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ABSTRACT
In this communication, we derive a new intrinsic Cramér-
Rao bound for both parameters and observations lying on
Lie groups. The expression is obtained by using the intrin-
sic properties of Lie groups. An exact expression is obtained
for the case where parameters and observations are in SE(2),
the semi-direct Lie group of 2D rotation and 2D translation.
To support the discussion, the proposed bound is numerically
validated for a Lie group Gaussian model on SE(2).

Index Terms— Estimation on Lie groups, intrinsic
Cramér-Rao bounds, Gaussian distribution on Lie groups.

1. INTRODUCTION

Performance bounds are crucial in various signal processing
areas. Indeed, given a statistical model, these bounds pro-
vide the minimum mean square error (MSE) that an estimator
can expect to achieve. In many applications, the unknown pa-
rameters’ vector is constrained to respect some geometrical
properties, and subsequently to lie in a Riemannian manifold.
That is why estimating parameters belonging to a manifold
has become a relevant issue the last decades [1, 2, 3]. Typical
manifolds of interest: (1) The manifold of symmetric definite
positive (SPD) matrices. For instance, in radar target tracking
[4], the covariance of the statistical model is often unknown
and can be estimated on such manifold. In image process-
ing, pixels can be modelled by a SPD matrix [5, 6]. Then, the
mean of these data have to be estimated on the SPD space. (2)
The Stiefel manifold. In the context of blind source separation,
the demixing consists in estimating an orthonormal matrix ly-
ing on the Stiefel manifold [7]. (3) Matrix Lie groups (LGs).
These can be found in the field of robotics and navigation, to
estimate a robot attitude on SO(2) or SO(3) [8], or directly
its pose on SE(2) or SE(3), for simultaneous localization
and mapping [9, 10]. To evaluate the performance of an esti-
mation problem on a manifold, it is fundamental to first define
an intrinsic MSE taking into account the properties of the lat-
ter. Then, it is highly useful to build intrinsic lower bounds
allowing to assess the minimum intrinsic MSE achievable. It
is worth noticing that intrinsic Cramér-Rao bounds (ICRBs)
have already been derived in the setting of the Riemannian

manifold of SPD matrices [11, 12]. In this work, we focus
on the development of intrinsic bounds for parameters be-
longing to matrix LGs, with observations on LGs. In [13], a
non-Bayesian ICRB on LGs is proposed, which considers Eu-
clidean observations with closed-form expression for SO(3)
in the context of the Wabha’s problem [14]. In [15, 16], a
more generic ICRB is established but only valid for symmet-
ric or isotropic probability density functions (pdfs). Also, in a
Bayesian framework, an intrinsic posterior bound on unimod-
ular matrix LGs has been proposed in [17].

In this paper, we deal with deterministic parameters. No-
tice that previously derived non-Bayesian bounds in this topic
are too restrictive. Indeed, in some applications, for instance
in computer vision, observations are often constrained on LGs
[18, 19]. In addition, existing bounds admit tractable expres-
sions only for SO(3), but other LGs are of interest, especially
SE(2) (the semi-direct group of translation and rotations in
2D space) [20, 21, 22], which needs to be studied. To achieve
that, we propose the following generalization: we start by de-
signing a non-Bayesian Cramér-Rao bound, which contrary
to [13], applies for observations on LGs. Particularly, the
demonstration is carried out by leveraging the unbiased con-
dition for estimators on LGs. From that, we analyse and give
closed-from expressions for LG SE(2). Due to the proper-
ties of the latter, we gather a closed-form expression for LG
Gaussian observations also lying on SE(2). The proposed
computations are handled in an exact way.

The communication is organized as follows: first, we
remind the required background on LGs. Second, we de-
velop the ICRB and give its explicit expression in the case of
SE(2). In the last section, the proposed bound is validated
for the LG observation Gaussian model on SE(2).

