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ABSTRACT

Understanding greenhouse gas fluxes at the Earth’s surface is be-
coming crucial in the context of climate change. The aim of the
CNES/UKSA MicroCarb mission is therefore to map, on a plane-
tary scale, the sources and sinks of carbon, the main greenhouse gas
in the atmosphere. To do this, a spectrometer will be sent in space
to acquire spectra in 4 narrow bands around wavelengths associated
with O2 and CO2. However, measurement errors can occur due to
the instrument used, and induce errors in the resulting trace gas con-
centrations. It is therefore crucial to estimate the spectral response
of the instrument as accurately as possible. This paper investigates a
new estimation method for this spectral response that uses a sparse
representation in a dictionary of appropriate basis functions. This
sparse representation is performed using the LASSO and Orthogo-
nal Matching Pursuit (OMP) algorithms. Simulations conducted on
data mimicking observations resulting from the MicroCarb instru-
ment allow the performance of this method to be appreciated.

Index Terms— MicroCarb Mission, Instrument Spectral Re-
sponses, Sparse Representations.

1. INTRODUCTION

Spectrometers are widely used in remote sensing missions to deter-
mine trace gas concentrations. However, the optical elements within
these instruments can introduce spectral distortions leading to er-
rors in the measurements. It is crucial to characterize the instrument
model and thus the associated Instrument Spectral Response Func-
tions (ISRFs) to obtain accurate gas concentrations. These ISRFs are
wavelength dependent and may change in flight due to several rea-
sons (mechanical movements during launch, orbit changes ...). The
MicroCarb instrument is a high-resolution spectrometer developed
by the French Space Agency (CNES) in collaboration with UKSA
(United Kindom Space Agency) to be launched around 2025 to mea-
sure and monitor carbon dioxide (CO2) at the Earth’s surface. It
aims to ensure the continuity of carbon measurement missions such
as OCO-2 and GoSAT [1, 2], helping our understanding of global
carbon dynamics and different sources and sinks of carbon [3]. The
concentrations of O2 and CO2 are calculated from spectra captured
in four spectral bands. The fourth band is also used to improve and
validate space-based measurements of greenhouse gases [4].
The estimation of the ISRFs consists in using a measurement of a
spectrally known scene and comparing it with a spectral model of
the scene convolved with the ISRFs [5, 6]. Each measurement sl
at the wavelength λl can be written as a convolution between the

spectrum sth and the ISRF Il centered at λl:

s(λl) = (sth ∗ Il)(λl) =

∫ λmax

λmin

sth(λl − u)Il(u)du. (1)

When the theoretical spectrum sth is known, estimating the ISRFs Il
can be formulated as an inverse problem for each wavelength λl.

In the literature, parametric models for the ISRFs have been
widely used to solve this inverse problem [7]. However, these mod-
els cannot represent accurately the variety of all ISRF shapes en-
countered in practice. The main contribution of this work is to study
new ISRF estimation methods based on sparse representations of the
ISRFs in a dictionary of basis functions and to analyze their perfor-
mance with respect to the state-of-the-art. Note that to the best of
the author’s knowledge, sparse representations have never been con-
sidered for ISRF estimation. Our results indicate that the extra flexi-
bility of these representations over parametric models is particularly
beneficial in the context of ISRF estimation. The paper is organized
as follows. Section 2 formulates the ISRF estimation problem as
a set of inverse problems and recalls some parametric models used
for ISRF estimation. Section 3 introduces the new estimation model
based on sparse representations of the ISRFs. Section 4 provides ex-
tensive results and performance comparisons for multiple kinds of
ISRFs resulting from different scenes.

