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ABSTRACT  

 

The several progress of the free-accessible global 

navigation satellites system (GNSS) is not without major 

hurdles and challenges in it course of application in urban 

setting. Several error sources in these environments such 

as multipath and non-line-of-sight (NLOS) reception, 

signal masking and poor constellation geometry hinder 

the required positioning accuracy by GNSS signals. 

Facing this pressing need for performance enhancement 

in NLOS conditions, a new trend of approaches seek a 

constructive use of these degraded signals by correcting 

ranging measurements, using a 3D GNSS simulator for 

instance. However, this approach may engender a great 

risk of deteriorating PR measurements instead of 

correcting them if the compensation term is not accurate 

enough. Therefore, we propose in this paper to address 

the influence of PR bias estimation on the performances 

of this positioning method based on the correction of PR 

measurement. This original study permits us defining the 

maximum level of inaccuracy on bias estimation that any 

3D GNSS simulator, or other tools, mustn’t exceed. A 

detailed study on this most acceptable level of inaccuracy 

on the PR bias estimation is performed using real GNSS 

data in Toulouse and encompass analysis by type of 

environment (Urban, Peri-urban and rural environments) 

and by type of GNSS signals.         

 

INTRODUCTION  

 

Motivated by the exponential increase of global 

navigation satellites system (GNSS) applications in urban 

environments, along with the availability of affordable 

receiver chipsets, satellite navigation and timing is 

considered as the preferred localization solution for a 

plethora of fields such as transportation and location-

based-service (LBS) [1]. In these conditions, performance 

reliability of GNSS is mandatory especially for 

applications having impacts on financial or safety-of-life 

aspects such as road user charging (RUC) [2]. 

Nevertheless, it is acknowledged that reliable GNSS 

positioning for land navigation is difficult to achieve in 

harsh setting such as urban environments or roads under 

heavy foliage canopy. In order to fill the gap between user 

requirements on one side and the existing technologies 

performances on the other side, recent attention tend to 

enhance positioning performances in terms of accuracy, 

robustness and integrity in urban settings. In fact, these 

local reception environment encompass many challenges 

leading to crucial effects on positioning performance, for 

instance signal blockage, multipath and non-line-of-sight 

(NLOS) receptions.  

The presence of line-of-sight (LOS) blockage deteriorates 

the positioning accuracy for three reasons. First, it 

engenders very challenging technical issues for acquiring 

and tracking highly attenuated GNSS signals received 

from reflected paths. Hence, the continuity of position 

estimation cannot be ensured in tunnels, close to tall 

buildings and foliage which disrupt the GNSS navigation 

completely. Second, the interaction of the eventual 



received signal with the environment usually results in the 

reception of multipath (MP) signals. Besides, if the line of 

sight is blocked and the satellite signal is eventually 

received through a reflected non-line-of-sight path, the 

related pseudo-range (PR) measurement will be affected 

by an additional, positive and potentially unbounded bias. 

These combined NLOS and MP biases degrade the 

position estimation and result in more than tens of meters 

of position errors in some situations [3]. Third, blocked 

satellite signals engender an unfavorable constellation 

geometry that appears as an increased dilution of 

precision (DOP) which reduce the positioning quality. As 

these issues hinder GNSS usage in urban environments, 

effective and timely solutions are very much sought after. 

 

GNSS BASED NAVIGATION IN URBAN 

ENVIRONMENT: STATE OF THE ART  

 

In order to further expedite the usage of GNSS for land 

navigation applications, researchers and industrial 

engineers have shown an increased interest in dealing 

with the problem of NLOS. Broadly speaking, recent 

published studies on this field fall under three headings: 

