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Abstract—The estimation of high resolution spectrometer Instrument
Spectral Response Functions (ISRFs) is crucial because an imperfect
knowledge of these functions can induce errors in the measurements.
The state-of-the-art for this problem currently relies on the use of
parametric models, which frequently lack flexibility to accurately model
real-world ISRFs. To address this limitation, this paper proposes and
investigates the use of sparse representations for modeling and estimating
ISRFs, where the ISRFs are decomposed in a fixed dictionary of atoms.
To estimate the sparse coefficient vector, a novel sparsity inducing
regularization of the problem based on quadratic envelopes is studied
and compared to the classical LASSO estimator and to a greedy method
based on the Orthogonal Matching Pursuit (OMP) algorithm. Results for
simulated ISRFs from the MicroCarb mission indicate that the proposed
spectral representations yield excellent ISRF estimates, and that the
use of quadratic envelopes can yield significantly better precision than
competing methods.

Index Terms—Instrument Spectral Response Function (ISRF), Sparse
representations, quadratic envelope regularization, LASSO, Orthogonal
Matching Pursuit (OMP).

I. INTRODUCTION

Context and related work. Models based on sparse represen-
tations have been extensively used in several applications such as
image denoising, classification or restoration [1]–[3]. This paper
studies the potential interest of these models for estimating the
Instrument Spectral Response Functions (ISRFs) of a spectrometer.
The measured spectrum of a spectrometer at a given wavelength λl,
denoted as s(λl), is obtained by a convolution between the ISRF
at wavelength λl denoted as Il and a high resolution theoretical
spectrum sth [4], [5], i.e.,

s(λl) =

N/2∑
n=−N/2

sth(λl − n∆)Il(n∆) + ϵl, (1)

where ∆ is the sampling period used for the N + 1 points of the
ISRF wavelength grid, λl is a wavelength usually not defined in the
same grid (i.e., λl ̸= k∆, k ∈ N) and ϵl is the Gaussian noise for
the lth measurement. The ISRF estimation problem has previously
been conducted by using parametric models such as Gaussian or
generalized Gaussian models, which constitute the state-of-the-art
for ISRF estimation [6]. However, these models can be of limited
accuracy under the operational conditions of realworld missions. As
an example, for the MicroCarb mission currently investigated by the
Centre National d’Etudes Spatiales (CNES) in Toulouse, France [7],
the accuracy expected to determine CO2 concentrations necessitates
a precise knowledge of the ISRFs at the considered wavelengths with
relative errors less than 1%. This threshold is not always guaranteed
by parametric models [8], attesting the importance of finding new
methods for ISRF estimation.

Goals, contributions and outline. The objective of this work
is to overcome the previously mentioned limitations concerning
ISRF estimation by modeling ISRFs using sparse representations,
as proposed in [9], and to translate this approximation to formulate
an inverse problem for (1) (cf. Section II). The main contribution
of this work consists in evaluating the performance of a quadratic
envelope-based regularization to solve the sparse representation prob-
lem with a predefined number of atoms (cf. Section III). The proposed
method is compared with classical sparse representation methods
such as LASSO and the greedy OMP method. Section IV presents
experiments on simulated data generated by the CNES for the
MicroCarb mission. The results indicate that the proposed approach
yields excellent ISRF estimates and that the quadratic envelope based-
regularization often leads to significantly better precision than the use
of ℓ1 or ℓ0 penalties. Conclusions and future works are described in
Section V.

II. SPARSE REPRESENTATION FOR ISRFS

A. Problem formulation

Each ISRF Il of a spectrometer depends on its central wavelength
λl. Thus, the ISRF problem resulting from (1) implies to estimate,
for each wavelength λl, the corresponding response function by using
one measurement s(λl). In order to solve this ill-posed problem, we
assume that the ISRFs do not vary much in a small observation win-
dow around the wavelength λl of interest Wl =

{
λl−L

2
, ..., λl+L

2

}
.

In vectorial form, (1) can be rewritten as follows:

sl = Sth,lIl + ϵl, (2)

where ϵl ∈ RL+1 is a noise vector and

sl ≜ [s(λl−L
2
), ..., s(λl+L

2
)] ∈ RL+1,

Sth,l ≜ [Sth(λl′ − n∆)]l−L
2
≤l′≤l+L

2

−N
2
≤n≤N

2

∈ R(L+1)×(N+1),

Il ≜ [Il(−N∆/2), ..., Il(N∆/2)] ∈ RN+1.

