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ABSTRACT

Time-delay and Doppler estimation is an operation performed in a
plethora of engineering applications. A common hypothesis under-
lying most of the existing works is that the noise of the true and as-
sumed signal model follows a centered complex normal distribution.
However, everyday practice shows that the true signal model may
differ from the nominal case and should be modeled by a non Gaus-
sian distribution. In this paper, we analyse the asymptotic perfor-
mance of the time-delay and Doppler estimation for the non-nominal
scenario where the true noise model follows a centered complex
elliptically symmetric (CES) distribution and the receiver assumed
that the noise model follows a centered complex normal distribution.
It turns out that performance bound under the misspecified model is
equal to the one obtained for the well specified Gaussian scenario. In
order to validate the theoretical outcomes, Monte Carlo simulations
have been carried out.

Index Terms— Complex elliptically symetric distribution, Mis-
specified Cramér-Rao bound, time-delay and Doppler estimation,
band-limited signals.

1. INTRODUCTION

Time-delay and Doppler estimation is a central procedure in
many engineering fields such as communications, radar or naviga-
tion [1–10], since it represents the first task of the receiver [5, 8, 9].
Due to its importance, it is of great practical interest to determine
the ultimate achievable estimation performance in the mean squared
error (MSE) sense. This information can be provided by the Cramér-
Rao bound (CRB) [11,12], which is known to provide an accurate es-
timation of the MSE of the maximum likelihood estimator (MLE), in
the asymptotic regime [13]. So, it is not surprising that several CRB
expressions for the time-delay and Doppler estimation problem have
been derived for the past decades, for finite narrow-band and wide-
band signals [2,14–23]. In addition, several scenarios where the true
and the assumed signal model at the receiver differ, have also been
studied recently [24–27]. In those studies, expressions of the esti-
mation limits provided by the Misspecified CRB (MCRB) [28, 29]
have been derived. Note that the MCRB provide us with the error
covariance matrix of the MLE under model misspecfication, i.e. the
Misspecified MLE (MMLE) [28, Theo. 2], [29, Sec. 4.4.3]. How-
ever, in all these previous works, a common hypothesis is that both
the noise in the true signal model and the noise in the signal model
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assumed by the receiver follows a centered complex normal distribu-
tion. Nevertheless, to the best of the authors’ knowledge, there is no
reference in the state of the art which derives the ultimate achievable
estimation performance of the time-delay and Doppler (in the MSE
sense) for the case where the the true signal model is characterized
by a non-Gaussian, complex elliptically symetric (CES)-distributed
noise. The identification of these types of scenarios is of vital impor-
tance to characterized the loss of estimation performance of the time-
delay and Doppler in case of non-nominal scenarios where unknown
phenomena such as interference, multipath or cluttering could dis-
rupt the reception of the emitted signal.

The contents of the study have been structured in five sections.
Section 2 presents the true and the assumed signal models. Section
3 shows that the MMLE is an unbiased estimator by minimizing the
Kullback-Leiber divergence between the true and assumed models.
Section 4 derives the MCRB expressions and provides a closed-form
MCRB expression of the parameters of interest considering a band-
limited signal. The MCRB expresions are validated in Section 5
via Monte Carlo simulations for two representative CES distribution
families. Finally, the key observations and contributions of the paper
are collected in Section 6.

2. TRUE AND MISSPECIFIED SIGNAL MODELS

2.1. True Signal Model

Let us consider that a band-limited signal a(t), with bandwidth
B, is transmitted over a carrier frequency fc (λc = c/fc, ωc =
2πfc) from a transmitter T at position P T (t) to a receiver R at
position PR(t). The distance travelled by the transmitted signal is
P TR = ∥P T (t − τ0(t)) − PR(t)∥≈ (P T − PR) + vt, that is,
a first order approximation where τ̄ = (PT−PR)

c
and b̄ = v

c
with

v the relative velocity between the transmitter and the receiver. The
received signal at the output of the Hilbert filter can be expressed
as [14, 20, 30]

x (t; η̄) = ᾱa (t− τ̄) e−j2πfc(b̄(t−τ̄)) + n (t) , (1)

where the narrowband assumption, i.e. the influence of the Doppler
parameter on the baseband signal samples, is considered. Moreover,
n(t) is defined as a centered CES noise and ᾱ = ρ̄ejΦ̄ a complex
gain. The discrete vector signal model is built from N = N1−N2+
1 samples at Ts = 1/Fs = 1/B,

x = ᾱµ(η̄) + n = ρ̄ejΦ̄µ(η̄) + n, (2)

with x = (. . . , x (kTs) , . . .)
⊤, N1 ≤ k ≤ N2 signal samples,

n = (. . . , n (kTs), . . .)
⊤ , (3)



with n(kTs) ∼ CES(0, σ̄2
n, g), σ̄2

n the variance of the noise, g the
density generator [31]. We assume that the noise samples are i.i.d.
Moreover, by posing η̄ = [τ̄ , b̄]⊤, we have:

µ(η̄) = (. . . , a(kTs − τ̄)e−j2πfc(b̄(kTs−τ̄), . . .)⊤. (4)

The true deterministic parameters can be gathered in vector ϵ̄⊤ =

(σ̄2
n, ρ̄, Φ̄, η̄

⊤) = (σ̄2
n, θ̄

⊤
), with ρ̄ ∈ R+, 0 ≤ Φ̄ ≤ 2π. The true

and correctly specified signal model is represented by a probabil-
ity densitiy function (pdf) denoted as pϵ̄(x; ϵ̄) = ΠN2

k=N1
pϵ̄(xk, ϵ̄),

with pϵ̄(xk, ϵ̄) = CES(ᾱµk(η̄), σ̄
2
n, g).

2.2. Misspecified Signal Model

In standard receivers, the noise is usually considered to be cen-
tered complex normal and the MLE associated with this signal model
is usually implemented. This nominal case leads to the definition of
the misspecified parameter vector η = [τ, b]⊤, and the complete
set of unknown misspecifed parameters ϵ⊤ = [σ2

n, ρ,Φ,η
⊤] =

[σ2
n,θ

⊤], yielding the following misspecified signal model at the
output of the Hilbert filter,

x(t;η) = αa(t− τ)e−j2πfcb(t−τ) + n(t), (5)

with n(t) is assumed to be a complex white Gaussian noise with un-
known variance σ2

n and α = ρejΦ. Again, we can build the discrete
vector signal model from N i.i.d. samples at Ts as:

x = αµ(η) + n, (6)

µ(η) = (. . . , a(kTs − τ)e−j2πfcb(kTs−τ), . . .)⊤. (7)

The misspecified signal model is represented by a pdf denoted as
fϵ(x; ϵ) which follows a complex circular Gaussian distribution
x ∼ CN (αµ(η), σ2

nIN ). From now on, we denote the MLE of
an estimator under a misspecified signal model as MMLE. This
mismatched estimator is generally biased as it has been verified
under certain conditions. Please refers to [24–26]. Moreover, these
biased estimated parameters are commonly referred to as pseudotrue
parameters, ϵ⊤pt =

[
σ2
pt, ρpt,Φpt, τpt, bpt

]
.

3. PSEUDOTRUE PARAMETERS COMPUTATION VIA
KULLBACK-LEIBLER DIVERGENCE

The pseudotrue parameters are simply those that give the min-
imum Kullback-Leibler Divergence (KLD) [28, 29] D(pϵ̄||fϵ) =
Epϵ̄

[
ln pϵ̄(x; ϵ̄)− ln fϵ(x; ϵ)

]
, between the true and assumed

models, where Epϵ̄ [·] is the expectation with respect to (w.r.t.) the
true model’s pdf,

ϵ0 = argmin
ϵ

{D(pϵ̄||fϵ)} = argmin
ϵ

{
Epϵ̄

[
− ln fϵ(x; ϵ)

]}
,

(8)

Epϵ̄

[
− ln fϵ

]
= −N ln(π)− Epϵ̄

[
N ln(σ2

n)
]

+ Epϵ̄

[
(x−αµ(η))H (x−αµ(η))

σ2
n

]
. (9)

To compute ϵ⊤0 =
[
σ2
0 , ρ0,Φ0, τ0, b0

]
, we have to minimize (8)

w.r.t. the argument ϵ:

argmin
ϵ

{
Epϵ̄

[
− ln fϵ(x; ϵ)

]}
(10)

= argmin
ϵ

{
Epϵ̄

[
1
σ2
n

[
∥x− αµ(η)∥2

]]
− Epϵ̄

[
N ln(σ2

n)
]}

Let us start by minimizing w.r.t. to the variance σ2
n:

Epϵ̄

[
∂

∂σ2
n
ln fϵ(x; ϵ)

]
= Epϵ̄

[
N
σ2
n
− 1

σ4
n
∥x− αµ(η)∥2

]
=

N

σ2
n

− N

σ4
n

σ̄2
n (11)

and σ2
0 = σ̄2

n. On the other hand, the minimization with respect to
the parameters is simplified to

argmin
θ

{
Epϵ̄

[
− ln fϵ(x; ϵ)

]}
(12)

= argmin
θ

{
Epϵ̄

[
∥x− αµ(η)∥2

]}
= argmin

θ

{[
∥ᾱµ(η̄)− αµ(η)∥2

]}
and θ⊤

0 = [ρ0,Φ0, τ0, b0] = θ̄
⊤

=
[
ρ̄, Φ̄, τ̄ , b̄

]
. Remarkably,

this shows that the pseudo-true parameter is equal to the true one
and consequently, according to [28, Theo. 2], [29, Sec. 4.4.3], the
MMLE result to be consistent and asymptotically unbiased.