2. BACKGROUND ON LIE GROUPS

2.1. Definition

A matrix LG G ⊂ Rn×n is a matrix space equipped with
a structure of smooth manifold and group. Its structure of
smooth manifold allows to specify the operations of integra-
tion and derivation. More precisely, we can define the notion
of tangent space according to each element of G. Its structureIC
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of group allows to define an internal law which acts between
each element of G. Consequently, it exists a neutral element
(identity matrix) such as each element of G can be inverted.
Moreover, we can leverage this internal law to connect each
element of the identity tangent space to the tangent space of
any element. The identity tangent space is the Lie algebra
and denoted g. Each element of the LG and the Lie algebra
are connected between them, through the logarithm and expo-
nential applications defined, respectively, by ExpG : g → G
and LogG : G → g, as illustrated in Figure 1. As g is iso-
morph to Rm, we can define two bijections [.]∧ : Rm → g and
[.]∨ : g → Rm. In this way, we can denote the exponential
and logarithm applications such as: ∀ a ∈ Rm, Exp∧

G (a) =
Exp ([a]∧G) and ∀ M ∈ G, [LogG (M)]

∨
G = Log∨

G (M) .

Fig. 1. Relation between Rm, G and g

In order to establish the proposed bound, the Baker-
Campbell-Hausdorff (BCH) formula is needed. This is a
relation expressing the general non-commutativity of a LG.
∀c,d ∈ (Rm)

2, we have that,

Log∨
G(Exp∧

G(b)Exp∧
G(c)) = b+ψG(c)b+O(||c||2),

(1)

where

ψG(c) =

+∞∑
n=0

Bn

n!
adG(c)

n, (2)

denotes the inverse of the left Jacobian matrix of G, the coef-
ficients {Bn}∞n=0 are the Bernoulli numbers [23] and adG(d)
is the adjoint representation on g of d.

adG(c)d = [c,d] ∀d ∈ Rm (3)

where [.,.] denotes the Lie bracket [24]. In the following, we
assume that G is a LG with Lie algebra isomorph to Rm.

2.2. Statistics on Lie groups

In an Euclidean context, an estimator m̂ of the unknown
parameter m ∈ Rp, obtained from the likelihood p(z|m),
is specified by three appropriated statistical indicators: its
mean mm̂ such as

∫
Rs(m̂ − mm̂)p(z|m)dz = 0, its bias∫

Rs(m − m̂)p(z|m) dz and its estimation error covariance

∫
Rs(m − m̂) (m − m̂)⊤ p(z|m)d z. Now, consider a ran-

dom observation Z, belonging to a LG G′, depending of an
unknown parameter M ∈ G and generated by the likelihood
p(Z|M). On LGs, the gap between two LG points A and B
can be quantified by using the metric

lG
B
A = Log∨

G

(
A−1 B

)
(4)

and allows to measure the path between M and some estima-
tor M̂.

Fig. 2. Illustration of the intrinsic gap between M and M̂,
which takes into account the curvature of the group.

Let λG(.) be Haar measure. The mean M
M̂

∈ G is de-
fined such that1:∫

G′
lG

M̂
M̂

M̂

p(Z|M)λG′(dZ) = 0, (5)

its intrinsic bias bZ|M ∈ Rm given by [25]:

bZ|M(M, M̂) =

∫
G′
lG

M
M̂
p(Z|M)λG′(dZ), (6)

and its intrinsic estimation error covariance CZ|M ∈ Rm×m

defined by [15]:

CZ|M(M, M̂) =

∫
G′
lG

M
M̂
lG

M
M̂

⊤
p(Z|M)λG′(dZ). (7)

In the next section, we use the introduced tools on LGs in
order to develop the proposed intrinsic Cramér-Rao bound.

3. INTRINSIC CRAMÉR-RAO BOUND

3.1. General expression

Let us assume a set of observations Z ∈ G′ depending of an
unknown parameter M ∈ G through the likelihood p(Z|M).
Furthermore, let us consider that M̂ is an unbiased estimator
of M in the sense that,

bZ|M

(
M, M̂

)
= 0. (8)

1For a random matrix LGs, E(f(X)) =
∫
p(X) f(X)λG(dX) where

λG(.) is a Haar measure
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The covariance intrinsic error estimation verifies,

CZ|M(M, M̂) ⪰ P (9)

with,

P = E
(
ψG

(
lG

M
M̂

))
I−1
G E

(
ψG

(
lG

M
M̂

)⊤
)

(10)

and,

IG = E

 ∂lp(Z|M, δ1))

∂δ1

∂lp(Z|M, δ2))

∂δ2

⊤
∣∣∣∣∣
δ1,δ2=0

 ,

(11)

with lp(Z|M, δ) = log p
(
Z|MExp∧

G (δ)
)
. In the case

where G
′

is unimodular, it is possible to take advantage of an
specific integration by parts on LGs [15]. By applying it, IG
can be recast:

−E

 ∂2 log p
(
Z|MExp∧G (δ1) Exp∧

G (δ2)
)

∂δ1∂δ2

∣∣∣∣∣
δ1,δ2=0

 .