LOS/NLOS distinction, NLOS elimination and NLOS 

constructive use. The former deals with the problem of 

identifying deteriorated NLOS range information among 

“clean” LOS signals. The literature on this category has 

highlighted several distinction criteria including using 

additional hardware for NLOS-LOS distinction, for 

instance dual polarization antenna [4], a GNSS antenna 

array and a sky-pointing camera [5]. Without using 

additional hardware, [6] argues for others simple 

indicators of NLOS reception such as elevation angle 

selection, C/N0-based NLOS detection and inter-satellite 

consistency checking [7]. Assuming that NLOS and LOS 

range estimates are perfectly distinguished, “unhealthy” 

measurement may be either discarded [8], down-weighted 

[9] or used constructively to enhance positioning 

performances [10-13].  The second category tends to 

reduce the adverse effect of NLOS errors on location 

estimation. A considerable amount of literature has been 

published on Multipath mitigation at the receiver level. 

Most efficient technics represent standard features of 

professional grade GNSS receivers, in particularly those 

based on narrow and double-delta correlators [24]. Other 

in-receiver MP mitigation methods include strobe 

correlator [24], the Multipath Estimating Delay Lock 

Loop (MEDLL) and Fast Iterative Maximum-Likelihood 

Algorithm (FILMA) [14]. However, these in-receiver 

techniques are not efficient in case of NLOS reception 

due to the absence of direct signal. A number of other 

scientific studies carried out on NLOS elimination at the 

level of post-receiver, using either robust estimation [15, 

16], MP modeling or hybridizations. 

To deal with the lack of GNSS signals redundancy, a new 

trend of techniques attempt to detect these degraded 

measurements and to use them constructively to enhance 

positioning performances [10, 13, 17]. In fact, in deep 

urban canyons characterized by reduced satellite visibility 

we would like to use constructively these NLOS 

observables trying to improve the measurements model 

by correcting the PR measurement via aiding information 

from a 3D city model combined with a 3D GNSS 

simulator for example as in [11], [13]. The basis of these 

approaches is to make use of 3D city models to score an 

array of candidate positions by comparison between the 

received observations at the receiver and ones of the 

information provided by the 3D model such as the sky 

visibility [18], the NLOS signal delay [19] and the PR 

measurements [20, 21].  Assuming that building layout is 

symmetric, which is predominantly present in down-

towns of European cities, [22] combine a simplified 3D 

model of the environment, called urban trench, with a 

probabilistic method to enhance performances. In order to 

correct range measurements, we proposes in our approach 

[13] a range bias correction using bias bounds predicted 

from a 3D GNSS simulator SPRING [23]. This PR 

correction step is a sensitive task: poor PR biases 

prediction engenders an erroneous PR measurement 

correction and then may sensitively reduce the position 

estimation instead of enhancing it.  

To date, the problem of the influence of NLOS correction 

on positioning performance has received scant attention in 

the research literature. The purpose of this paper is to 

explore the relationship between bias estimation accuracy 

and the performance of GNSS positioning by range bias 

correction. In fact, performances of PR measurements-

based-correction method are strongly linked to the 

performances of PR bias estimation. One of the greatest 

challenges is that generally these biases are environment-

dependent and highly time-varying and hence very 

difficult to be estimated. In this study, we use the 3D 

GNSS Simulator SPRING [23] to estimate these ranging 

errors. We distinguish between two kinds of 3D models: 

ones providing pure geometrical information on the 

building and street sizes [18] and others combined with 

3D GNSS simulators and are more informative providing 

also simulated GNSS signals at any input position and 

time using Ray-Tracing techniques [23]. This second kind 

of cited 3D models are used jointly with a 3D GNSS 

simulator in order to characterize on-the-fly the 

measurements errors in urban environments. It is evident 

that the predicted bias and errors from the 3D propagation 

model cannot be instantaneous and certainly accurate. The 

quality and reliability of the PR bias estimation depend on 

how accurate is the signals propagation model, the 3D 

city modeling, receiver setting, etc... Therefore, we 

propose in this paper to address the influence of PR bias 

estimation on the performances of PR measurement-

based-correction method.  