The ISRF estimation problem then reduces to finding the vector Il

that minimizes the residual error ||sl − Sth,lIl||22.

B. ISRF model using a sparse approximation

We model the ISRF Il as a linear combination of a small number
K of atoms belonging to a dictionary Φ ∈ R(N+1)×Ndict composed
of Ndict atoms, i.e.,

Il ≈ IK
l = Φαl, (3)

where IK
l ∈ RN+1 is the approximation of the ISRF Il obtained

using K atoms, and αl = (αl,1, ..., αl,Ndict)
T ∈ RNdict is a sparse



vector with K non-zero coefficients. This representation can easily be
translated to the inverse problem (1). Indeed, the convolution between
the theoretical spectrum and the ISRF can be written using the sparse
decomposition (3) so that the measured spectrum is also decomposed
with the same coefficient vector αl, i.e.,

sl ≈ Sth,lI
K
l = Ψl αl, (4)

with a new dictionary Ψl ≜ Sth,lΦ ∈ R(L+1)×Ndict . The dictionary
Φ and the theoretical spectra Sth,l being known, Ψl is also a known
dictionary. Thus, estimating the ISRF from the measured spectrum
reduces to finding a sparse coefficient vector αl yielding a good
approximation of sl in (4).

C. Resolution methods

The sparse representation problem (4) can be mathematically
formulated in different ways [1]. One way is to use an l0 pseudo-
norm penalty || · ||0 with penalty parameter µ:

argmin
αl

L(αl, µ) = argmin
αl

||sl −Ψlαl||22 + µ||αl||0. (5)

This problem is non convex and NP-hard, and therefore can be
solved using many approximations and heuristics. A first family of
approaches uses greedy algorithms, e.g., based on Matching Pursuit
(MP) or Orthogonal Matching Pursuit (OMP). These algorithms have
been widely used to solve (5) and have shown good performance
in many applications [10], [11]. The main drawback of greedy
algorithms is that they are heuristic and hence not connected with the
minimization of any particular functional. A second approach consists
in replacing the l0 penalty term in (5) with another regularization
leading to a simpler optimization problem. A standard approach is the
LASSO regularization, which replaces the l0 pseudo-norm penality
with a convex l1 norm [12]. The main drawback of the LASSO
algorithm is that it comes along with a well known shrinking bias,
especially for large values of µ needed to find very sparse solutions,
i.e., with a low number of atoms K. As shown in our experiments,
OMP gives the best results for small values of K for the application
considered in this work. Thus, LASSO tends to perform worse for
the whole range of hyperparameters µ (since low values of µ give
representations with a lot of atoms and high values of µ introduce a
shrinking bias that must be corrected once the atoms are selected).

Recently, a more flexible family of regularizations based on
quadratic envelopes has been introduced [13]. The quadratic enve-
lope can be applied to the indicator function of a predetermined
amount of non-zero coefficients K, and ideally the minimization
of this functional (in combination with a data-fidelity term) gives
sparse representations with K non-zero terms without introducing a
shrinking bias [14]. This method is presented in more detail in the
following section.

III. QUADRATIC ENVELOPES

A. Introduction to quadratic envelopes

The reason for using µ∥αl∥1 in the LASSO method as a proxy
for µ∥αl∥0 in (5) is that the function αl 7→ µ∥αl∥0 is highly
discontinuous and non-convex, particularly near the sought optimum.
Indeed, for every vector αl whose components are all non-zero,
the function is constantly equal to N , whereas for near sparse
vectors αl with ∥αl∥0 = K, there are points taking any value
in the range {K, . . . , N} arbitrarily close to αl. On the other
hand, the function αl 7→ ∥αl∥1 is convex and continuous, making
the corresponding proximal operator easily computable and suitable
to popular algorithms such as the alternating direction method of

multipliers (ADMM) [15] and the forward-backward splitting (FBS)
method (see [16] and references therein). However, as mentioned
earlier, it is known that this introduces a shrinking bias and thus a
degraded solution.