4. CLOSED FORM EXPRESSION FOR THE MCRB

In this section, we derive the MCRB from the parameters of in-
terest ϵ⊤0 = ϵ̄⊤. This result can be derived from the general formula
introduced in [32], where it is shown that the MCRB can be calcu-
lated from the product of two matrices A and B as follows:

MCRB(ϵ0) = MCRB(ϵ̄) = A(ϵ̄)−1B(ϵ̄)A(ϵ̄)−1, (13)

Proof : Since, as shoved in Sec. 3, the pseudo-true parameter vector
is equal to the true parameter vector, i.e. ϵ0 = ϵ̄, in the following
derivation we will only use the true parameter vector ϵ. The proof of
(13) can be obtained by specializing the results presented in [32, Sec.
3.2]. Specifically, we have a set of N uni-variate i.i.d observations
{xk}N2

k=N1
, such that xk ∼ pϵ̄(xk, ϵ̄) = CES(ᾱµk(η̄), σ̄

2
n, g).

Consequently, from the Stochastic Representation Theorem [31,
Theo. 3]:

xk =d ᾱµk(η̄) +
√
Qσ̄nuk, (14)

where uk is a complex uni-variate random variable uniformly dis-
tributed on CS ≜ {u ∈ C||u| = 1}, i.e. uk ∼ U(CS). The second
order modular variate Q is a positive random variable, independent
from uk with pdf pQ(q) = δ−1

g g(q), where δg ≜
∫∞
0

g(q)dq is a
normalizing constant (see [31, Eq. (19)]). To avoid the well-known
scale ambiguity between σ̄n and g, we impose that E{Q} = 1. Note
that, this constraint allows us to consider σ̄n as the statistical power
P of the data xk, (see the discussion in [31, Sec. III.C]), since from
(14), we have that:

P ≜ E{|xk − ᾱµk(η̄)|
2} = E{Q}E{|uk|2}σ̄2

n = σ̄2
n, (15)

since E{|uk|2} = 1 [31, Lemma 1].
According to the misspecified signal model introduced in Sec.

2.2, the assumed pdf is given by fϵ(x; ϵ) = CN (αµ(η), σ2
nIN ).

This is a particular case of the Scenario 1 in [32, Sec. 3.2] and con-
sequently the matrices A and B, needed to evaluate the MCRB, can
be obtained from eq. [32, Eq. (34)] and [32, Eq. (30)], respectively.
To this end, we have the following simplifications:

S1 The bias vector r0k in [32, Eq. (32)] is nil, since ϵ0 = ϵ̄.

S2 The matrix P0
i in [32, Eq. (19)] is nil for i ∈ {2, 3, 4, 5}

while P0
1 ≡ P 0

1 = σ−2
n .

S3 The matrix P0
ij in [32, Eq. (25)] is nil ∀i, j ∈ {1, 2, 3, 4, 5}.



S4 The matrix S0
i in [32, Eq. (23)] is nil for i ∈ {2, 3, 4, 5}

while S0
1 ≡ S0

1 = σ̄−4
n .

S5 The term tr(S0
iΣ) is nil for i ∈ {2, 3, 4, 5} while tr(S0

1Σ) =
tr(S0

1σ
2
n) = σ̄−2

n .
S6 By indicating as δ(·) the Kronecker delta function, we

have that tr(S0
iΣS0

jΣ) = σ̄−4
n δ(i − 1)δ(j − 1), ∀i, j ∈

{1, 2, 3, 4, 5}.

