, o) = 0. Note that the standard
deviation of r denoted as σr and its pdf can be determined
from the functionGH , e.g., pH (r, σr ) = G′

H (r, σr ). Theorem 1
presents the main result of this paper.
Theorem 1: Given r ∈ H, σr > 0, the Riemannian

geometry of the Gaussian cumulative model associated with
the distribution defined in (3) is given by

GH (r, σr ) =
π

√
2πσre

σ2r
2

2Z (σr )

×

[
2erf

( σr
√
2

)
+ erf

( r − σ 2
r

σr
√
2

)
−erf

( r + σ 2
r

σr
√
2

)]
.

(9)
Proof: Let P[0 < r ≤ R] and dA(z) = sinh(r)drdϕ such

that:

GH (R) =

∫ 2π

0

∫ R

0

1
Z (σr )

exp
(

−
r2

2σ 2
r

)
sinh(r)drdϕ.

The pdf pH (·) satisfies the following condition:∫
H
pH (x|µ, σ )d(µ, σ ) = 1, (10)

where d(µ, σ ) is the Lebesgue measure. The cumulative
distribution function of the univariate Gaussian distribution
of pdf pH (·) can be computed using (10) as follows:

GH (R) =
2π
Z (σr )

×

∫ R

0

e
σ2r
2

2

(
e
−

(r − σ 2
r )

2

2σ 2
r − e

−

(r + σ 2
r )

2

2σ 2
r

)
dr,

=
π

√
2πσre

σ2r
2

2Z (σr )
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×

 2
√

π

∫ R−σ2r√
2σr

−σr√
2

e−u
2
1du1 −

2
√

π

∫ R+σ2r√
2σr

σr√
2

e−u
2
2du2

 ,

=
π

√
2πσre

σ2r
2

2Z (σr )

×

(
2erf

( σr
√
2

)
+ erf

(R− σ 2
r

σr
√
2

)
− erf

(R+ σ 2
r

σr
√
2

))
.

(11)

Taking the limit GH (R) −→
R→1

1 in (11) yields:

Z (σr ) = (2πσr )

√
π

2
exp

(
σ 2
r

2

)
erf
(

σr
√
2

)
,

which allows the expression given in [45] to be recovered and
completes the proof. □
By combining these results, the parameter λH (σr ) is

determined by the inverse of GH (λHσr ) (see 8) such that

λH (σr ) =
1
σr
G−1
H (ϕ). (12)

It is interesting to note that, while the traditional quantile
function is independent of the standard deviation, we have
obtained means to directly derive the parameter λH that
exploits the underlying geometry of the hyperbolic space
(see subsection IV-B, remark ii.). The HLoOP algorithm is
summarized in Algorithm 1.

Algorithm 1 HLoOP Algorithm

Input: Dataset X = {x i}mi=1 where x
i
= (x i1, · · · , x in) ∈ Rn.

Pre-determined threshold ϕ, parameter k , and hyper-
bolic distance dH (p, q);
(1) Determine the context set S of the data point x i from

the kNN algorithm;
(2) Compute the standard distance σr of the context set

S;
(3) Determine G−1

H (ϕ) to derive the parameter λH
by (12);

(4) Calculate the probabilistic set distance pdistk (x
i) of

the data point x i by (6);
(5) Compute the local outlier probability LoOPk (x i) of

the data point x i by (7);
Output: Anomaly scores for the elements of the dataset X .

It is worth noting that the main difference between the
LoOP (computational complexity ofO(n∗log(n)) andHLoOP
algorithms is the addition of a Newton algorithm to estimate
the threshold given by λ = G−1

H . Knowing that the time
complexity of Newton’s method is O(log(1/ϵ)), where ϵ is
the desired precision of the root; we can assess that the
complexity of the HLoOP algorithm is equivalent to that of
the LoOP algorithm. Similarly, the same applies to HLOF,
where LOF is the computational complexity of O(n2).