If we ignore the computational difficulty of solving (5), another
drawback of both (5) and ℓ1-minimization is that they contain a
hyperparameter µ which needs to be tuned to find a certain number
of atoms. If we are looking for a predefined number of, say K,
non-zero atoms, one could replace µ∥αl∥0 with the (parameter-
free) penalty ιK , i.e., the indicator functional of K-sparse vectors
{αl : ∥αl∥0 ≤ K}. Of course, minimizing the resulting functional
is also NP-hard and therefore not feasible in practice. Quadratic
envelopes were introduced to overcome the above mentioned draw-
backs. Just like the convex envelope, the quadratic envelope is not
a penalty in itself, but a method that can regularize any ill-behaved
penalty. Since we observed good results for OMP with low values
of K in previous work [9], we investigate here to replace µ∥αl∥0
in (5) with the quadratic envelope of the indicator functional ιK . On
the downside, the resulting cost functional is non-convex and there
is no guarantee that the found minimum, using either ADMM or
FBS, is the global minimizer or that it is indeed K-sparse. On the
other hand, it was proved in [14] that the cost functional in question
often has a unique local minimizer (hence also global minimizer) that
coincides with the so called “oracle solution”, i.e., the best solution
obtained for a known support (which is the best solution that one
can expect). Moreover, it was observed numerically that the solution
obtained using either FBS or ADMM initialized at 0 or randomly
indeed tends to be the oracle solution (which is K-sparse).

In general, given a regularization parameter γ > 0 and a func-
tional f : RN → R, the quadratic envelope Qγ(f) is defined
as the pointwise supremum of all quadratic functions of the form
αl 7→ r − γ

2
∥αl − β∥2 that are below f , where the supremum is

taken over all r ∈ R and β ∈ RN . In [13], it was shown that, given
certain conditions, regularizing with the quadratic envelope gives a
new continuous penalty that has the same global minimizer as the
original, i.e.,

Qγ(f)(αl) + ∥sl −Ψlαl∥22 (6)

has the same global minimizer as the corresponding problem with
Qγ(f) replaced by f .

For illustration purpose, Figure 1 displays the different regularizers
||x||1, Q2(∥x∥0) and Q2(ι1) in the first quadrant of R2. As is clear
to see, l1 has a linearly growing penalty also for 1-sparse points, i.e.,
points along either axis, which is the cause of the aforementioned
shrinking bias. The quadratic envelope applied to the l0-penalty for
this particular illustration, shown in the middle, turns out to be the
same as the MCP-penalty from [17]. This envelope has a bias also
for 1-sparse vectors, which stops to grow at ±1 and thus removes
the bias from larger non-zero coordinates in the sought minimizer.
However, this has a large plateau in the square min(|x1|, |x2|) > 1,
and is hence prone to get stuck around non-sparse local minima. The
penalty Q2(ι1) on the other hand looks a bit like the l1-penalty away
from the axes while still ensuring that Q2(x) = 0 for any 1-sparse
x, thus merging the benefits of both previous candidates.

The application of the quadratic envelope to the particular penalty
ιK in various frameworks has been extensively studied theoretically
(see, e.g., [14], [18]–[20]) and it has been shown to give consistently
superior results than competing methods. In this paper we evaluate its
performance for the sparse ISRF problem. In order to minimize (6)
using FBS or ADMM, one should compute the proximal operator
of Qγ(f). Recall that the proximal operator of ∥αl∥1 is the soft



Fig. 1. Illustration of the different regularizations in 2D; ||x||1, Q2(∥x∥0)
and Q2(ι1).

thresholding operator, which is separable (i.e., acts on each coordinate
independently of adjacent values) and very simple to implement. This
reflects the fact that the l1-penalty is also separable. The penalty
Q2(ιK) is much more intricate and is not separable, so that the
value of each particular coordinate in the proximal operator depends
on all other values in the input vector. How to compute this proximal
operator goes beyond the scope of this paper but the details can
be found in [21] or in the readme-file of https://github.com/Marcus-
Carlsson/Quadratic-Envelopes, where the proximal operator in ques-
tion also can be downloaded.