By exploiting S1 - S6, it is immediate to verify that the term αij
k (ϵ̄)

in [32, Eq. (33)] is given by:

αij
k (ϵ̄) =

2

σ̄2
n

ℜ

{[
∂(ᾱµk(η̄))

∂ϵi

]H
∂(ᾱµk(η̄))

∂ϵj

}
+

+ 2σ̄−4
n δ(i− 1)δ(j − 1),

(16)

By substituting αij
k (ϵ̄) in the general expression of the matrix A(ϵ̄)

given in [32, Eq. (34)], we get:

[A(ϵ̄)]i,j = − 2

σ̄2
n

N2∑
k=N1

ℜ

{[
∂(ᾱµk(η̄))

∂ϵi

]H
∂(ᾱµk(η̄))

∂ϵj

}
+

−Nσ̄−4
n δ(i− 1)δ(j − 1),

(17)

or, in matrix form:

A(ϵ̄) =

(
−Nσ̄−4

n 01×4

04×1 −C(θ̄)

)
(18)

where the matrix C(θ̄) is given by:

C(θ̄) =
2

σ̄2
n

N2∑
k=N1

ℜ

{[
∂(ᾱµk(η̄))

∂θ

]H
∂(ᾱµk(η̄))

∂θ

}
(19)

By making use of S1 - S6, the general expression of the matrix B(ϵ̄)
given in [32, Eq. (31)] can be simplified as:

[B(ϵ̄)]i,j =
2

σ̄2
n

ℜ

{[
∂(ᾱµk(η̄))

∂ϵi

]H
∂(ᾱµk(η̄))

∂ϵj

}
+

+Nσ̄−4
n (E{Q2} − 1)δ(i− 1)δ(j − 1).

(20)

or, in matrix form:

B(ϵ̄) =

(
Nσ̄−4

n (E{Q2} − 1) 01×4

04×1 C(θ̄)

)
. (21)

Finally, the MCRB can be expressed as:

MCRB(ϵ̄) = A(ϵ̄)−1B(ϵ̄)A(ϵ̄)−1

=

(
σ̄4
n
N

(E{Q2} − 1) 01×4

04×1

[
C(θ̄)

]−1

)
.

(22)

We note, in passing that if the true distribution is a Gaussian one, i.e.
xk ∼ pϵ̄(xk, ϵ̄) = CN (ᾱµk(η̄), σ̄

2
n), the term E{Q2} is equal to

2 as proved in [32, Eq. (41)] and this lead us to the classical result
about the CRB on the estimation of the variance in complex Gaus-
sian data. In any of the cases, the matrix linked to the parameters
of interest θ yields to the classical Fisher Information Matrix (FIM)
of the Gaussian scenario, proving that asymptotic estimation perfor-
mance of θ are similar to the well specified Gaussian model. This
surprinsing result can be explained using the semiparametric theory
(see [33, Sec. IV.B] and [34, Sec. III.B]). Due to the space limita-
tion, in deep discussons on this point are left to future works.

4.1. Closed-Form MCRB Expression for a Band-Limited Signal

It is interesting to note that the matrix C(θ̄) in (19) represents
the FIM of a single source conditional signal model (CSM) [13]. A
compact expression of this FIM, that depends only on the baseband
signal samples, was recently derived in [20] as:

C(θ̄) =
2Fs

σ2
n

ℜ
{
QWQH

}
= MCRB−1(θ0) (23)

with

W =

w1 w∗
2 w∗

3

w2 W2,2 w∗
4

w3 w4 W3,3

 , (24a)

Q =


ejΦ̄ 0 0
jᾱ 0 0

jᾱωcb̄ 0 −ᾱ
0 −jᾱωc 0

 , (24b)

where the elements of W can be expressed w.r.t. the baseband signal
samples as,

w1 =
1

Fs
aHa, w2 =

1

F 2
s

aHDa, w3 = aHΛa, (25)

w4 =
1

Fs
aHDΛa, W2,2 =

1

F 3
s

aHD2a, W3,3 = Fsa
HVa.

with a, the baseband samples vector, D, Λ and V defined as,

a = (. . . , a(nTs), . . .)
⊤
N1≤n≤N2

, (26a)

D = diag (. . . , n, . . .)N1≤n≤N2
, (26b)

(Λ)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′|
n−n′

n′ = n : 0
(26c)

(V)n,n′ =

∣∣∣∣∣ n′ ̸= n : (−1)|n−n′| 2
(n−n′)2

n′ = n : π2

3

(26d)

5. SIMULATIONS

We consider two possible scenarios where a GPS L1 C/A sig-
nal [10] is received by a GNSS receiver which assumes that the
noise follows a standard centered normal distribution. Scenario 1
In the first scenario, we set a true signal model where the noise is
distributed according to a complex centered Generalized Gaussian
(GG) distribution , [29, Sec. 4.6.1.2] with exponent s > 0 and
scale b > 0, where s is a parameter controlling the level of non-
Gaussianity. The second-order modular variate Q of a GG distribu-
tion is given by Q =d G1/s where G is a Gamma distributed random
variable with parameter 1/s and b, i.e. G ∼ Gam(1/s, b) [31, Sec.
IV.B]. In order to satisfy the constraint E{Q} = 1 (see section 4),

we set b =
(

σ̄2
nΓ(1/s)