In this paper, we seek to find conditions that must verify 

the PR bias estimation to lead to performances 

enhancement after range correction.  These conditions 

define the most acceptable/allowed level of inaccuracy on 

bias estimation that any 3D GNSS simulator must verify 



to allow performances improvement by PR measurements 

correction. First, we give the theoretical study and general 

formulas that should be verified by the PR bias 

estimation. Then, we test and confirm these conditions on 

real data collected in Toulouse (South-west of France) in 

a simplified case of one faulty ranging measurement. 

Also, a detailed study and analysis on the most acceptable 

level of inaccuracy on the PR bias estimation is 

performed by type of environment (Urban, Peri-urban and 

rural environments). An investigation on the level of the 

acceptable PR bias estimation error by satellite elevation 

and/or CN0 is also performed. The performances 

comparison to establish the acceptable inaccuracy 

conditions are defined via a comparison between the PR 

measurements-based-correction method and a 

conventional least-square solution. Although, others 

position estimators could be used. Finally, the 

performances of bias estimation by 3D simulation with 

SPRING will be evaluated compared to maximum 

allowed inaccuracy on bias estimation. 

This paper is divided into five main sections. The first one 

presents the problem of GNSS positioning in urban 

environments. In the second section, we propose a review 

of the state of the art on the MP/NLOS problem. In the 

third section, we establish theoretical conditions that must 

be verified by PR bias estimation to ensure performances 

enhancement by range bias correction. The fourth section 

outlines experimental results of these conditions in 

different environments and using different signals. 

Finally, some conclusions are summarized in section 5.      

 

THEORETICAL BIAS ESTIMATION BOUNDS 

FOR PR MEASUREMENT CORRECTION 

 

GNSS user segment consist of GNSS devices or receivers 

allowing any user over the globe to receive and process 

the satellite signals to locate upon a common referential. 

This dedicated GNSS device process and estimate the 

time of arrival of signals along a direct line-of-sight 

(LOS) from at least four satellites. However, more often 

than not, the propagated GNSS signal is contaminated by 

additional MP/NLOS path caused by the replicas of the 

reflected satellite signals from the surfaces surrounding 

the receiver. Then, the following linearized measurement 

equation formulates the satellite positioning problem at 

each time step [24]: 

                              vbxHy 0                              (1) 

Where, throughout this paper, the M×1 state vector 

 T,,, cbzyxx contain the three coordinates of the user 

position  zyx ,,  and the receiver clock bias cb  , which is 

common between all the received satellites. The estimated 

range measurements will be referred as the N×1 vector y . 

0H  matrix contains the unit line-of-sight vectors between 

satellite and previous user position, b  refer to the 

additional measurement bias caused by MP/NLOS 

receptions [N, 1] and is commonly called as PR bias. v  is 

the measurement noise supposed to be a white Gaussian 

noise characterized by a covariance matrix  T
vvR E . 

Since urban navigation MP/NLOS errors are usually 

unknowns, a possible estimation of the state vector is 

given by the Least Squares (LS) solution:  

yHx
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ˆ
LS                                       (2) 

Throughout this paper, 1T
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00 )(   RHHRHH  refers 

to the pseudo-inverse of 0H  weighted by matrix R . In 

the case of uncorrelated noise and MP-NLOS bias, The 

MSE of the LS estimator is: 
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The overall MSE of this estimator can be written as:  
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Where )(ˆ
0 byHx  

ML  refers to the maximum 

likelihood estimate. This previous inequality illustrates 

the effect of MP-NLOS biases on the final positioning. 

We suppose that we can obtain an estimation of the PR 

bias, using an external information source such as 3D 

GNSS simulator for instance. This estimation is referred 

to as c . Also, we suppose that we build a new weighting 

matrix bR based on this predicted PR bias c .  