B. Proposed algorithm

In this article, the quadratic envelope-based approach was imple-
mented using the FISTA algorithm [22], as described in [21]. Therein,
a regularization parameter 0 < γ < ||Ψl||2 needs to be fixed [13]: we
found that if this parameter is too small, the method hardly manages
to converge and remains close to the least square solution, and that a
suitable value for this parameter is γ = ||Ψl||2

1.2
, which is consistent

with the conjecture outlined in the technical implementation part of
reference [14]. For this algorithm, we use T = 10000 iterations with
a “stepsize” parameter in the proximal operator set to ρ = ||Ψl||2

0.9
,

close to its lower theoretical bound, see [14] for details. Finally,
multiple values of the cardinality K are tested. Note that with these
choices, no further hyperparameter tuning is needed for the quadratic
envelope, in contrast to LASSO. A more precise description of the
algorithm based on the quadratic envelope for the ISRF estimation
is made in Algorithm 1 for each λl.

Algorithm 1 Quadratic envelope algorithm for estimating ISRFs.
Input: Measured spectrum sl, Dictionary Ψl, Desired cardinality K,
Regularization parameters γ and ρ, Number of iterations T

Output: ISRF estimation Î
(T )
l

1: Initialize Î
(0)
l ;

2: Î
(1)
l,resp = 0;

3: for 1 ≤ t ≤ T : do
▷ Use of FISTA acceleration process:

4: Ĩ
(t)
l = Î

(t−1)
l + t−1

t+2

(
Î
(t−1)
l − Î

(1)
l,resp

)
;

5: Î
(t)
l,resp = Î

(t−1)
l ;

▷ Compute proximal operator:
6: Î

(t)
l = ProxQgammaiota

(
Ĩ
(t)
l − 1

ρ
ΨT

l (ΨlĨ
(t)
l − sl),K, γ, ρ

)
;

7: end for

IV. NUMERICAL EXPERIMENTS

A. Datasets and simulation

Data. The data used in this paper results from simulations carried
out by the CNES for the MicroCarb mission. The main objective
of this mission is to monitor carbon dioxide fluxes at the Earth’s
surface and determine as accurately as possible the concentration
of carbon dioxide in the atmosphere. The MicroCarb instrument
is a spectrometer with high spectral resolution acquiring data in
two infrared absorption bands (B2: 1.596 − 1.618µm and B3:
2.023 − 2.051µm) to recover CO2 absorption lines, and in two
near-infrared bands (B1:0.758−0.769µm and B4: 1.264−1.282µm)
to measure oxygen concentration. We present here results from the
first band (B1). Similar results have been obtained for the other
bands and are not reported here for space reasons. The theoretical
spectrum used in the experiments was obtained using a radiative
transfer software named 4A/OP [23]. The ISRFs and measured
spectra were then obtained using a simulator of the MicroCarb
instrument developed by CNES.

Dictionary, sparse representation and experimental setup. The
dictionary Φ is built using the Ndict singular vectors associated with
the largest singular values from a singular value decomposition (SVD)
of examples of ISRFs, simulated for the chosen band. The size of
the dictionary is Ndict= 50, and the values of K are chosen in the set
{2, ..., 5}. The size of the observation window is L= 40. The noise
is zero mean Gaussian and the signal to noise ratio (SNR) is set to
55dB. The performance is evaluated in terms of residual error for
the measured spectrum s and normalized absolute error for the ISRF
approximation (at a given wavelength), i.e.,

El =

N+1∑
n=1

|Il[n]− Îl[n]| /
N+1∑
n=1

Il[n]. (7)

LASSO and OMP Algorithms. The LASSO algorithm was
implemented using the MATLAB LASSO function that uses a penalty
with parameter µ > 0 leading to a shrinking bias [24]. Thus we
re-estimate the value of the non-zero coefficients by using least
squares after convergence. In order to set the parameter µ, the LASSO
MATLAB function was run over a range of different values and the
value of µ yielding the desired cardinality K was selected.