2. ISRF APPROXIMATION PROBLEM

2.1. Problem formulation

The ISRF of a spectrometer varies for each central wavelength λl.
For each of these wavelength λl, the spectrometer acquires one spec-
tral measurement denoted as sl ∈ R. Since there is only one mea-
surement per function Il, the ISRF estimation problem is not iden-
tifiable. In order to bypass this identifiability problem, we propose
to estimate each ISRF Il by using a collection of Nobs neighboring
spectral measurements, assuming that the ISRF does not vary signif-
icantly in a neighborhood of λl. After wavelength discretization, the
following observation model is obtained:

sl = Sth,lIl + ϵl, (2)

where sl =
[
s
(
λ
l−Nobs

2

)
, ..., s

(
λ
l+

Nobs
2

)]T
∈ RNobs+1 is

the measurement vector, Sth =
[
s

th,l−Nobs
2

, ..., s
th,l+

Nobs
2

]T
∈

R(Nobs+1)×(N+1) is a matrix containing the theoretical spectra inter-
polated at the window wavelengths, Il is the discretized ISRF for the



lth window defined as Il =
[
Il(−N

2
∆), ..., Il(

N
2
∆)
]T ∈ RN+1

where ∆ is the ISRF wavelength interval, and ϵl is the noise vector.

2.2. Parametric models

This section briefly recalls some of the most widely used models for
ISRF estimation. The Gaussian model [8] approximates the ISRF at
wavelenghth λl as

Il,βG = AG exp

[
− (λl −∆− µG).

2

2σ2

]
, (3)

where βG = [AG, µG, σ]
T is the unknown vector to estimate, ∆ =

[−N
2
∆, ..., N

2
∆]T ∈ RN+1 is a vector containing the wavelengths

of the grid and .p is the element-wise power operator of order p.
A generalized Gaussian model using a different power parameter k,
called “Super-Gauss”, was developed in [7] to estimate ISRFs:

Il,βSG = ASG exp

(
−
∣∣∣∣λl −∆− µSG

w

∣∣∣∣.k
)
, (4)

where βSG = [ASG, µSG, w, k]T is the unknown vector to estimate.
The inverse problems associated with these two models can be
solved using a nonlinear least squares method, which minimizes the
cost function Rl(β) = ||sl − Sth,lIl,β||22 with respect to the vector
β ∈ {βG,βSG}.
However, these two parametric models are not always flexible
enough to represent all the ISRF shapes accurately with a small
number of parameters. Therefore, we propose to study a new esti-
mation method based on a sparse representation of the ISRFs in a
dictionary of appropriate basis functions, which is presented in the
next section.

3. PROPOSED ISRF ESTIMATION METHOD

3.1. Sparse representation of ISRFs

Sparse representations consist in expressing the unknown quantity
of interest as a linear combination of a small number of atoms corre-
sponding to the columns of a matrix referred to as dictionary. In the
context of ISRF estimation, we propose to decompose each ISRF in
a dictionary Φ ∈ R(N+1)×ND as follows:

Il ≈ IK
l = Φα =

K∑
k=1

Φγkαk, (5)

where Φγk is the γkth selected atom, i.e., the kth column of the
dictionary Φ, and αk is a non zero entry from the sparse coefficient
vector α ∈ RND . The dictionary is built in order to provide an
efficient representation of the vectors Il [9]. In this paper, Φ is
constructed using the ND singular vectors associated with the largest
singular values of a matrix composed of examples of ISRFs.

3.2. Inverse problem

The measured spectrum sl can be rewritten using the ISRF decom-
position of Il as

sl ≈ Sth,lIl ≈ Sth,lΦα = Ψlα. (6)

Thus, sl can be expressed using the known modified dictionary Ψl.
Once the coefficient vector α has been estimated using the spectral
measurements and (6), it can be used to approximate the ISRF by

-0.06 -0.04 -0.02 0 0.02 0.04 0.06

 [nm]

0

0.01

0.02

0.03

0.04

0.05

0.06

IS
R

F

ISRF MicroCarb

Measured

Gauss

Super-Gauss

OMP

LASSO

-5 0 5

10-3

0.0316

0.0318

0.032

Approximation errors (%) :

Gauss
                 14.83

Super-Gauss
         1.56

OMP
                    0.11

LASSO
                 0.77

Fig. 1. Examples of ISRF estimates for one ISRF centered at around
1272.36 nm.