(12)
Proof of (10) :
In the same way that the Euclidean CRB demonstration,

we define the following vector,

s =
[
lG

M
M̂

⊤
, ∇ML

⊤
p

]⊤
. (13)

with

∇MLp =
∂ log p

(
Z|MExp∧

G (δ)
)

∂δ

∣∣∣∣∣
δ=0

. (14)

The correlation matrix R = E
(
s s⊤

)
can be decomposed as,

R =

 E
(
lG

M
M̂
lG

M
M̂

⊤)
E
(
lG

M
M̂

∇ML
⊤
p

)
E
(
∇MLp lG

M
M̂

⊤)
E
(
∇MLp ∇ML

⊤
p

)
 , (15)

R being positive semi-definite, its Schur complement sat-
isfies this property as well. It ensues:

E
(
lG

M
M̂
lG

M
M̂

⊤
)
⪰ L (16)

with

L = E
(
lG

M
M̂

∇ML
⊤
p

)
E
(
∇MLp ∇ML

⊤
p

)−1 E
(
∇MLp lG

M
M̂

⊤)
.

(17)
Expression of E

(
lG M̂

∇ML
⊤
p

)
:

By leveraging the unbiased condition (8), we obtain:(
∂

∂δ

∫
G′
lG

M Exp∧G(δ)

M̂
p(Z|MExp∧

G (δ) )λG′(dZ)

)∣∣∣∣
δ=0

= 0 (18)

By assuming that lG
M Exp∧G(δ)

M̂
p(Z|MExp∧

G (δ) ) is bounded
by a measurable function, it is possible to invert integral and
derivative operators. By using classical derivative of func-
tions,(∫

G′

∂

∂δ
lG

M Exp∧G(δ)

M̂
p(Z|MExp∧

G (δ) )λG′(dZ)+∫
G′
lG

M Exp∧G(δ)

M̂

∂

∂δ
p(Z|MExp∧

G (δ) )⊤λG′(dZ)

)∣∣∣∣
δ=0

= 0 (19)

This expression can be simplified by using two tricks:
first, the term lG

M Exp∧G(δ)

M̂
can be simplified by the BCH for-

mula,
∂

∂δ
lG

M Exp∧G(δ)

M̂
= −ψG( lG

M
M̂
). (20)

Second, we know that,

∂

∂δ
p(Z|MExp∧

G (δ) ) =
∂

∂δ
lp(Z,M, δ) p(Z|MExp∧

G (δ) ),

(21)
and using (19),∫

G′
ψG( lG

M Exp∧G(δ)

M̂
)p(Z|M)λG′(dZ)+∫

G′
lG

M
M̂

∂

∂δ
lp(Z|M, δ)|⊤δ=0 p(Z|M)λG′(dZ) = 0. (22)

By isolating the right-hand integral, we obtain,

E
(
lG

M
M̂

∇ML
⊤
p

)
= E

(
ψG

(
lG

M
M̂

))
(23)

By injecting the last equation in (17), we deduce the for-
mula (10).

3.2. Application to LG-Gaussian model on SE(2)

In order to define statistical model with observation on
LGs, we can leverage on the concentrated Gaussian distri-
butions (CGD) on LGs, introduced in [26] and generaliz-
ing the concept of Euclidean Gaussian multivariate pdf. If
ϵ ∼ N (0,P) and µ a matrix defined on a LG G, then
X = µExp∧

G (ϵ) is distributed according to a left CGD on
G, with parameters µ ∈ G and P ∈ Rm×m. If µ is close to
I,

p(X) ≃ 1√
(2π)m |P|

exp−
1
2 ||Log∨G(µ−1 X)||2P . (24)

Let us assume that some observations Z1, . . . ,Zn are dis-
tributed according to a CGD on SE(2) and connected to un-
known parameter M ∈ SE(2):

Zi = MExp∧
SE(2) (ϵi) ϵi ∼ N (0,Σ) ∀i ∈ {1, . . . n} (25)
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with Σ ∈ R3×3. Let us consider the full observation matrix
Z = {Z1, . . .Zn} and p(Z|M) the associated likelihood. It
is worth noticing the expression of P can be simplified in this
case. First, SE(2) is commutative, consequently, the adjoint
operator is equal to 0. Thus, ψSE(2)(.) = I and,