Γ(2/s)

)s
where σ̄2

n depends on the signal to noise
ratio at the output of the match filter SNRout. The SNRout is de-
fined as:

SNRout =
|ᾱ|2aHa

σ̄2
n

. (27)

Scenario 2 In a second scenario, we set a true signal model where
the noise is sampled from a complex centered t-distribution [29,
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Fig. 1: RMSE of the MMLE of the time-delay considering complex
centered GG dist. with s = {0.2, 1, 2} and complex centered t-dist.
with υ = {1.5, 2.5, 3.5}. The sampling frequency is set to Fs = 4
MHz and the integration time is set to T = 1ms.

Sec. 4.6.1.1] with υ > 1 degrees of freedom (or shape parame-
ter) that control the level of non-Gaussianity and a scale parame-
ter µ. The second-order modular variate Q of a t-distribution is an
F -distributed random variable with parameter 2 and υ i.e. Q ∼
F (2, υ) [31, Sec. IV.A]. Then, in order to meet the constraint
E{Q} = 1, the scale as to be set as µ = υ

σ̄2
n(υ−1)

. Again, σ̄2
n set the

SNRout. As discussed in [27], the MMLE for the joint estimation
of the time-delay and Doppler can be expressed as: 1

η̂ = argmax
η

∥∥Πµ(η)x
∥∥2 (28)

The root mean square error (RMSE) results of the MMLE for the
parameters of interest ηT = [τ, b] are shown in Figs. 1 and 2
w.r.t. the SNRout and considering the following setup: a GNSS
receiver with sampling frequency Fs = 4 MHz and an integration
time of 1 ms. The number of Monte Carlo is set to 1000 iterations.
In the simulation, complex centered Generalized Gaussian distribu-
tions with s = {0.2, 1, 2} and complex centered t-distributions with
υ = {1.5, 2.5, 3.5} have been used as a true model. In the re-
sults one can observe that the RMSE (

√
MSE) of the pseudotrue

parameter converges to the asymptotic estimation performance de-
rived in Section 4. These results confirm the theoretical derivation.
Note also that the

√
MCRB is equal to the

√
CRB. It is worth

to underline that the previous theoretical results are valid for all the
CES-distributed true noise model and not only of the GG and the
t-distribution. As said before, a formal explanation of this fact re-
lies on the semiparametric theory (see [33, Sec. IV;B] and [34, Sec.
III.B]) and an comprehensive explanation will be provided in future
works. Here, due to the space limitation, we limit ourselves to this
observation: the equality between the MCRB and the CRB is verified
only when the parameters of interest parameterize the mean of the
observation vectors. On the other hand, if the parameters of interest
parameterise the covariance matrix of the observations, the equality
may be no longer valid and the MMLE may fail to be a consistent
estimator of the true parameters.

1Let S = span (A), with A a matrix, be the linear span of the set of its
column vectors. The orthogonal projector over S is ΠA = A

(
AHA

)
AH .
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Fig. 2: RMSE of the MMLE of the Doppler considering complex
centered GG dist. with s = {0.2, 1, 2} and complex centered t-dist.
with υ = {1.5, 2.5, 3.5}. The sampling frequency is set to Fs = 4
MHz and the integration time is set to T = 1ms.

6. CONCLUSION

The purpose of this paper was to introduce new inputs on the
time-delay and Doppler estimation theory. In particular, we have de-
rived the asymptotic performance expressions (MCRB) for the non-
nominal scenario where the true noise model follows a centered CES
distribution and the receiver assumed that the noise model follows a
centered complex normal distribution. The theoretical results have
been validated by means of Monte Carlo simulations. Remarkably,
two counter intuitive results have been proved: i) the MMLE for the
estimation of time-delay and Doppler is consistent w.r.t. the true pa-
rameters even in the presence of a wrong Gaussian assumption and
ii) the MCRB is equal to the CRB derived under a nominal Gaus-
sian scenario. This is a fundamental result since it tells us that we
can continue to use the MLE in (28), derived under a Gaussian data
assumption, even in the presence of a non-Gaussian, CES-distributed
noise without any loss in the MSE sense. The foundation of this im-
portant result is to be sought in semiparametric theory and will be
the subject of future work.
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