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Abstract—Recent trends in Global Navigation Satellite System
(GNSS) applications in urban environments have led to a
proliferation of research works that seek to mitigate the adverse
effect of Multipaths (MPs) and non-line-of-sight (NLOS). For
such harsh urban settings, this paper proposes an original
methodology for constructive use of degraded MP/NLOS signals,
instead of their elimination, via a fusion of GNSS pseudoranges
(PR) with aided information from a 3D GNSS simulator. First,
a 3D GNSS simulator is used to characterize and predict PR
measurements over an array of candidate positions in the
environment under study. Then, a similarity scoring technique
based on least-squares (LS) position matching is applied to
score candidate positions. Finally, the final position estimate
is retained as the weighted average of the candidate positions
with the highest scores. Experiment results using real GNSS
data in a deep urban environment confirm the theoretical
sub-optimal efficiency of the proposed approach, despite it
intensive computational load.

Keywords: GNSS in urban areas; Multipath and NLOS
reception; Position Matching; 3D City Models; GNSS simulators

I. INTRODUCTION

The Global Navigation Satellites Systems (GNSS) applica-
tion for land navigation has grown in popularity in urban areas
for their free accessibility and suitable accuracy. Motivated
by the significant developments of GNSS-based techniques,
satellite positioning is poised to have a wide spectrum of
applications in land navigation, intelligent transportation sys-
tems (ITS), robots/Drones, Location-Based Services (LBS)
and Wireless Sensors Networks (WSN) [1].

User requirements in these environments can be specified
from numerous perspectives, including accuracy, integrity,
reliability, continuity. These requirements can be very stringent
and depends on the specific applications. For instance, GNSS
reliability is mandatory especially for applications having
impacts on financial, legal or safety-of-life repercussions such
as specific car tracking or road user charging (RUC) [2].
Hence, along with the appearance and innovation of new land
applications, many of the demands come from urban environ-
ments where the processing needs of the received signals are
extensively more complex than in open sky environments.

However, the exponential progress of GNSS applications in
land navigation is not without major hurdles in its course of
development. Indeed, even with this increase in the satellite
availability and the improvement of the constellation geome-
try, GNSS positioning in urban areas suffer from degraded
performance because of several problems that persist. Ba-
sically, the rapid urbanizing process in many cities hinders
existing GNSS-based positioning technologies performances
to achieve the technical and regulation requirements for three
main reasons, namely satellite masking and signal attenuation,
GNSS signal reflections and degraded satellite-user geometry.
As GNSS rely on signals received through a Line-Of-Sight
(LOS) path, any infringement of this assumption can result in
very degraded positioning accuracy. This makes the reception
of signal reflections the major hurdle in the development of
GNSS in urban areas.

Urban environment, on the whole, consists of narrow streets
and high buildings with smooth surfaces that may reflect
the transmitted signals. Thus, it is very common that GNSS
signals reach the receiver via multiple, direct and/or indirect
paths, called Non-Line-Of-Sight (NLOS) in this case. Even
though both the NLOS reception and multipath interference



are often grouped together as multipath, they are actually
separate phenomena that cause very different ranging errors
and different caracteristics [3].

Multipath interference occurs when the transmitted satellite
signals are received through multiple replicas which follow
different paths than the original satellite-user direct link. These
different path are caused by the reflection or diffraction of the
direct signals. Such multipaths distort the correlation function
between the received composite (direct path plus multipaths)
signal and the locally generated reference in the receiver.
Theoretically, the magnitudes of multipath error can reach
about 0.5 of a code chip depending on the receiver correlation
technology [4], [3].

Non-Line-of-Sight (NLOS) is a term to describe a link
where there is no visual line-of-sight (LOS) between the
transmitting antenna and the receiving antenna. If the line
of sight (LOS) is blocked and the satellite signal is received
through a reflected NLOS path, the related pseudo-range (PR)
measurement will be affected by an additional bias, always
positive, potentially unlimited in range and with an magnitude
dependent on the propagation environment.

Improvements due to GNSS augmentations and GNSS
modernization are reducing many sources of error, leaving
multipath and shadowing as significant and sometimes domi-
nant contributors to error. As they usually arise together in
urban settings, these two phenomena distort the composite
phase of the received signal, introducing errors in pseudorange
measurements, and thus producing errors in position, velocity,
and time. In view of such technical challenges in urban areas,
there is a pressing need for mitigating these unwanted effects
to achieve the required positioning accuracy.