C. IMPLEMENTATION DETAILS
Before presenting the performance of the algorithm described
above, it is interesting to discuss some aspects related to
the implementation of the HLoOP algorithm. Most of the
steps used in the implementation of the HLoOP algorithm
are directly related to the Euclidean LoOP, except that the
distances are no longer Euclidean but hyperbolic. However,
the significance λ cannot be computed as in the Euclidean
LoOP. While an analytic expression of the Gaussian quantile
function is known in Euclidean space, the derivation of the
cumulative distribution in the Poincare disk, illustrated in
Figure 3, does not lead to an analytic formulation of its inverse
G−1
H . Actually, an analytic expression of G−1

H is not needed
to compute λ providing the value of r = λσ for which
GH (r, σ ) = ϕ can be determined. Solving

GH (r, σ ) = ϕ,

for a given pair (σ, ϕ) can be performed using the Newton
method. Once we have obtained r , as shown in Figure 3b, the
significance can be determined using the relation r = λσ ,
yielding λ = r/σ . The elements required to implement
the HLoOP algorithm are now available. The next section
evaluates the performance of the propmosed algorithm.

VI. RESULTS
A. PERFORMANCE OF HLoOP ON A TOY DATASET
The HLoOP method is first used to detect outliers in a
toy dataset, with a reduced number of points. The dataset
was generated as follows: first, some vectors were generated
uniformly in two circular areas located in the Poincaré Disk
(clusters A and B). Then, each area was filled with 40 points
whose positions are pulled from the normal distribution
N (·,RI2) where I2 is the 2 × 2 identity matrix. Five points
located outside these areas (cluster C) constitute the outliers
of the toy dataset, which is finally composed of 2 × 40 +

5 = 85 points. The HLoOP algorithm was applied to this
dataset, and its performance was compared to that of HLOF.
As a first test, we compute the HLOF and HLoOP values of
each point of the embedding for k = 15 and a threshold
ϕ = 95% for HLoOP. Figures 4 and 5 show the different
points surrounded by a circle whose radius is proportional
to the HLoOP or HLOF values. We observe that for both
methods (HLoOP or HLOF), the outliers (cluster C) have
a higher score than the inliers (clusters A and B). For the
HLoOP, this corresponds to the probability of a point being an
outlier, whereas for the HLOF, the interpretation of the score
is less straightforward. It is also interesting to note that cluster
A highlights a weakness of HLOF, which is designed for
clusters of uniform density as LOF. It is interesting tomention
here that HLOF assigns relatively higher outlier scores to the
points of cluster A compared to HLoOP, which shows that
HLoOP performs better for this example.

A classical metric used to quantify the quality of the outlier
detection is the Area Under the Receiver Operating Curve
(AUC-ROC). We recall that a value of AUC-ROC close to
0 corresponds to very poor detection performance (around 0%
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FIGURE 3. Cumulative distribution GH in the Poincare disk and
resolution of GH (r , σ ) = ϕ.

FIGURE 4. Embedding of the toy dataset in the Poincaré disk: HLOF
values.

of the decisions made by the algorithm are correct), while an
AUC ROC close to 1 means that the algorithm is making very
few errors. As observed in Figure 6, the HLoOP algorithm
provides good anomaly detections: for k > 2 (number of

FIGURE 5. Embedding of the toy dataset in the Poincaré disk: HLoOP
values. Some points have very small HLoOP values and their associated
circles do not appear in the figure.

FIGURE 6. AUC ROC - Outlier detection in a toy dataset.

neighbors considered to evaluate the density of the context
setS), the number of true positives (actual outliers detected as
outliers) is between 95 and 100%,which is a very good result.
Meanwhile, the performance of HLOF is more contrasted and
strongly dependent on the value of k . In particular, for higher
values of k , the HLOF performance dramatically decreases.
The next section assesses the performance of HLoOP on a
larger dataset containing up to 1000 points.

