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Abstract

Nonlinear regression plays a crucial role in various engineering applications. For the sake of mathematical

tractability and ease of implementation, most of the existing inference procedures are derived under the

assumption of independent and identically distributed (i.i.d.) Gaussian-distributed data. However, real-

world situations often deviate from this assumption, with the true data generating process being a correlated,

heavy-tailed and non-Gaussian one. The paper aims at providing the Misspecified Cramér-Rao Bound

(MCRB) on the Mean Squared Error (MSE) of any unbiased (in a proper sense) estimator of the parameters

of a nonlinear regression model derived under the i.i.d. Gaussian assumption in the place of the actual

correlated, non-Gaussian data generating process. As a special case, the MCRB for an uncorrelated, i.i.d.

Complex Elliptically Symmetric (CES) data generating process under Gaussian assumption is also provided.

Consistency and asymptotic normality of the related Mismatched Maximum Likelihood Estimator (MMLE)

will be discussed along with its connection with the Nonlinear Least Square Estimator (NLLSE) inherent

to the nonlinear regression model. Finally, the derived theoretical findings will be applied in the well-known

problem of time-delay and Doppler estimation for GNSS.

Keywords: Nonlinear regression, Misspecified Cramér-Rao bound, Mismatched Maximum Likelihood

estimator, time-delay and Doppler estimation, band-limited signals.

1. Introduction

Nonlinear regression are one of the most-used statistical models in signal processing (SP) and related

engineering applications. In a regression model, an observation vector

C𝑁 ∋ x = f (𝜽) + n, (1)
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is characterized by i) a vector of unknown deterministic parameters 𝜽, ii) a linear or nonlinear (continuous

and differentiable) known function f , parameterized by 𝜽 and iii) an additive noise vector n. The function5

f generally specifies the measurement process while 𝜽 collects the quantities that need to be estimated.

Regression models can be found in array processing, image processing, biomedical data analysis and even in

climatic studies, just to name a few. While the definition of f , 𝜽 and of the measurement noise n depends

on the particular application at hands, the inference procedures used to estimate the parameter of interest

usually share a common (although unrealistic) assumption: the entries of the noise vector n are sampled10

from an i.i.d. white Gaussian random process. This assumption is made to make the estimation algorithm

mathematically tractable and easy to implement. In fact, it is well known that, under the i.i.d. Gaussian

assumption, the optimal estimator is the nonlinear least square estimator (NLLSE). However, everyday

engineering practice shows that this assumption is too simplistic since the noise process can be correlated

and even non-Gaussian. The central question that we aim at answering in this paper is: how accurate can15

an i.i.d., Gaussian-based inference procedure be when the regression model is characterized by a correlated,

generally non-Gaussian noise? In order to answer to this question, we will rely on the misspecification theory

developed in [1, 2, 3, 4] and recently rediscovered in [5, 6, 7, 8, 9] and the references therein. In particular,

in [4], a set of general conditions needed to guarantee the consistency and the asymptotic normality of the

NLLSE for 𝜽 under depended data were provided along with the analytical expression of its error covariance20

matrix. Then, building upon the fundamental results presented in [4], in this paper we derive the so-called

Misspecified Cramér-Rao Bound (MCRB) on the estimation of 𝜽 when the assumed model is the “classical”

i.i.d. Gaussian model while the true data model is a dependent and non-Gaussian one. Moreover, we show

that the error covariance matrix of the NLLSE, derived in [4], actually equates the proposed MCRB.

This paper is organized into seven distinct sections. In Sec. 2, we present both the true and assumed25

nonlinear regression models. Sec. 3 introduces the calculation of the pseudo-true parameter vector for the

misspecified Gaussian nonlinear regression model. Sec. 4 derives the MCRB under quite general condition

of the correlation structure of the true data generating process, while, in Sec. 5, we specialise this general

results to a case of practical interest in which the true data model is an i.d.d. Complex Elliptical Symmetric

(CES) model with unspecified density generator. Sec. 6 is dedicated to the investigation of the asymptotic30

properties of the NLLsE under the above mentioned misspecified scenario and to its relation with the MMLE.