In this paper, we propose to use a 3D GNSS Simulator
to characterize and estimate these ranging errors. A new
position estimation solution will be proposed based on 3D
aided information provided from this 3D GNSS Simulator.
This proposed method is introduced in the framework of the
integration of GNSS observations with information from 3D
GNSS simulators.

This paper is divided into five main sections. The first one
proposes a review of the state on the MP/NLOS problem.
The second section presents the 3D GNSS simulator used in
this work. In the third section, we introduce our contribution
for positioning in MP/NLOS conditions. The fourth section
outlines experimental results obtained in an urban area using
the proposed approach and a 3D GNSS simulator. Finally,
some conclusions are summarized in section 5.

II. RELATED WORKS

A huge amount of researches have been conducted and are
still actively ongoing in order to develop methods to overcome
these challenges and improve the quality of localization,
even in presence of MP/NLOS conditions. Broadly speaking,
the literature on the MP/NLOS problem falls in these main
categories:

• MP/NLOS Identification/Detection: Methods focusing
on identifying the contaminated signals and detecting MP
and/or NLOS receptions.

• MP/NLOS Mitigation and Modeling: Methods focusing
on mitigating or modeling MP/NLOS signals.

• MP/NLOS Weighting: Methods focusing on down-
weighting the unwanted effects of MP/NLOS signals.

• MP/NLOS Estimation: Methods focusing on estimating
the time-varying MP and NLOS ranging bias.

• MP/NLOS Constructive Use: Methods focusing on
using constructively these degraded MP/NLOS signals
for positioning instead of their elimination, since LOS
signals may be too scarce in some situations.

This former type of techniques applied to MP/NLOS prob-
lem tends to distinguish between clean Line-of-Sight (LOS)
signals and ”deteriorated” MP/NLOS signals. These distinc-
tion methods can be largely grouped into those using an
additional hardware or information sources with the principal
positioning system, such as a dual polarization antenna [5], a
GNSS antenna array [6] and a sky-pointing camera [7], [8],
and those focusing on detecting MP/NLOS signals without
using any external information or any additional hardware [9],
[10].

The second category considers that it is of utmost impor-
tance to characterize and remove MP/NLOS measurement er-
rors. For these reasons, several researches have been conducted
and are still ongoing to mitigate the influence of MP/NLOS
bias. Most principal works can be largely classified into
these three classes: methods using special multipath limiting
antennas or hardware [11], [12], [13], [14], receiver-internal
correlation techniques in the signal domain [15], [16] and post
processing techniques in the measurements domain [17].

The basic idea of MP/NLOS weighting techniques is to
assign a low weight to outlier ”contaminated” measurements,
i.e., a low contribution in the position estimation, while giving
a nominal weight or total contribution to ”clean measure-
ments” in the PVT computation [18], [19], [20]. Other method-
ologies have been studied in order to estimate simultaneously
the user position and the measurements errors all along the
observation interval. MP/NLOS estimation methods may be
classified into two categories: methods tending to estimate
MP/NLOS in the receiver-internal correlation loops [21] and
methods estimating the MP/NLOS errors in the navigation
block [22], [23].

Since direct LOS signals may be too scarce in urban
environment, a new trend of techniques has recently received
some attention in the literature. These methods aim to detect
degraded measurements and use them constructively instead
of eliminating them [24], [25], [26]. In fact, under poor
conditions of satellite visibility, it is more interesting to
use constructively these NLOS observables. MP/NLOS Con-
structive use based techniques totally differ from MP/NLOS
mitigation based techniques and MP/NLOS weighting based
techniques: using constructively MP/NLOS errors signifies
using all available pseudorange measurements without down-
weighting any measurements, unlike MP/NLOS weighting



based methods, and without discarding any measurement,
contrary to MP/NLOS mitigation based methods.

Among MP/NLOS Constructive Use techniques, new meth-
ods exploit the measurements model via aiding information
about the geometric environment of reception from 3D city
models, as in [24], [27]. However, to deal with the problem of
the vicinity of the input point provided to the 3D simulator and
the unknown position to be estimated, some studies predict the
path delay of the NLOS signals across an array of candidate
positions [25], [27], [28], [29], i.e. considering signal reception
at multiple candidate positions. The positioning technique is
then based on scoring position hypotheses by comparison
between observations at the receiver and information provided
by the 3D model/3D simulator such as the sky visibility [27],
the NLOS signal delay [28], the PR measurements [29].