substituting it in (5). The estimation of α is referred to as sparse
coding and can be mathematically formulated in different ways
[10]. One possibility is to introduce a regularization based on the l0
pseudo-norm of α yielding the following problem:

argmin
α

L(α, µ) = argmin
α

||sl −Ψlα||22 + µ||α||0, (7)

where µ is an appropriate regularization parameter. The problem (7)
is non-convex and NP-hard. Many approximations and heuristics
have been proposed and studied to compute a suitable approximate
solution. A classical solution is to work with a convex relaxation of
the problem by replacing the pseudo-norm l0 by the norm l1, which
is known as the LASSO problem [11]. Another method determines
the solution using greedy algorithms such as the Orthogonal Match-
ing Pursuit (OMP) [12, 13]. The OMP algorithm is iterative and
determines at each step the atom of the dictionary that best approxi-
mates the remaining residual, i.e., the atom that minimizes the resid-
ual error between the spectral measurements and the sparse coding
representation obtained at the current step.

4. VALIDATION OF THE PROPOSED METHOD FOR THE
MICROCARB SPECTROMETER

4.1. Data description

In order to analyze the potential interest of using sparse representa-
tions of ISRFs, this section compares the performance of the differ-
ent methods (Gauss, Super-Gauss, OMP and LASSO) for ISRF esti-
mation. The data used in this study was simulated by the CNES for
the MicroCarb mission. For each band, the theoretical spectrum was
obtained using the 4A/OP software [14] for the MicroCarb bands,
and 1024 ISRFs and associated spectral measurements were gener-
ated. The parametric and sparse methods were applied to the B4
wavelength range (1264.8 − 1282.3 nm) corresponding to O2. For
all the results, the SNR level was set to 55 dB, which corresponds to
the SNR level that is expected for the MicroCarb mission.

4.2. Experimental setup

The accuracy of the estimation methods is quantified by means of
the reconstruction error for the measured spectra, and by the approx-
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Fig. 2. Spectrum reconstruction (a), residual (b), ISRF approxima-
tion errors for all wavelengths (c) and mean errors for different num-
bers of selected atoms (d).

imation error for the ISRFs, defined for each wavelength as

El =

N∑
n=1

|Il[n]− Îl[n]|/
N∑

n=1

Il[n].

In the MicroCarb mission, the ISRFs are considered to be well es-
timated when this error is below 1%. For the parametric models of
Section 2.2, the parameters can be estimated using a non-linear least
squares method, e.g., using the Nelder-Mead method [15] (MAT-
LAB function fminsearch). For the sparse representations, we use
our own implementation of the OMP algorithm and the MATLAB
implementation of LASSO [16]. For LASSO, we re-estimate the
value of the non-zero coefficients by using least squares in order to
account for shrinkage biases [17]. The value of the parameter µ was
set in order to reach the desired cardinality K. The size of the dic-
tionary and the number of measurements in each window were set to
ND = 25 and Nobs = 80, which was found to yield the best results.

4.3. Performance comparison for different wavelengths

The dictionary was created using a singular value decomposition
(SVD) of 103 out of 1024 examples of ISRFs in the B4 band. A
typical example of such an ISRF is displayed in Fig. 1, as well as
the corresponding approximation results obtained by the different

methods, suggesting that the sparse methods provide more accurate
results. The estimated ISRFs in the B4 band can be used in (2) to
reconstruct the corresponding measured spectra. The reconstructed
spectra and the residuals are shown in Fig. 2 for all methods (Gauss,
Super-Gauss, OMP and LASSO).This figure also shows the ISRF
approximation errors and the averaged ISRF reconstruction errors
for different numbers of atoms. The results lead to the following
conclusions:

First, the super-Gauss parameterization provides better ISRF ap-
proximations when compared to the Gaussian model, as claimed in
[7]. However, the sparse methods manage to obtain even smaller
errors and yield the expected precision less than 1%.

Second, the OMP algorithm yields better ISRF approximation
results than LASSO. Indeed, the OMP solution yields globally the
smallest spectral residuals, and in particular the smallest ISRF ap-
proximation errors, which are as small as 0.1% for certain wave-
lengths and 1 to 2 orders of magnitude smaller than those obtained
with the super-Gaussian and Gaussian models, respectively.