Sec. 7 provides an example of possible application of the theoretical results to the time-delay and Doppler

estimation under the above-mentioned misspecified scenario for GNSS applications. Our conclusion are

collected in Sec. 9. Notation: Throughout this paper, italics indicates scalar quantities (𝑎), lower case and

upper case boldface indicate column vectors (a) and matrices (A), respectively. Each entry of a matrix A35

is indicated as 𝑎𝑖 𝑗 ≜ [A]𝑖, 𝑗 . I𝑁 defines the 𝑁 × 𝑁 identity matrix. The superscripts ∗, ⊤ and 𝐻 indicate

the complex conjugation, the transpose and the Hermitian operators respectively, then A𝐻 = (A∗)⊤. The

Euclidean norm of a vector a is indicated as | |a| |.
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2. Nonlinear regression with dependent observations

As discussed in the Introduction, the nonlinear regression is one of the most used statistical model in SP40

and statistics. The aim of this section is then to introduce firstly the model in its generality (i.e. the true

signal model) and secondly to present its Gaussian-based, i.i.d. simplified version as it is generally assumed

by SP practitioners for inference purposes.

2.1. True signal model

Let {𝑥𝑘 ∈ C}+∞
𝑘=−∞ be a sequence of scalar, complex-valued, observations characterized by the following45

data generating process:

𝑥𝑘 = 𝑓𝑘 (𝜽) + 𝑛𝑘 , −∞ < 𝑘 < +∞, (2)

where 𝜽 ∈ Θ ⊂ R𝑝 indicates the real-valued 1, true parameter vector and Θ is a compact subset of R𝑝. The

functions 𝑓𝑘 : Θ → C, −∞ < 𝑘 < +∞ are known continuous and differentiable functions on Θ. In practical

applications, the sequence (2) will be observed from a finite integer 𝑁1 ∈ Z to a finite integer 𝑁2 ∈ Z,

such that −∞ < 𝑁1 < 𝑁2 < +∞. Consequently, by defining 𝑁 = |𝑁2 − 𝑁1 + 1|, the sequence (2) can be50

written in a vectorial form as in (1) where n ∈ C𝑁 is a zero-mean complex-valued noise vector whose 𝑁

entries are assumed to be sampled from a Wide Sense Stationary (WSS) discrete random process {𝑛𝑘 : ∀𝑘}

characterizing the measurement noise 𝑛𝑘 in (2).

Let us now have a closer look at the statistical characterization of {𝑛𝑘 : ∀𝑘}. As a zero-mean WSS

process, {𝑛𝑘 : ∀𝑘} is fully characterised by (see e.g. [11, Sec. 15.5], [12, Sec. 1.3]): i) its autocorrelation55

function 𝑟𝑛 [𝑘 + 𝑗 , 𝑘] = 𝑟𝑛 [𝑘 + 𝑗 − 𝑘] = 𝑟𝑛 [ 𝑗] and ii) the joint probability density function (pdf) of the 𝑁

samples C𝑁 ∋ n ∼ 𝑝n, for any values of 𝑁. For further reference, we indicate the marginal pdf of each sample

as 𝑛𝑘 ∼ 𝑝𝑛𝑘 . We make the following (non-Gaussian, non-i.i.d.) assumption:

Assumption 1. Let {𝑛𝑘 : ∀𝑘} be a zero-mean, WSS discrete and circular complex-valued process [13] such

that the joint pdf of 𝑁 samples follows an unspecified pdf n ∼ 𝑝n,∀𝑁 admitting (at least) finite first and60

second order moments. Then, we assume that its autocorrelation function exists and satisfies |𝑟𝑛 [ 𝑗] | ≜

|𝐸𝑝n
[𝑛∗

𝑘+ 𝑗𝑛𝑘] | = 𝑂 ( | 𝑗 |−𝛾), 𝑗 ∈ Z, for some 𝛾 > 0 that controls the polynomial speed of decay to 0 of |𝑟𝑛 [ 𝑗] |.2

Note that the circularity of {𝑛𝑘 : ∀𝑘} implies that 𝐸𝑝n
[𝑛𝑘+ 𝑗𝑛𝑘] = 0, ∀𝑘, 𝑗 .