Another way of exploiting the 3D city model is to predict
the NLOS bias via GNSS propagation simulations and then
correcting it in the PR measurements [24], [25]. In [24] and
[25], we have used the 3D model to predict PR errors and use
it constructively on the estimation step. We have used these
bias predictions in different ways, including instantaneous
corrections, using the mean and variance, and other statistics
such as the minimum and maximum bounds as constraints in
the estimation process. However, this PR correction step is
a sensitive task: poor PR bias predictions may engender an
erroneous ranging correction and then may sensitively reduce
the position estimation instead of enhancing it [30]. Hence, in
this paper, we propose to use a 3D GNSS simulator to consider
signal propagation at multiple candidate positions for position
hypothesis scoring and final position estimating among these
candidate locations.

In this study, we use the 3D GNSS Simulator SPRING [31],
provided by the French Space Agency (CNES), to predict these
ranging errors in urban areas. These estimated biases are then
used to define a position matching estimate. This estimate,
called PM-3D, computes a likelihood function over an array of
position hypothesis based on the similarity between measured
and predicted position information. The proposed estimator
gives then an estimation of the final solution over an array of
candidates in the position domain. Experimental results show
that better performance can be obtained by using the PM-
3D even in harsh environment with mixed MP and NLOS
receptions.

III. 3D GNSS SIMULATIONS

3D city models are 3-dimensional digital representations of
terrain surfaces, sites, buildings, vegetation, infrastructure and
landscape elements as well as related objects present in cities.
Buildings in 3D models are represented by collection of points
in 3D space, connected by various geometric entities such as
triangles, lines, curved surfaces, etc. It is now possible to inte-
grate into some GNSS propagation simulators detailed highly
realistic 3D maps of real environments, such as buildings or
infrastructure of cities. This integration will be termed as 3D
GNSS simulator.

3D GNSS signal simulators were originally developed to
test GNSS receiver algorithms before they were actually
implemented. Subsequently, with their complexity, they have
been used to better understand the propagation phenomena of
GNSS signals and the impact of different sources of noise.
Today, thanks to an ever-increasing realism, a new use has
emerged: 3D simulators are used as aids to navigation.

3D GNSS deterministic simulators reproduce the interac-
tions with the environment from a physical point of view, by
modeling the reflection and diffusion of GNSS signals with
the environment [32], [33]. These simulators, based on the
propagation laws of electromagnetic signals, reproduce with
a high representativity the interactions of GNSS signals with
the environment.

In this category, SPRING [31], [34] is a GNSS simulator
developed by the French Space Agency (CNES) that has
the capability of simulating, via ray-tracing techniques, all
paths to be received in a certain input position at a certain
time. SPRING is developed jointly with Thales Services, to
predict PR errors in urban areas. It allows the simulation of
the propagation of the GNSS signals inside a realistic 3D
scene for an in depth analysis of the multipath. A reception
channel model and a receiver model enable the acquisition and
tracking of the signals propagated in the environment in order
to calculate pseudoranges, phase and Doppler measurements
of the acquired satellites. This simulator is provided by CNES
and used in this research work to assist the GNSS receiver in
order to enhance positioning performance.

The used 3D in this research work is Toulouse 3D model.
This 3D city model is developed by the French National Geo-
graphic Institute (IGN). It is based on high resolution images
with level 2 of detail (LoD2). Simulated PR measurements
are computed thought GNSS signal propagation within the
3D city model and in the wake of signal acquisition and
tracking using the receiver model implemented in SPRING.
The LOS distance between the satellite and the input position
introduced in the software is expressed as the direct path
between these two points. As all the other ranging errors
(ionospheric, tropospheric, thermal noise...) are not modelled,
the PR bias, which is the parameter of main interest in this
dissertation, is predicted as the difference between simulated
PR measurements and the LOS distance. It must be empha-
sised that PR receiver bias is omitted in 3D simulation as the
receiver is supposed to be synchronized with emitted satellites.

Fig. 1 shows a screen-shot of an example of SPRING
simulation in an urban environment. Continuous lines refer
to signals received in direct line-of-sight while dotted lines
represent signals received through indirect paths. The main
steps used for 3D PR bias estimation at each candidate position
are summarized in the algorithm 1 below.