Third, the averaged errors displayed in Fig. 2 (d) suggest that
K ∈ {2, 3, 4} atoms should be preferred for ISRF estimation. We
recommend to use K = 4 atoms and the OMP algorithm for ISRF
estimation, which yields globally the best results. The resulting
ISRF estimation method is referred to as SPIRIT for “Sparse rep-
resentation of Instrument spectral Responses usIng a dicTionary”.

4.4. Performance comparison for different scenes

Fig. 3. Eight types of scenes associated with MicroCarb.

Fig. 4. ISRFs for a uniform scene with different central wavelengths
(left) and different scenes for the same central wavelength (right).
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Fig. 5. Results obtained using OMP with uniform or mixed dictionary for different kind of ISRFs associated with different scenes and FOV.

In the MicroCarb mission, the shapes of the ISRFs are strongly de-
pendent on the scene observed by the instrument and induce more
variations than those observed for different consecutive wavelengths.
Indeed, the MicroCarb instrument design makes the ISRF sensitive
to the slit illumination during the integration time. Fig. 3 shows eight
different scenes considered in this work with examples of ISRFs dis-
played in Fig. 4. Clearly, if the slit is not uniformly illuminated, the
ISRF shape changes and can become asymmetric (e.g., for the hori-
zontal coast profile, where the slit is blinded during one third of the
integration time). This situation is more difficult to model than the
case of ISRFs for a uniform scene studied in the previous section.
This section evaluates the performance of SPIRIT to estimate a col-
lection of ISRFs for different scenes and Fields Of View (FOV). Note
that spectral measurements were simulated for a known theoretical
spectrum as previously, here assuming that the ISRF for each scene
and FOV has the same shape for all wavelengths, and the estimation
error was estimated over wavelengths.

We first use the dictionary constructed from examples of ISRFs for
uniform scenes. The results shown in Fig. 5 (left column) suggest
that it can be difficult to estimate with high accuracy all the ISRFs
for different scenes and FOV. This observation is illustrated in Fig. 6
for the estimation of the ISRF for the horizontal coast scene (a worst-
case profile) using K = 5 atoms, calling for the use of a more di-
verse dictionary. To that end, we have built a new dictionary from
a new matrix of ISRFs, comprising the previous 103 examples of
ISRFs IN and in addition 3 ISRFs for non-uniform scenes (out of
24). The size of the dictionary remains fixed at ND = 25. The re-
sults are shown in Fig. 5 (right column) and indicate that with this
slight modification, the use of this new and more diverse dictionary
is effective: The SPIRIT method again achieves errors below the 1%
criterion, sometimes approaching 0.1%. The lowest approximation
errors are obtained depending on the scene with K ∈ {4, 5} atoms,
as in the previous experiment. Fig. 6 highlights the improvement
made in ISRF estimation using a diversified dictionary, for an ISRF
that was not included in its construction. Overall, these results sug-
gests that SPIRIT is effective for the estimation of ISRFs of compli-
cated shapes from a limited amount of spectral measurements, and
provides very promising results with respect to the state-of-the-art.
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5. CONCLUSION

This paper proposes a new method for estimating the spectral re-
sponse functions of spectrometers based on sparse representations in
a dictionary of appropriate basis functions. The results obtained with
data generated in agreement with the MicroCarb instrument suggest
that the proposed method allows for a more flexible representation of
spectral response functions and yields significantly smaller approxi-
mation errors than the parametric models used in the literature. The
method seems to account for the variability of ISRF shapes and is
operational for application to real-world data.
Future work will be devoted to the performance evaluation of the
proposed method for estimating the spectral responses of other
spectrometers described in the literature (such as GOME-2, OMI or
OCO-2). In particular, it would be interesting to study the sensitivity
of the proposed method to the choice of the dictionary. A more theo-
retical prospect consists of taking into account other physical effects
that can modify the ISRF shapes. These effects such as scattered
or stray light can degrade the estimation of spectral responses at
some specific frequencies. Other spectrum errors due to radiometric
defects or spectral shifts will also be considered.
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