The final solution of problem (1) with measurements 

correction would be then a corrected least squares (CLS) 

using the estimation of the PR bias c  and is expressed as: 

 cyHyHx  
bcbCLS

ˆ                              (5) 

Where cyy c  are the corrected PR measurements and 

1T
0

1
0

1T
0 )(   bbb RHHRHH  is the pseudo-inverse 

of 0H weighted by matrix bR , that might be different 

from R . The error of this estimation is given by: 

)(ˆ cvbHxxx  
bCLSCLS                   (6) 

If we note cbb   the error in the PR bias prediction, 

the accuracy of the CLS estimator is characterized by the 

Mean Square Error (MSE) expressed as: 
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Then, the overall MSE of the CLS estimator can be 

written as:  
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Because the weighting matrix bR  is generally an 

augmented matrix version of R  and because of the 

presence of the PR bias prediction error b , this yields 

the following inequality:  

     1
0

1T
0 )(ˆˆ  HRHxx trOMSEOMSE MLCLS    (9) 

This means that the conventional LS estimator doesn’t 

reach the optimal MSE while the proposed CLS estimator 



does under the condition of low bias prediction error b . 

But, the accuracy of the CLS algorithm depends heavily 

on the PR bias estimation used to correct the PR 

measurements. Hence, a good estimated PR bias that 

enhances performance compared to conventional methods 

must follow as much as possible the true bias as expressed 

in (8).  

Hence, the fundamental question to be addressed is: how 

much accurate the PR bias estimation, by a 3D simulator 

or others tools, should be to ensure that the proposed CLS 

algorithm give better results in term of accuracy than the 

conventional LS. The following analysis is valid for any 

source of NLOS bias estimation and prediction, including 

multisensory navigation, crowd sourced navigation and 

data base-based errors correction. 

This amounts to find the maximum acceptable level of 

uncertainty on the PR bias prediction required to obtain a 

performance enhancement compared to conventional 

positioning algorithms such as the conventional least 

squares. The maximum acceptable level of inaccuracy in 

PR bias prediction to achieve better performance by 

measurements correction compared to conventional LS is 

defined by using the overall MSE of the estimator as:    

         LSLSCLSCLS MSEtrOMSEMSEtrOMSE xxxx ˆˆˆˆ   

In case of uncorrelated MP-NLOS biases, this relation 

leads to: 
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Where    1
0

1T
0

1
0

1T
0 )()(   HRHHRH trtr bb . In the 

case of only one faulty measurement in the ranging 

measurement from satellite j, condition (10) became:  
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From last condition, if we define the dumping coefficient 
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This dumping coefficient appears because we have 

augmented the noise covariance matrix using the bias 

prediction as explained in (6).  

If we haven’t use this augmentation, then the dumping 

coefficient will be equal to 1 and 0b . Thus, the 

condition (11) became      jT
j

T EE bbbb  . This 

condition means that the bias bound prediction error must 

have a lower variation than the true unknown PR bias 

variation to obtain better performance by correcting the 

PR measurement. The dumping coefficient allows 

widening the admissible region of bias estimation 

inaccuracy since it is higher than 1, in general.  

The condition (10) is a general condition that any 

positioning algorithm based on the PR measurements 

correction must verify to ensure decreasing estimation 

errors than conventional least squares algorithm without 

PR measurement correction. This condition defines the 

maximum acceptable level of uncertainty on the PR bias 

prediction in term of accuracy. 

 

EXPERIMENTAL BIAS ESTIMATION BOUNDS 

BY TYPE OF ENVIRONMENT 

 

To evaluate experimentally the bias estimation bounds, a 

dynamic positioning test was conducted in Toulouse 

(South-West of France). GPS L1 C/A code PR 

measurements were recorded along different 

environments in Toulouse using an AsteRx3 

SEPTENTRIO receiver, at a rate of 10 Hz, and a SPAN 

Novatel system including a DGPS receiver tightly 

integrated with an IMU-FSAS (from iMAR). The 

trajectory provided by the Novatel system is considered as 

the reference trajectory in this analysis section. Fig. 1 

shows an image of the test environment. 