The value of the positive scalar 𝛾 depends on the regularity conditions (in particular on the finiteness of

the moments) that we are willing to accept on the process {𝑛𝑘 : ∀𝑘} and on the class C to which the joint65

1We decided to work with real-valued parameters for two reasons. Firstly, in practical applications, the parameters of interest
are real-valued physical quantities as e.g. time-delay and Doppler. Secondly, this choice allows us to avoid the technicalities
related to the Wirtinger calculus [10] that may obscure the more important statistical concepts. It is worth stressing that this
choice will not limit the generality of the derived results since any complex-valued vector can be recast in term of a real-valued
vector by means of the standard isomorphism between C𝑝 and R2𝑝 , i.e. C𝑝 ∋ 𝜃 ⇋ 𝜃 ≜ (Re(𝜃 )⊤, Im(𝜃 )⊤ )⊤

2Given a real-valued function 𝑓 (𝑥 ) and a positive real-valued function 𝑔 (𝑥 ), 𝑓 (𝑥 ) = 𝑂 (𝑔 (𝑥 ) ) if and only if there exists a
positive real number 𝑎 and a real number 𝑥0 such that | 𝑓 (𝑥 ) | ≤ 𝑎𝑔 (𝑥 ) , ∀𝑥 ≥ 𝑥0.
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𝑝n belongs. For an in-depth discussion on this point we refer to [4, Sec. 2] an the references therein. In the

rest of this paper, we limit ourselves to consider only random processes, with relevant joint pdf 𝑝n ∈ C, that

satisfy Assumption 1. It is worth stressing that, as detailed in [4, Sec. 2], this family of random processes is

large enough to encompass the vast majority of (non-pathological) statistical models encountered in physics

and engineering.70

It is worth noticing here that, as a direct consequence of Assumption 1:

• the marginal pdf 𝑝𝑛𝑘 , related to the joint 𝑝n ∈ C, of each sample 𝑛𝑘 ∼ 𝑝𝑛𝑘 is left fully unspecified,

• the covariance matrix of n , i.e. 𝚺 ≜ 𝐸𝑝n
[nn𝐻 ], has the following Hermitian Toeplitz structure [12,

Sec. 1.3]:

[𝚺]𝑘,𝑘+ 𝑗 = [𝚺]𝑘+1,𝑘+ 𝑗+1 = [𝚺]∗𝑘+ 𝑗+1,𝑘+1 (3)

= 𝑟𝑛 [(𝑘 + 𝑗) − 𝑘] = 𝑟∗𝑛 [𝑘 − (𝑘 + 𝑗)] = 𝑟𝑛 [ 𝑗] = 𝑟∗𝑛 [− 𝑗],

75

[𝚺]𝑘,𝑘 = 𝑟𝑛 [0] = 𝜎̄2
𝑛 ,∀𝑘, (4)

where 𝜎̄2
𝑛 is the true and generally unknown noise power.

We would like to stress that Assumption 1 allows for a wide range of realistic noise models [14]. In fact, we

can note that any (Gaussian and non-Gaussian) stable second-order stationary (SOS) AutoRegressive Moving

Average (ARMA) discrete process, of any finite orders (and with finite moments of sufficiently high order),

satisfies Assumption 1, since the autocorrelation function of any stable SOS ARMA decays exponentially.80

It is well know that, by appropriately choosing the orders of the Autoregressive and of the Moving Average

parts, an ARMA process can approximate the (continuous) power spectral density (PSD) of any complex

discrete random processes [12, Ch. 3]. Moreover, a non-Gaussian ARMA can characterise the heavy-tailed

behaviour of realistic noise models. Another popular noise model of practical interest satisfying Assumption

1 is the Compound-Gaussian (CG) (or spherically invariant random vector (SIRV)) model [15]. In fact, any85

SIRV n ∈ C𝑁 can be represented as [15, Def. 3] n =𝑑

√
𝜏m for some real-valued positive random variable 𝜏,

such that 𝐸 [𝜏] = 1, called texture, independent of the zero-mean, 𝑁-dimensional, circular, complex Gaussian

random vector, called speckle, m ∼ CN(0,𝚺), where 𝚺 is the covariance matrix given in (3).