IV. PROPOSED POSITIONING ALGORITHM

A. Effect of MP/NLOS biases on Position estimation

GNSS is a global technology that allows users over the
globe to locate themselves to navigate and have a mean
for synchronization on a common time reference. A user



Algorithm 1 3D GNSS Simulation
Inputs: GPS Time, Satellite ephemeris, 3D city Model

and input position xi
Output: 3D bias b3D(xi)

1: Compute satellite positions
2: Determine LOS distance between each satellite and the

input position
For each satellite Sati, compute PRLOSi = ‖xi−xSatii ‖2

3: Predict 3D received PR measurements
For each satellite Sati, predict PR3D

i , using the 3D
model, ray-tracing algorithm and the receiver model im-
plemented in SPRING

4: Compute PR bias
As all the other ranging errors are not modelled, PR bias
is the difference between predicted PR measurements and
LOS distance: [b3D(xi)]i = PR3D

i − PRLOSi

Fig. 1: 3D GNSS Simulation using SPRING by considering both diffractions and multiple
reflections

equipped with proper equipment is able to access emitted
satellite positioning information, decode them and solve the
problem of position determination. GNSS position determi-
nation resides on the trilateration concept using at least four
LOS measurements from known satellites locations. However,
signal degradation is more prominent in harsh environments,
as opposed to open sky environments, inducing then an
additional MP/NLOS ranging bias. Considering N emitting
GNSS satellites, the following linearized equation formulates
the satellite positioning problem at each time step [35]:

y = Hx + v + b (1)

Where, throughout this paper, the [M, 1] state vector x =
(x−x0, y−y0, z−z0, bRx)T contains the parameters of primary
interest, i.e. the three coordinates of the user position (x, y, z)T

and the receiver clock bias bRx, which is common between
all the received satellites. y = (y1, · · · , yN )T is the [N, 1]
linearised pseudorange (PR) measurements vector. H contains
the unit line-of-sight (LOS) vectors between the satellites and
the previous user position x0 = (x0, y0, z0)T . This matrix
describes the linear connection between the measurements
y and the unknowns x. b = (b1, · · · , bN )T refers to the
additional measurement bias caused by MP/NLOS receptions
[N, 1] and is commonly called PR bias. v = (v1, · · · , vN )T is

the measurement noise, supposed to be a white Gaussian noise
characterized by a known covariance matrix R = E{vvT }.

The likelihood cost function for user position estimation is
straightforward:

J(y|x,b) = ‖y −Hx− b‖2R−1

= (y −Hx− b)TR−1(y −Hx− b)
(2)

The maximum likelihood estimate (ML) is the estimate that
minimizes the above likelihood cost function as:

x̂ML = argmin
x

J(y|x,b) = H+(y − b) (3)

where H+ = (HTR−1H)−1HTR−1 is the pseudo-inverse of
H weighted by the inverse of the measurements covariance
matrix R. The mean square error (MSE) of this estimator can
be expressed as:

MSE[x̂ML] = E{(x̂ML − x)(x̂ML − x)T }
= (HTR−1H)−1

(4)

The ML estimate can be seen also as a least squares solution
applied on corrected ranging measurements: a sum of a bias
free-estimate termed as the Least Squares (LS) estimate x̂LS =
H+y, i.e. computed as if no additional bias were present, and
a bias-correction term H+b.

In general, the bias-correction term cannot be computed
since the MP/ NLOS is unknown, highly variable and hard
to be estimated. Thus, the ML computation is impossible and
only a bias free-estimate can be performed. This bias free-
estimate is equal to the least squares estimator (LS) of problem
(1). This estimator is less efficient than the optimal ML
estimate. Indeed, we have the following inequality satisfied
by the overall mean square error OMSE (trace of the MSE
matrix):

OMSE[x̂LS ] = Tr{(HTR−1H)−1}+ Tr{H+E{bbT }(H+)T }
≥ Tr{(HTR−1H)−1} = OMSE[x̂ML]

(5)

This previous equation illustrates the effect of MP/NLOS
biases on the final positioning error. Indeed, without knowing
these biases, we have the previous inequality and therefore the
LS estimation, under MP/NLOS conditions, will be degraded.
In view of such technical challenges, there is a pressing need
to counteract the disadvantages of these GNSS degradations,
namely MP/NLOS reception, and achieve user requirements
in harsh environments: This is one of the principal motivation
of the use of 3D simulators as indicators on signal reception
statuts in this research work.