 
Fig. 1. Dynamic test in Toulouse. White line indicate the 

reference trajectory. 
 

The following table summarizes the set of received 

signals during this measurement campaign:  

TABLE I.  RECEIVED SIGNALS IN THE URBAN SECTION 

 PRN 

22 

PRN 

12 

PRN 

28 

PRN 

24 

PRN 

13 

PRN 

15 

Elevation (°) 5.93 21.47 26.06 47.23 52.47 82.29 

C/N0 (dB-Hz) 35.5 33.5 27.75 46.25 42 47.75 

Mean bias (m)  6.69 6.48 3.57 0.24 3.07 0 

Maxi bias (m) 33.29 15.95 23.98 6.51 11.56 0 

 

A. Experimental Computation of Maximum 

Acceptable Uncertainty on Bias Estimation  

 
In this sub-section, we aim to verify the condition (11) 

using real data collected in Toulouse. First, we consider 

the case of only one faulty measurement in the ranging 

measurement obtained from satellite j. To do that, we 

correct for all PR measurement using the bias estimation 

algorithm proposed in [25], expect for PR measurement 



from satellite j. Then, we model the bias prediction error 

of the measurement from this satellite   jb  follows a 

Gaussian distribution   ),(~  Νjb . Finally, we 

compute the values of mean and variance ),(   of the 

considered Gaussian distribution ),( Ν  verifying: 

   LSCLS OMSEOMSE xx ˆˆ  . The OMSE is function of the 

bias prediction errors as: 
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It can be easily verified that if the error in the bias 

prediction   jb  increase, i.e.   and   are high, 

),( OMSE  increase, hence the accuracy decrease. 

In this particular case, the condition defining the 

acceptable bias prediction error can be written as the 

following:  
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In case of equal augmentation matrix RR b , i.e. 1j  

and 0b , the value     2 
Exp

j
TE bb  verifying 

 LSOMSEOMSE x̂),(   is considered as the 

experimental maximum acceptable level of uncertainty on 

the PR bias prediction for satellite j required to obtain a 

performance enhancement compared to conventional least 

squares. This value can be computed by varying the 

couple  ,  using a grid of simulation points until 

reaching the condition  LSOMSEOMSE x̂),(  . 

The value      jTTheo

j
T EE bbbb   is considered as the 

corresponding theoretical maximum acceptable level of 

uncertainty on the bias prediction for satellite j required to 

achieve better performance compared to conventional 

least squares. To sum up, the two defined experimental 

and theoretical maximum acceptable level of uncertainty 

on the bias prediction for satellite j are: 
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These two experimental and theoretical values will be 

compared using real GNSS data in the following sub-

sections. 

 

B. Maximum Acceptable Uncertainty on Bias 

Estimation in Urban Areas by Elevation Angles 

 

In this sub-section, we will evaluate theoretical and 

experimental maximum acceptable uncertainty levels for 

different range bias in an urban environment 

characterized by narrow streets and tall buildings. We 

analyze these maximum acceptable uncertainty levels 

following the elevation angles of different satellite. In 

general, the higher is the elevation angle, the less likely 

the signal is to be blocked or reflected by a building. 

Hence, the maximum acceptable uncertainty level should 

decreases when the elevation angle increases. Fig. 2 gives 

the variation of this theoretical and experimental 

maximum acceptable uncertainty level versus satellite 

elevation angle in an urban environment.   

 
Fig. 2. Experimental and theoretical maximum acceptable bias 

estimation uncertainty in urban environment. 

 

If we take into account the limitation due to the number of 

grid point used in simulation, we note that experimental 

and theoretical maximum acceptable bias estimation 

uncertainty are close. This study allow to identify PR 

measurements that are very difficult to be corrected, those 

of good quality, and hence those who should not be 

estimated using the 3D GNSS simulator. In this case these 

signals are usually those having very high satellite 

elevation. 