To conclude this section, we note that the pdf of the data vector in eq. (1) can be expressed as function

of the unspecified noise pdf 𝑝n as:90

x ∼ 𝑝𝝐̄ ≜ 𝑝𝝐̄ (x; 𝜎̄2
𝑛 , 𝜽) = 𝑝n (x − f (𝜽); 𝜎̄2

𝑛 ), (5)

where

𝝐̄ = (𝜎̄2
𝑛 , 𝜽

⊤)⊤ ∈ Γ ⊂ R+ × R𝑝 (6)

4



is the complete vector of the true parameters, where 𝜽 is the vector of the parameter of interest and

R+ ∋ 𝜎̄2
𝑛 > 0 a nuisance parameter, i.e. a term whose estimation is not strictly required but the lack of its

knowledge may have an impact on the estimation performance of 𝜽.

2.2. Misspecified Gaussian, i.i.d. signal model95

To do inference on the parameter vector 𝜽, and specifically to estimate it, a common procedures among

SP practitioners is to assume a simplified model describing the statistical behaviour of the observations in

the place of the true data generating process in (2). This model misspecification is dictated by two main

reasons [5]. The first one is that the autocorrelation structure, as well as the pdf 𝑝n is generally not a-priori

known and not easy to obtain from physical considerations on the random experiment at hand. Secondly,100

one could prefer a simplified model in order to derive estimation algorithms that are easy to implement and

fast to compute.

One of the most popular simplifying assumption is to consider the noise process {𝑛𝑘 : ∀𝑘} as a zero-mean,

White Gaussian WSS random process. This implies that its autocorrelation function can be expressed as

𝑟𝑛 [ 𝑗] = 𝜎̄2
𝑛𝛿[ 𝑗], where 𝛿[ 𝑗] is the Kronecker delta sequence. As a consequence, the noise vector n ∈ C𝑁

105

is distributed as a centered complex normal random vector with diagonal covariance matrix, i.e. n ∼

CN(0, 𝜎2
𝑛 𝑰𝑁 ). This simplifying assumption leads to the following misspecified statistical model for the data

vector x ∈ C𝑁 in (1):

F𝝐 ≜
{
𝑓𝝐 | 𝑓𝝐 (x; 𝝐) = CN(f (𝜽), 𝜎2

𝑛 𝑰𝑁 ), 𝝐 ∈ Γ
}
, (7)

that is, each pdf belonging to F𝝐 can be expressed as:

𝑓𝝐 (x;𝜎2
𝑛 , 𝜽) = (𝜋𝜎2

𝑛 )−𝑁 𝑒
− | |x−f (𝜽) | |2

𝜎2
𝑛 . (8)

The question that we are going to answer in the next section is: is it possible to derive a lower bound to110

the Mean Squared Error (MSE) of any unbiased, in the misspecified sense defined in [3, 6, 5] estimation

procedure of 𝜽, derived under the Gaussian, i.i.d., misspecified model F𝝐 in (7) in the presence of dependent

observations satisfying Assumption 1?

To answer to this question, we evaluate the MCRB [5, 6, 7] on the estimation of 𝜽 when the assumed

model is F𝝐 while the true data generating process is the (dependent, non-Gaussian) one introduced in (2).115

To this end, we start by evaluating the pseudo-true parameter vector 𝝐0 ∈ Γ, i.e. the vector in Γ that

minimizes the Kullback-Leibler Divergence (KLD) [5, A1][6, Sec. 4.4.1] between the true (and unknown)

pdf x ∼ 𝑝𝝐̄ and any element 𝑓𝝐 ∈ F𝝐 of the assumed misspecified model in (7). The vector 𝝐0 ∈ Γ can be

seen as a sort of “minimum divergence projector” of the true pdf onto the misspecified model F𝝐 and then

it characterises the pdf 𝑓𝝐0 ∈ F𝝐 closest to the true pdf 𝑝𝝐̄ in the KLD sense.120