B. Position Matching estimate (PM-3D)

Since the computation of the likelihood cost function (2) is
theoretically impossible without any prior information on the
PR bias, we propose a new cost function that approximates the
theoretical maximum-likelihood cost function. To do that, we
make use of the 3D GNSS simulator SPRING. This proposed
method makes use of an array of candidate position to define
the final estimate among this grid, based on a defined matching
metric. The matching metric is the objective of this work.
In this work, we define a matching metric based on position



similarity that will be detailed in this section. The proposed
Position Matching estimate (PM-3D) follows these steps:
• Step 1: Outdoor Candidate Positions Definition

We define a 2D array of equidistant outdoor candidate
positions Γ = {xi = (xi, yi, z)

T } in the environment
under study, using the software Q-GIS and the 3D city
model.

• Step 2: 3D PR Bias Prediction
For each candidate position, we predict the corresponding
PR bias using SPRING to obtain a bank of 3D PR bias:
Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T }.

• Step 3: Define a Reference Satellite
Based on C/N0 ratios or elevation angles, we define a
reference satellite which is the satellite having the most
reliable and ”healthy” PR measurements.

• Step 4: Estimate 3D bias prediction uncertainty
It is evident that the predicted bias and errors from
the 3D propagation model cannot be instantaneous and
accurate. The quality and reliability of the PR bias
estimation depends on many factors such as the accuracy
of signal propagation modeling, the precision of 3D
city modeling, receiver setting, etc... Since the proposed
approach depends on the accuracy of the simulation, we
propose to estimate the uncertainty on bias estimation
provided by the 3D GNSS simulator. Preliminary tests
on the evaluation of the performance of this tool show
that PR biases of high elevation signals are usually
correctly estimated, as the signal have less interactions
with the environment surrounding the receiver contrary
to low or medium elevation signals. Then, we propose
the following formula as estimation for this uncertainty
on bias prediction. αMax−Inaccuracy refers to the highest
error on bias estimation.

δ̃3D = αMax−Inaccuracy exp(Elev/(Elev − 90)) (6)

where Elev refers to satellite elevation angle in degrees.
Similarly, we can also estimate this uncertainty on bias
prediction based on the C/N0 ratio as:

δ̃3D = αMax−Inaccuracy10
C/N0

C/N0Max (7)

• Step 5: Position Matching Cost Function
Based on predicted 3D PR bias, we define the following
cost function as:

Ψ : Γ→R
xi 7→ Ψ(y|xi,b3D(xi)) = ‖H+(y − b3D(xi))− xi‖22

= ‖H+(Hxi + b3D(xi))− x̂LS‖22
(8)

Where x̂LS = H+y = (HTR−1H)−1HTR−1y is the
LS solution of the GNSS problem. This new cost function
is based on predicted 3D PR bias. This metric represents
a projection of the similarity between the 3D predicted
PR measurement Hxi + b3D(xi) from the 3D GNSS
simulation and the received PR measurements y. The

physical interpretation of this metric will be also provided
in the next sub-section.
To reduce the estimation complexity, a classical hy-
pothesis consists of using the 3D GNSS simulator to
avoid the estimation of the height information. Given
the horizontal coordinates of each grid point, a height
is associated to this point using the 3D city model which
avoids the computational load over a 3D search area.
Then, the receiver clock bias is eliminated by proceeding
to a differentiation of all ranging measurements across
satellites using a reference satellite. This allows to reduce
the computation of the cost function Ψ in (8) and gives
a new modified position matching cost function:

Ψ̃(y|xi,b3D(xi)) = ‖(H+ −H+(ref, :))(y − yref
− b3D(xi)− δ̃3D)− xi‖22

(9)

Where yref is the ranging measurement of the reference
satellite and H+(ref, :) is the row of matrix H+, corre-
sponding to the reference satellite.

• Step 6: Final Estimate
Considering the final position as the candidate position
having the lowest score, i.e. minimizing the approximate
maximum-likelihood cost function in (9), is risky. There-
fore, we propose to estimate the final PM-3D solution
as a weighted average of the candidate positions with
the lowest scores, i.e. the highest PR measurements
matching. In fact, by evaluating the previous cost function
on the array of candidate positions, we define the position
matching (PM) estimator as:

x̂PM =

NTh∑
i=1

(Ψ̃(y|xΩ
i ) < Th)xΩ

i

NTh∑
i=1

(Ψ̃(y|xΩ
i ) < Th)

(10)

Where Th is the threshold used for selecting the lowest
scores, NTh corresponds to the number of grid points
with a matching score lower than the threshold Th and
the set Ω = {xΩ

i , i = 1, · · · , NTh} refers to the subset
of candidate positions with the lowest scores. This PM
estimator represents a weighted average of the candidate
positions with the lowest scores, i.e. the highest matching.