CZ|M(M, M̂) ⪰ I−1
SE(2), (26)

where M̂ denotes some unbiased estimator of M .
Second, SE(2) is unimodular, consequently, ISE(2) can

be computed with (12). According to the CGD expression,

logp
(
Z|MExp∧

SE(2) (ϵ1) Exp∧
SE(2) (ϵ2)

)
=

∈R︷︸︸︷
K

− 1

2

n∑
i=1

∥∥∥ lSE(2)
Zi

M Exp∧
SE(2)

(ϵ1) Exp∧
SE(2)

(ϵ2)

∥∥∥
Σ

(27)

Furthermore, the BCH formula provides that,

lSE(2)(MExp∧
SE(2) (ϵ1) Exp∧SE(2) (ϵ2) ,Zi) = lSE(2)

Zi

M

−ψSE(2)( lSE(2)
Zi

M)︸ ︷︷ ︸
=I

(ϵ1 + ϵ2) +O
(
||ϵ1 + ϵ2||2

)
. (28)

By differentiating the previous expression according to ϵ1
and ϵ2 and taking their values to zero, we gather ISE(2) =
nΣ−1 and P = n−1 Σ.

4. SIMULATION RESULTS

In sequel the proposed intrinsic bound is validated in the
case of the LG-Gaussian observation model (25) for SE(2),
by comparing it to the intrinsic MSE (IMSE). To simulate
the observations, we assume that Σ is diagonal and equal to
diag

[
σ2
θ , σ

2
x, σ

2
y

]
. The IMSE expression is given by the trace

of (7). As the latter is not tractable, it can be approximated,

1

Nmc

Nmc∑
t=1

∥∥∥ lSE(2)
X̂t

0

X0

∥∥∥2 , (29)

where Nmc is the number of realizations and X̂t
0 the tth

realization of the estimator. The latter is gathered by deter-
mining the likelihood maximum of p(Z|M). It amounts to
find the minima of the criterion:

−2 log p(Z|M) =

n∑
i=1

∥∥∥ lSE(2)
Zi

M

∥∥∥2
Σ

(30)

. To obtain a sufficiently accurate estimator, a Gauss-Newton
algorithm on LGs is performed [27]. Concerning the ICRB,
it is obtained by computing the trace of P. To validate the
consistence of the bound, we first compare the IMSE and the
ICRB for different values of translation components of obser-
vation noise. To succeed that, we assume that σx = σy = σd.
In Figure 3, we observe that the proposed ICRB is consistent
because it minores the IMSE whatever the value of σd. On
the other hand, we remark that for high variance noise, the
difference between the IMSE and the ICRB increases. Thus,
it numerically proves that the estimation algorithm can not

draw an optimal estimator in very noisy conditions. In Figure
4, we draw the same variables for different number of obser-
vations by staring the covariance Σ. As previously, we see
that the ICRB admits a consistent behaviour. Furthermore,
we remark the IMSE tends to the ICRB for large number of
observations. Its interesting to note that we find the same be-
haviour as in the case of the Euclidean Gaussian model. This
asymptotic convergence can be regarded as a theorical result
due to the fact that the ICRB is computed in a exact way.
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Fig. 3. Evolution of the IMSE and ICRB as a function of σd,
with σθ = 10−3 rad, n = 50 and Nmc = 500.

0 100 200 300 400 500 600 700 800 900 1000

0

0.2

0.4

0.6

0.8

1

1.2

1.4
10

-4

Fig. 4. Evolution of the IMSE and ICRB as a function of n
with σθ = 10−3 rad, σd = 10−2 m and Nmc = 500.

5. CONCLUSIONS

In this communication, we derived an intrinsic Cramér-Rao
bound which applies for observations belonging to LGs,
which generalizes known results in the literature. In addition,
we obtained an exact expression in the case of the Gaus-
sian model on LGs for observations and parameter lying on
SE(2). The consistency of the proposed bound was validated
by numerical simulations. A perspective of this work would
be to derive closed-form expressions for other LGs of inter-
ests. More precisely, when the covariance of the model is
unknown, it would be relevant to derive bounds on the latter
taking into account its LG structure.
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