Satellite elevation is not an absolute criterion for signal 

quality in urban environment. In fact, the configuration of 

the urban environment may induce that high elevation 

signals still be reflected or received in NLOS situation if 

there is a tall building nearby. But, in general, we observe 

that Fig. 2 shows the expected behavior of maximum 

acceptable bias estimation uncertainty towards satellite 

elevations, especially for low elevation satellites.  

 

C. Maximum Acceptable Uncertainty on Bias 

Estimation in Urban Areas by C/N0 ratios 

 

In this sub-section, we will evaluate theoretical and 

experimental maximum acceptable uncertainty levels for 

different range bias in an urban environment. We analyze 

these maximum acceptable uncertainty levels following 

the elevation angles of different satellite. In general, C/N0 

ratio is a good indicator for satellite signal quality since 

reflected signals are usually attenuated. Hence, the 

maximum acceptable uncertainty level should decreases 

when the C/N0 ratio increases. Fig. 3 gives the variation 

of this theoretical and experimental maximum acceptable 

uncertainty level versus satellite C/N0 ratio in the 

considered urban environment.   



 
Fig. 3. Experimental and theoretical maximum acceptable bias 

estimation uncertainty in urban environment. 

 

Making decision on the signal quality in urban 

environment using only C/N0 ratio is very difficult. In 

fact, smooth reflecting surfaces, for instance wet surface, 

may increase the power of reflected signals making them 

as strong as direct signal. Besides, satellite signal power 

depends on the antenna gain pattern and on the phase of 

the received signal. Generally speaking, we note that we 

have almost the predicted variation for high C/N0 signals. 

Also, the experimental and theoretical maximum 

acceptable bias estimation uncertainty are close, if we 

take into account the limitation due to the consequent 

number of grid point in simulation. This study allow to 

identify PR measurements that are very difficult to be 

corrected, those of good quality, and hence those who 

should not be estimated using the 3D GNSS simulator. In 

this case, these signals are usually those having very high 

C/N0 ratios. 
 

D. Maximum Acceptable Uncertainty on Bias 

Estimation by Environment 
 

In this sub-section, we will evaluate theoretical and 

experimental maximum acceptable uncertainty levels for 

different range bias in different environment. We analyze 

these maximum acceptable uncertainty levels in an urban, 

peri-urban and an open-sky environment. Since GNSS 

signals are usually of good quality in open-sky 

environments, maximum acceptable uncertainty levels on 

bias estimation should be lower than those in urban 

environments. Fig. 3 gives the experimental maximum 

acceptable uncertainty level on bias estimation for two 

satellites in these environments.   

 
Fig. 4. Experimental maximum acceptable bias estimation 

uncertainty in different environments for two GNSS satellites. 

It can be seen from the previous figure that GNSS signals 

are of good quality, hence are hard to be corrected, which 

explain the low value of the maximum acceptable bias 

estimation uncertainties in this kind of environment. 

However, the problem of satellite signal degradation is 

much more prominent in urban and peri-urban setting as 

oppose to rural environments. This explains the fact that 

the maximum acceptable bias estimation uncertainties are 

higher in these environments. Then, it is interesting to use 

3D GNSS simulator to correct PR measurement in these 

kinds of environments with high theoretical acceptable 

inaccuracy on bias estimation. However, in open sky 

environments with a small theoretical acceptable 

inaccuracy on bias estimation, 3D GNSS simulator should 

not be used since there is a great risk of deteriorating PR 

measurements by modifying them.        

 

E. Bias Estimation Using 3D GNSS Simulator 

SPRING 

 

In this sub-section, we compare the bias estimation using 

the 3D GNSS simulator SPRING [23] with theoretical 

and experimental maximum acceptable uncertainty levels 

on bias estimation in an urban environment. This 

comparison allows concluding if the use of the 3D GNSS 

simulator for range bias correction in this environment 

will enhance positioning performance or not. Fig. 4 gives 

the variation of experimental maximum acceptable 

uncertainty level on bias estimation and bias estimation 

performance using SPRING versus satellite elevation 

angle in an urban environment.     