C. Theoretical performance: Convergence to ML estimator

Since the bias estimation by 3D simulations cannot be
accurate, we define the uncertainty on the bias estimation as:

δ3D = ‖b− b3D(x)‖2R−1 (11)

With this in mind, it is interesting to investigate the theoret-
ical performance of this proposed algorithm compared to the
ML estimator. We can show the following lemma:

Tr{MSE(x̂PM )} −→
δ3D→0

Tr{MSE(x̂ML)} (12)

Proof: See Appendix A.



The previous relation (12) demonstrates that, conditioned by
3D GNSS simulator accuracy, the overall mean square error
(trace of the MSE matrix) of the PM estimator converges to
the minimum overall mean square error of the ML solution of
problem (1).

D. Physical Interpretation

The position matching metric in (9) evaluates the simi-
larity between each point of the set of candidate positions
Γ = {xi = (xi, yi, z)

T }i and each point of the set of
calculated positions Γ1 = {H+(y − b3D(xi))}i obtained
via LS-type projection (using the projection operator H+)
applied to corrected PR measurements using 3D predicted
MP/NLOS biases from SPRING simulation. It also evaluates
the similarity between the conventional LS solution and the
set of solutions obtained by applying an ”LS” type projection
to simulated PR measurements by SPRING-3D simulation
{(Hxi + b3D(xi))}i. PM-3D positioning technique is then
based on position matching between the LS solution and
a simulated LS solutions, or similarly between candidate
position and position obtained by PR measurement correction,
over an array of candidate positions.

If the GNSS simulator is sufficiently accurate, the projection
of the ”LS” type applied to simulated PR measurements
(predicted by the SPRING-3D simulator) obtained by SPRING
simulation at a candidate position xi close to the true position
x, will give a solution close to the LS solution obtained by
applying the LS algorithm to true PR measurements received at
the true unknown position. The physical interpretation of PM-
3D algorithm is explained in 2(a). As a way of illustration, a
block diagram of our proposed PM-3D algorithm is given in
Fig. 2(b).

Finally, the proposed approach is summarized in the algo-
rithm 2 below:

Algorithm 2 PM Estimation

Inputs: y,H and δ̃3D
Output: x̂PM

1: Define search area and grid of candidate positions
Define an array of 2D points Γ = {xi = (xi, yi, z)

T }
2: Estimate a bank of PR biases over candidate positions

Estimate PR biases, using 3D GNSS simulations, for the
considered array of candidate positions
Ω = {b3D(xi) = (b3D(xi)1, · · · ,b3D(xi)N )T }

3: Reference satellite selection using elevation criterion
4: Likelihood scoring for each candidate position

Compute Ψ̃(y|xi) using (9)
5: PM-3D position estimation

Estimate PM-3D solution x̂PM using (10)

E. Comparison Algorithm

Considered among the most mature 3D model based posi-
tioning approaches, Shadow Matching solution [36] uses 3D
building models to improve cross-track positioning accuracy in
harsh environments by predicting which satellites are visible

(a) PM-3D: Physical interpretation

(b) PM-3D algorithm block diagram

Fig. 2: Position Matching algorithm

from different candidate locations and comparing this infor-
mation with the measured satellite visibility to determine the
final user solution. This positioning approach is based on a
GNSS and 3D model fusion for satellite shadows scoring of
candidate positions. Shadow Matching is based on comparison
between observed satellite visibility based on GNSS signal-
to-noise measurements and signal availability predictions, at
different candidate locations, derived from a 3D city model
[37]. By achieving accurate cross-street positioning in urban
canyons, it was implemented for smartphone applications [38],
[39]. The basic Shadow-Matching approach can summarized
in the algorithm 3 below.

In this experimentation, we have used our implementation
of Shadow Matching solution to compare and assess the per-
formance of our proposed algorithm. The Shadow Matching
algorithm has been implemented using GPS and GLONASS
signals. Our proposed PM-3D has been implemented using
GPS signals only since 3D GNSS simulation using GLONASS
constellation is not yet optimized in the current version of the
simulator.