B. Results

Comparison for fixed cardinality. Figure 2 displays the results
obtained with K = 3 atoms in terms of spectrum reconstruction
(top), residual error (center) and ISRF approximation error (bottom)
for all 1024 wavelengths in the first band B1. These results lead to
the following observations. First, the LASSO estimator consistently
behaves poorly compared to the other methods, both in terms of
residual error (and thus in capacity to find a sparse coefficient vector
that leads to high fidelity with the measurements), and in terms of
approximation quality for the ISRF. Note that the LASSO solution
does not satisfy the constraint of having relative errors less than
1% demanded for the MicroCarb mission. Second, OMP leads to
overall better results, in particular in terms of ISRF approximation
error, with relative errors less than 1%. Third, and most importantly,
the quadratic envelope approach succeeds in many cases to find a
significantly better solution to the sparse representation problem and
also leads to significantly better results for ISRF approximation.
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Fig. 2. Reconstructions, residual errors and ISRF approximation errors of the
measured spectra using sparse representations via quadratic envelope, OMP
or LASSO (K = 3).
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Fig. 3. Examples of ISRF approximations using a sparse representation via
quadratic envelope, OMP or LASSO (K chosen for each method as the value
that provide the most accurate approximation of the ISRF).

Examples of estimated ISRFs. Figure 3 shows the results of the
approximation problem for one arbitrarily chosen ISRF using for
each method the value of K yielding the best solution. Clearly, the
quadratic envelope approach (QEnv) best fits the shape of the ISRF,
further corroborating the conclusions from the previous paragraph.

Choice of cardinality. Table I reports residual errors and
approximation errors for several values for K. We observe that
increasing K systematically leads to a decrease in residual error,
which is expected since the extra flexibility of using more atoms
should allow the algorithms to improve the fit to the measurements.
However, this does not necessarily lead to improved approximations
for the ISRF. Indeed, the best ISRF average approximation results

TABLE I
MEAN RESIDUAL AND APPROXIMATION ERRORS FOR DIFFERENT SNRS

AND DIFFERENT METHODS (QENV, OMP AND LASSO).

×10−3 residual error ISRF approximation error
SNR K = 3 K = 4 K = 5 K = 3 K = 4 K = 5

QEnv 573.1 550.1 532.2 4.3 8.4 12.4
40 dB OMP 580.1 538.5 510.1 7.3 9.6 13.9

LASSO 588.2 554.5 528.0 24.6 35.6 49.0
QEnv 27.4 25.8 23.1 1.9 2.9 3.5

55 dB OMP 49.6 26.6 21.2 5.5 3.3 3.1
LASSO 60.6 43.2 33.2 11.9 14.6 18.6
QEnv 9.5 8.7 6.7 1.7 2.3 2.3

80 dB OMP 33.6 9.2 4.6 5.4 2.6 1.9
LASSO 48.6 30.9 19.6 10.9 13.0 15.9

TABLE II
MEAN COMPUTATION TIME FOR ESTIMATING ONE ISRF USING THE

DIFFERENT METHODS (QENV, OMP AND LASSO).

×10−2 QEnv OMP LASSO
Computation time (s) 24.07 0.325 3.73

are obtained for K = 3 for the quadratic envelope but for K = 5
for OMP. Interestingly, the results obtained with quadratic envelopes
are consistently and significantly better that those obtained with
OMP. This indicates that the former approach is effective in finding
a good solution (even with a smaller number of atoms) and that
adding further atoms fits the noise in the data.

Robustness to noise. Table I provides results obtained for different
noise levels, including the SNR value of 55dB expected for the
MicroCarb mission. Both the residual error and the approximation
error are smaller for larger values of SNR, as expected. Note that the
reduction in residual error is significantly larger than the reduction
of approximation error when the SNR is increased: this indicates
that the sparse approach is effective in finding a good approximation
for the ISRF, which is little affected by the noise, and that the
spectral residual is essentially given by the noise.

To conclude, these results suggest that the proposed sparse repre-
sentation is an interesting strategy for the estimation of ISRFs from
spectral measurements, also in the presence of noise. Moreover, the
use of quadratic envelopes leads to a very promising performance,
at the price of an increased computation time (see Table II) when
compared to the greedy OMP approach.

V. CONCLUSION

This paper proposed a new method to solve the Instrument Spectral
Response Function (ISRF) estimation problem from spectral measure-
ments. This method relies on a regularization of a sparse problem
using a quadratic envelope. Simulation results showed that for some
configuration, this approach manages to find better ISRF estimates
when compared to LASSO or OMP algorithms, at the price of an
increased computation cost. Future work will take into account some
physical effects such as stray light, as they can degrade the estimation
of ISRFs for specific wavelengths. Using dictionary learning methods,
such as those based on the K-SVD algorithm, can also be considered
to analyze the importance of the dictionary selection.
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