5



3. The pseudo-true parameter vector

As anticipated in the previous section, the pseudo-true parameter vector 𝝐0 is the element in the param-

eter space Γ that minimizes the KLD between the true data pdf x ∼ 𝑝𝝐̄ and any (possibly) misspecified pdf

𝑓𝝐0 ∈ F𝝐 [3], [5, A1] and [6, Sec. 4.4.1]:

𝐷 (𝑝𝝐̄ | | 𝑓𝝐 ) = 𝐸𝑝𝝐̄

[
ln

(
𝑝𝝐̄ (x; 𝝐̄)
𝑓𝝐 (x; 𝝐)

)]
x ∼ 𝑝𝝐̄ , 𝑓𝝐 ∈ F𝝐 (9)

𝐸𝑝𝝐̄ [·] is the expectation with respect to (w.r.t.) the true model’s pdf. Consequently:125

𝝐0 = argmin
𝝐∈Γ

{𝐷 (𝑝𝝐̄ | | 𝑓𝝐 )} = argmin
𝝐∈Γ

{
𝐸𝑝𝝐̄ [− ln 𝑓𝝐 (x; 𝝐)]

}
. (10)

From (8), it follows directly that:

𝐸𝑝𝝐̄ [− ln 𝑓𝝐 ] = 𝑁 ln(𝜋) + 𝑁 ln(𝜎2
𝑛 ) +

𝐸𝑝𝝐̄

[
| |x − f (𝜽) | |2

]
𝜎2
𝑛

. (11)

By substituting (11) in (10), we have:

𝝐0 = argmin
𝝐∈Γ

{
𝐸𝑝𝝐̄

[
− ln 𝑓𝝐 (x;𝜎2

𝑛 , 𝜽)
]}

= argmin
𝝐∈Γ

{
𝐸𝑝𝝐̄

[
1

𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
}

(12)

Since, as shown in the Appendix, the minimization w.r.t. to 𝜽 is independent from the one of 𝜎2
𝑛 , 𝜽0 can

be obtained as:

𝜽0 =argmin
𝜽

{
𝐸𝑝𝝐̄ [− ln 𝑓𝝐 (x; 𝝐)]

}
(13a)

= argmin
𝜽

{
𝐸𝑝𝝐̄

[ [
∥x − f (𝜽)∥2

] ]}
(13b)

= argmin
𝜽

{
𝐸𝑝𝝐̄

[
tr

(
(x − f (𝜽)) (x − f (𝜽))𝐻

)]}
(13c)

= argmin
𝜽

{
tr

(
𝚺 + f (𝜽)f (𝜽)𝐻 − f (𝜽)f (𝜽)𝐻 − f (𝜽)f (𝜽)𝐻 + f (𝜽)f (𝜽)𝐻

)}
(13d)

= argmin
𝜽

{
| |f (𝜽) − f (𝜽) | |2

}
⇒ 𝜽0 = 𝜽 . (13e)

Remarkably, this result tells us that the pseudo-true parameter vector of interest 𝜽0 is equal to the one 𝜽.130

Let us now minimize w.r.t. to the variance 𝜎2
𝑛 . By using the result obtained in (13), we have:

𝜎2
0 = argmin

𝜎2
𝑛

{
𝐸𝑝𝝐̄

[
− ln 𝑓𝝐 (x;𝜎2

𝑛 , 𝜽)
]}

(14)
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⇒ 𝐸𝑝𝝐̄

[
𝜕

𝜕𝜎2
𝑛

ln 𝑓𝝐 (x;𝜎2
𝑛 , 𝜽)

����
𝜎2
𝑛=𝜎

2
0

]
= 0 (15)

From direct calculation, we have:

𝐸𝑝𝝐̄

[
𝜕

𝜕𝜎2
𝑛

ln 𝑓𝝐 (x;𝜎2
𝑛 , 𝜽)

����
𝜎2
𝑛=𝜎

2
0

]
(16a)

= 𝐸𝑝𝝐̄

[
− 𝑁

𝜎2
𝑛

+ 1

𝜎4
𝑛

∥x − f (𝜽)∥2
����
𝜎2
𝑛=𝜎

2
0

]
(16b)