Algorithm 3 Shadow-Matching (SM) Estimation
Inputs: y,H, C/N0 Coefficients (for satellite visibility)
Output: x̂SM

1: Define search area and grid of candidate positions
2: Building Boundaries (BB) computation

For each candidate position, predict building edges using
the 3D city model for one area of the map (computed only
once)

3: Predict satellite visibility
For each candidate position, predict satellite visibility
using the Building Boundaries information

4: Measure satellite visibility
Use C/N0 ratios to determine the observed satellite visi-
bility

5: Scoring of candidate positions
Based on matching between predicted and measured satel-
lite visibility, score each candidate point

6: Final position estimation
Estimate the final user position based on weighting the
positions with having the highest scores

V. EXPERIMENTAL RESULTS

A. General Experimental Setup

To evaluate the proposed solution, a dynamic positioning
test was conducted in an urban environment. GPS L1 C/A code
PR measurements were collected on March 18, 2015 around
Capitole Square in Toulouse. The GNSS receivers used are the
following:
• A UBLOX 6T Receiver: a low cost receiver recording

only GPS constellation. L1 C/A code PR measurements
were recorded at a rate of 4 Hz.

• A Novatel SPAN system: include a a Novatel single-
constellation DGPS receiver tightly integrated with an
IMU-FSAS inertial unit (from iMAR). The data are
sampled at a rate of 10 Hz. Differential correction were
performed using a reference static antenna. We consider
the trajectory provided by the Novatel system as the
reference trajectory for comparison with our algorithm.

All data processing was accomplished using Matlab. For this
validation test, we have selected a trajectory along an urban
environment characterized by narrow streets and medium-
height buildings, which are predominantly the down-towns of
European cities. We have used the elevation angle as criterion
for reference satellite selection. The chosen area represents
a harsh environment with narrow streets and medium-height
buildings alongside the streets. An overview of the considered
urban area and the temporal number of usable GPS satellites
during this test in the deep urban section are shown in Fig. 3.

For illustration of the used grid of candidate positions, Fig.
4 shows the used array of positions. In this experimental evalu-
ation of our algorithm, we have used 1600 candidate positions
in a square area in the region of interest. These positions are
uniformly distributed in this search area with a spacing of
1m. A pre-processing algorithm is implemented to exclude the

(a) Tested Urban Environment (White line: Reference trajectory)

(b) Sky-view of the urban section

(c) Temporal number of GPS satellites

Fig. 3: Overview of experimental setup

indoor points based on the 3D model of the city. Hence, this
grid of candidate positions contains only outdoor locations.
The red dots refer to the used reference trajectory, while the
white dots represent the considered candidate positions.

Fig. 4: Used Array of candidate positions



B. Performances of the Proposed Solution
For this validation test, we have compared the positioning

performance using PM-3D solution without 3D simulation
error correction, i.e. δ3D = 0, Shadow-Matching solution
(SM-3D) and a conventional Least-Squares solution. Fig. (5)
shows the cumulative distribution function of the horizontal
position errors of the proposed PM-3D solution, Shadow-
Matching solution (SM-3D) and the conventional solution in
the considered scenario.

Fig. 5: CDF of Horizontal Positioning Errors

It is apparent from the CDF figure in Fig. (5) that our
approach PM-3D gives more positioning performance com-
pared to the conventional GNSS solution. PM-3D positioning
performance in this scenario is comparable to that of the
Shadow-Matching solution (SM-3D: ISAE Version). We com-
pare horizontal positioning errors (HPE) for these estimators in
this scenario with position accuracy obtained using industrial
solutions of the UBLOX and Septentrio receivers. Results are
shown in Table I. We notice that PM-3D outperforms, in
average, all solutions even the industrial solutions.

TABLE I: HORIZONTAL POSITIONING PERFORMANCES

PM-3D SM-3D UBLOX Conventional Algorithm
Mean of HPE [m] 3.41 4.22 7.27 6.6

HPE at 95% [m] 6.36 7.95 11.65 14.66

HPE at 97% [m] 6.5 9.15 11.85 15.78

HPE at 99% [m] 8.64 9.56 12.41 18.32

The scoring map of the proposed PM-3D solution and the
different solutions for a fixed time epoch is shown in Fig. (6).

The previous example illustrates the effectiveness of the
proposed PM-3D algorithm even in degraded MP/NLOS
conditions. Positioning performance of the PM-3D estimator
exceeds that of receiver solution (very good and reliable
positioning solutions in general). Better accuracy enhancement
using PM-3D algorithm can be obtained by applying a 3D bias
uncertainty prediction δ̃3D using either the model (6) or the
model (7). Taken into account that the 3D simulator SPRING
is continuously improved by CNES, this performance obtained
by PM-3D might eventually reach more optimal positioning
accuracy.