  

 
Fig. 5. Experimental maximum acceptable bias estimation 

uncertainty and bias estimation error using SPRING [23]. 

 

These result show that the level of bias estimation 

uncertainty using the simulator SPRING [23] is under the 

maximum allowed level in this case of environment. 

Hence, the level of accuracy on bias estimation of this 

simulator allows bias range correction and performance 

enhancement in these kind of harsh environment. 

This study allows defining metric requirements on NLOS 

bias estimation by 3D GNSS simulation permitting the 

Classification of different 3D GNSS simulators. 

Taken into account that the 3D simulator SPRING is 

under permanent improvement and evolution by CNES, 



these results show the usefulness and the potential of 

these tools for positioning enhancement in presence of 

MP/NLOS biases.  

 

F. Positioning in urban environment using Bias 

Correction via the 3D GNSS Simulator SPRING 

 

In this sub-section, we use the 3D simulator SPRING for 

ranging measurement correction in a deep-urban 

environment. As shown in the last sub-section, bias 

estimation uncertainty using the 3D GNSS simulator 

SPRING is under the maximum allowed level in this case 

of environment. For bias estimation, a grid of 30 array 

positions is considered at each time step and the bias is 

considered as the mean of the obtained biases in each 

input point as explained in [13]. A 3 min trajectory along 

a deep urban environment is selected. This is a relatively 

short data of 1800 samples but without loss of generality 

of the comparison. This is only a limitation from the 

computational resources on the simulator computer. 

Actually, the simulator has to generate signals from all 

available satellites (i.e. performing ray-tracing interaction 

with 3D model for each point among the 30 array position 

considered in this scenario). A street view on this urban 

section and a sky plot is provided in the following figure: 

 

 
(a)                                               (b) 

Fig. 6. 6(a) Sky-plot of GPS satellites in the deep urban section 

(a mask elevation of 10° is applied); 6(b) a street and a sky view 

of the considered trajectory. 

 

The algorithm in [13] is based on bias bounds obtained 

using these array positions at each time step. Performing 

bias prediction using 3D GNSS simulator on these input 

positions, we bound the MP-NLOS bias, i.e. we obtain the 

following inequality for each time step and for each 

received PR signal: 

  Nnnnn ,,2,1,)()(  ubl  

Where l refers to the lower bound of the PR bias over the 

considered 30 array positions and u  is the upper bound of 

the PR bias over these array positions. 

We assume that the bias is Gaussian distributed between 

these two bounds. As the measurement noise and the MP-

NLOS bias are independent, the total noise vb  have a 

non-zero Gaussian distribution with a covariance matrix 

equal to: 
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We perform PR measurement correction by subtracting 

the mean value of the total noise distribution   2lu  

from the PR measurement vector when estimating the 

state vector. Hence, we obtained a new corrected LS 

estimation with an augmented covariance matrix and PR 

measurements correction using PR bias bounds: 
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The original study presented in the third section permits 

to identify environments where it is interesting to use a 

3D GNSS simulator for estimating the bias PR and NLOS 

correction. Hence, it allow to create a map of 

environments where is interesting to use a bias correction 

by 3D simulation, or other tools. These maps will be 

called “Maps of PR bias Correction Availability”. 

Therefore, we can consider three different types of 

environment depending on this information on bias 

correction availability: the first kind of environment is 

typically the rural environment characterized by a good 

redundancy, i.e. high number of available signals in the 

order of 7 GNSS satellites, and a low percentage of 

degraded signals. Generally in this first kind of 

environment, the percentage of deteriorated PR 

measurements is less than 50%. As shown in the sub-

section D, PR measurement correction is hard to be 

performed in this environment. Hence, in this type of 

environment, bias estimation using SPRING simulation is 

not necessary and we propose to use a robust Kalman 

estimation as in [16]. 