B. EVALUATING THE PERFORMANCES ON THE
WORDNET/MAMMALS SUBGRAPH
This section evaluates the performance of HLoOP on a sub-
graph of the WORDNET database. WORDNET is a lexical
dataset composed of 117000 synsets,2 which correspond to
nouns, adjectives, or verbs that are linked by conceptual
relations. Several subgraphs are known to exist in this dataset.
Among them, we chose to apply HLOF and HLoOP to a
group of 1180 synsets from the subgraph ‘‘Mammals’’. The
dataset was corrupted by 11 outliers corresponding to nouns
of animals that are not mammals (i.e., fishes, reptiles or birds)
and was embedded in the Poincaré Disk using the algorithm

2data elements that are considered semantically equivalent.
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of Nickel et al. (2017). The values of HLoOP and HLOF
were calculated for the points of this embedding. The Area
Under the Receiving Operator Curve (AUCROC) was finally
calculated for both HLOF and HLoOP for several values
of k . As shown in Figure 7, the performance of HLoOP is
better than HLOF for all values of k , with a ROC AUC larger
than 0.98, while HLOF leads to a ROC AUC less than 68%.
In addition to its good performance, the HLoOP algorithm
yields AUC values that are quite independent of k , which is
outstanding.

FIGURE 7. AUC ROC - Outlier detection in the corrupted subgraph of
Wordnet/Mammals.

As shown in Figures 8 and 9 respectively for HLOF
and HLoOP, the detected anomalies are surrounded by a
circle whose radius is proportional to the HLoOP or HLOF
values. The number of neighbors considered in the density
computations of HLoOP and HLOF is 20. What is interesting
is that for the same number of neighbors considered in
the density calculation, the figures clearly show that the
performance of HLoOP better discriminates outliers than
HLOF. Particularly, we observe that one of the anomalies is
not detected by the HLOF, and points that are very far from
the group in the center had a fairly low score.

FIGURE 8. Wordnet/mammals HLOF values.

FIGURE 9. Wordnet/mammals HLoOP values.

VII. CONCLUSION AND PERSPECTIVES
This paper presents extensions of the Local Outlier Factor
(LOF) and Local Outlier Probability (LoOP) algorithms,
which are referred to as Hyperbolic LOF (HLOF) and
Hyperbolic LoOP (HLoOP). Rather than working in the
Euclidean space, these extensions work in a specific model of
hyperbolic space, namely the Poincaré Disk. Both algorithms
are density based and compare the density of a point with
the density of its neighbors. On the one hand, HLOF
computes the density based on a deterministic distance
(called reachability distance), while HLoOP introduces the
notion of probabilistic distance and returns its probability of
being an outlier for each point. The simulations conducted
on a toy dataset have shown that the HLoOP algorithm
allows a better distinction of outliers and inliers than HLOF.
While HLoOP directly provides the probability of each point
being an outlier, HLOF returns a score whose interpretation
is not straightforward and depends on the dataset under
study. Evaluations of the areas under the receiver operating
characteristics of data in the Poincaré disk have confirmed
that HLoOP has a better detection performance than HLOF.
The results obtained with this dataset also show that the
HLoOP performance is less sensitive to the number of
neighbors considered in the computation of the density, than
HLOF. Given these promising results, we have embedded
the mammals subset of the Wordnet dataset in the Poincaré
disk after introducing artificial outliers. The HLOF and
HLoOP values and the areas under the receiver operating
characteristics of HLOF and HLoOP confirm the results
obtained using the previous dataset. At last but not least,
HLoOP adopts the same assumptions as in the LoOP
algorithm. These assumptions are based on the application of
the central limit theorem, which suggests that the distances
follow a normal distribution. By doing so, we prevent
our method from being restricted to a particular type of
distribution. It is worth noting that other types of distributions
can also be considered in the hyperbolic space, as discussed
in [24].
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Future work includes the extension of HLOF and HLoOP
to the Lorentz disk, i.e., to another model of the hyperbolic
space. Indeed, it has been shown that the Poincaré disk
presents numerical instabilities that are not observed in the
Lorentz model. Moreover, it would be interesting to apply
the HLoOP and HLOF algorithms to more complex datasets,
with more points and attributes. For example, given the
growing interest for hyperbolic geometry in the computer
vision domain, it could be worthwhile to consider using
HLoOP and HLOF to detect outliers in a set of images.
Finally, hyperbolic geometry could be used to derive new
outlier detection algorithms based on isolation forest or one-
class support vector machines.
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