Despite this performance enhancement, this proposed PM-
3D algorithm is computationally intensive, especially with

Fig. 6: PM-3D scoring map with different estimation solution for a fixed time epoch

high grid resolution and size, because of bias estimations using
3D simulations. In a natural way, positioning accuracy depends
highly on the defined grid of positions. As way of comparison,
Table II gives the computational loads of PM-3D compared
to SM-3D for the same grid of positions. Nevertheless, this
method can be easily implemented on a server mode and send
the 3D biases to the mobile receiver to compute its position.

TABLE II: Computational loads of PM-3D and SM-3D

PM-3D
(SPRING Simulation)

SM-3D
(Building Boundary)

Software SPRING V4.1.0.7137 Matlab 2013a

CPU Core(TM) i7-4770 3.4GHz Core(TM) i5-3470 3.2GHz

Time [s] 10640 (2h57min) 3981.65 (1h6min)

VI. CONCLUSION

Stand-Alone GNSS positioning algorithms give a good com-
promise between positioning accuracy and processing (imple-
mentation) simplicity but are unfortunately ineffective in urban
environments with reduced visibility of satellites and excessive
MP/NLOS errors. In these cases, the use of an external source
of information is mandatory for the continuity of navigation.
The state of the art is rich by GNSS hybridization methods
with inertial sensors, cameras, scan lasers or other sensors.
Given the limit of low-cost inertial sensors and the complexity
of a tight GNSS/INS hybridization, we propose in this study
as an alternative the exploitation of the characteristics of the
receiver environment using the 3D GNSS simulator SPRING.

In this regard, this research proposes a 3D GNSS simula-
tor/GNSS hybridization scheme based on scoring of an array
of candidate positions using the 3D information from the 3D
GNSS simulator. The basic idea is to introduce a grid of input
positions to the SPRING-3D GNSS simulator to predict the
MP/NLOS biases and retain the candidate position with the
best similarity based on a matching score. This last is proposed
to be a position matching scoring between the conventional LS
solution, obtained from received PR measurements, and a set
of LS positions based on 3D simulated pseudoranges provided
by SPRING-3D. The key strength of this approach is its sub-
optimal effectiveness, which was been proven theoretically
and using real GNSS data. Notwithstanding the significant



computational loads, this approach can be implemented in
server mode for 3D GNSS simulation.

In terms of directions for future research, further works
could focus on enhancing the propagation simulation to reach
a higher positioning performance using our approach.
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APPENDIX A

We start by computing the expression of x̂PM :

x̂PM = argmin
xi

{ ∂

∂xi
(Ψ(y|xi,b3D(xi)) = 0)}

We compute the derivative of the cost function:

∂

∂xi
(Ψ(y|xi,b3D(xi))) = −2H+(H +

∂

∂xi
b3D(xi))R

−1K(xi)

Where K(xi) = H+(y − b3D(xi)) − xi. Then, we get the
following expression for the position matching estimate:

K(x̂PM ) = 0 ⇐⇒ x̂PM = H+(y − b3D(x̂PM ))

Since the MSE matrix is diagonal, the overall mean square
error of the PM estimation is expressed as:

Tr{MSE[x̂PM ]} = Tr{E[(x̂PM − x)(x̂PM − x)T ]}
= E[‖x̂PM − x‖22]

The PM estimation error can be expressed as:

‖x̂PM − x‖22 = ‖x̂PM −H+Hx‖22
= ‖H+(b− b3D(x̂PM ) + n)‖22

The previous expression gives:

Tr{MSE[x̂PM ]} ≤ E{‖H+(b− b3D(x̂PM ))‖22}+E{‖H+n‖22}

By developing the two parts of this inequality, we show that:
E{‖H+n‖22} = Tr{(HTR−1H)−1}

= Tr{MSE[x̂ML]}
E{‖H+(b− b3D(x̂PM ))‖22} = Tr{(H+E[δPM

3D (δPM
3D )T ](H+)T )}

Where δPM3D = b − b3D(x̂PM ). Besides, we have the
following inequality for all candidate positions:

‖b−b3D(xi)‖2R−1 ≤ ‖b−b3D(x)‖2R−1+‖b3D(xi)−b3D(x)‖2R−1

And then, we deduce that:

‖δPM
3D ‖2R−1 = min

xi

‖b− b3D(xi)‖2R−1

≤ δ3D + min
xi

‖b3D(xi)− b3D(x)‖2R−1 ≤ (1 + η)δ3D

where η � 1 and then relation (12) is proven.
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