The second type of environments is those characterized 

with constrained signal availability, generally in the order 

of 4 to 6 satellites. However, the environment geometry 

doesn’t deteriorate all the received signals. A percentage 

between 50% and 70% of these received signals are 

probably received in MP and NLOS situations. This is 

typically the case of peri-urban environments. In such 

situation, a signal correction using 3D bias estimation is 

necessary but must be performed only on medium to low-

elevation satellite as shown in Fig. 4. 

The last type of environments is typically the urban 

environment. This constrained environment is 

characterized with a low signal availability combined 

with a very high percentage of degraded signals, generally 

more than 70%. In this kind of environment, even high 

elevation satellite can be degraded as shown in Fig. 2 for 

SV13. We propose to use constructively signal 

degradation by PR measurement correction method 

described above (CLS) in this kind of harsh environment. 

The proposed intelligent positioning algorithm depending 

on the type of environment is shown in Fig. 7.  

The environment checking test T0 is performed using the 

“Maps of PR bias Correction Availability” and the initial 

conventional position computed using a conventional 

EKF for instance: using this position and the “Maps of PR 

bias Correction Availability” we decide if it is useful to 



use a PR measurement correction or not. C/N0 threshold 

on data checking test T1 can be set to 40 dB-Hz. 

Elevation angle threshold on data checking test T2 can be 

set to 60°. 
 

 
Fig. 7. Positioning Algorithm depending on the environment 

(“Maps of PR bias Correction Availability”) 

       

To assess the positioning performance of this positioning 

algorithm, we compare the conventional LS estimator, a 

robust version of the LS estimator using [16] and a LS 

with bias correction [13]. The cumulative distribution 

function is shown in Fig. 8. 

 

 
Fig. 8. CDF of horizontal Positioning in deep urban environment 

using bias correction via 3D GNSS Simulator. 

 

According to Fig. 8, it apparent that ranging measurement 

correction using the 3D Simulator SPRING gives better 

positioning performance compared to the conventional 

stand-alone LS. By measurements correction using 

SPRING, the CLS achieve less than 10 meters of 

positioning errors in 85% of case, against 27 meters for 

robust Least-Squares. 

The robust LS estimator have almost the same 

performance as the conventional LS since in this kind of 

harsh environment it is difficult to distinguish between 

healthy and corrupted signals which represents the 

limitation of such robust approaches. In fact, robust 

estimation methods are able to detect blunder 

measurements if there are less than 50% of unhealthy 

measurements, which is not the case in deep urban 

canyons. 
 

CONCLUSIONS 

 

In this paper, we are addressing the question of the merit 

of integrating a 3D simulator in the GNSS solution. This 

study allows defining the maximum level of inaccuracy 

on bias estimation that any 3D GNSS simulator mustn’t 

exceed. It permits also to find the areas where a PR 

measurement correction is not interesting or difficult 

obtain; i.e. when bias correction will probably engender 

more performance degradation than enhancement. It can 

be also used to find PR measurements that are very 

difficult to be corrected (since they are already of good 

quality: generally satellites with high elevation and/or 

high C/N0).  

In this study, we push forward our previous study on 

degraded PR measurements correction using a 3D GNSS 

simulator by defining the theoretical level of maximum 

acceptable inaccuracy on bias estimation. Extensive 

measurement campaign may be conducted to produce a 

map of bias correction in the city by producing a map of 

PR bias correction availability for each zone of the 

traveled trajectory. In environments where we have a high 

theoretical acceptable inaccuracy, 3D GNSS simulator 

can be used for PR measurements correction. If we are 

travelling across an environment with a small theoretical 

acceptable inaccuracy, 3D GNSS simulator should not be 

used to correct PR measurements, because there is a great 

risk of deteriorating PR measurements instead of 

correcting them.       
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