= 𝐸𝑝𝝐̄

[
− 𝑁

𝜎2
𝑛

+ tr(nn𝐻 )
𝜎4
𝑛

]
= − 𝑁

𝜎2
0

+ tr (𝚺)
𝜎4
0

(16c)

= − 𝑁

𝜎2
0

+ 𝑁𝑟𝑛 [0]
𝜎4
0

= − 𝑁

𝜎2
0

+ 𝑁𝜎̄
2
𝑛

𝜎4
0

= 0 ⇒ 𝜎2
0 = 𝜎̄2

𝑛 (16d)

Again, eq. (16) tells us that the pseudo-true nuisance parameter 𝜎2
0 equates the true one 𝜎̄2

𝑛 .

By collecting the results from eqs. (13) and (16), we have that the pseudo-true parameter vector equates

the true one135

𝝐0 = 𝝐̄ ≜ (𝜎̄2
𝑛 , 𝜽

⊤)⊤, (17)

under mild assumptions, i.e. for any noise vector C𝑁 ∋ n ∼ 𝑝n sampled form a discrete random process

{𝑛𝑘 : ∀𝑘} whose unspecified joint pdf has finite first and second order moments, that is it admits a zero-mean

𝐸𝑝n
[n] = 0 and a covariance matrix 𝚺 ≜ 𝐸𝑝n

[nn𝐻 ] satisfying (3) and (4). It can be noted that the equality

in (17) does not requires the polynomial decrease of the autocorrelation function introduced in Assumption

1. However, we will see that this requirement will be crucial to derive asymptotic results about the efficiency140

of misspecifed Gaussian procedures.

4. Closed form expression for the MCRB

The aim of this section is to provide the closed form expression of the Misspecified Cramér-Rao Bound

(MCRB) for the estimation of 𝝐̄ under the misspecified scenario discussed in Sec. 2.2. Following [3], [5,

Theo. 1] and [6, Theo. 4.1] and by exploiting the equality between the true and the pseudo-true paramater145

vectors, the MCRB is given by:

MCRB(𝝐0) = MCRB(𝝐̄) = A(𝝐̄)−1B(𝝐̄)A(𝝐̄)−1, (18)

where:

[A(𝝐̄)]𝑖, 𝑗 ≜
[
𝐸𝑝𝝐̄

[
∇𝝐∇⊤

𝝐 ln 𝑓𝝐 (x; 𝝐̄)
] ]

𝑖, 𝑗
= 𝐸𝑝𝝐̄

[
𝜕2

𝜕𝑖𝜕 𝑗
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐̄

]
, (19)
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[B(𝝐̄)]𝑖, 𝑗 ≜
[
𝐸𝑝𝝐̄

[
∇𝝐 ln 𝑓𝝐 (x; 𝝐̄)∇⊤

𝝐 ln 𝑓𝝐 (x; 𝝐̄)
] ]

𝑖, 𝑗
= 𝐸𝑝𝝐̄

[
𝜕

𝜕𝑖
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐̄

𝜕

𝜕 𝑗
ln 𝑓𝝐 (x; 𝝐)

����
𝝐=𝝐̄

]
, (20)

where 𝑓𝝐 (x; 𝝐) ∈ F𝝐 in (7).

The calculation of the matrices A(𝝐̄) and B(𝝐̄) will be performed in four steps:

1. Evaluation of the terms related to 𝜎̄2
𝑛 .150

Through direct calculation, we have:

∇𝜎2
𝑛
ln 𝑓𝝐 (x; 𝝐̄) =

𝜕 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽)

𝜕𝜎2
𝑛

(21)

= − 𝑁

𝜎2
𝑛

+ 1

𝜎4
𝑛

∥x − f (𝜽)∥2
����
𝜎2
𝑛=𝜎̄

2
𝑛

= − 𝑁

𝜎̄2
𝑛

+ tr(nn𝐻 )
𝜎̄4
𝑛

,

and then:

∇𝜎2
𝑛
∇⊤
𝜎2
𝑛
ln 𝑓𝝐 (x; 𝝐̄) =

𝑁

𝜎4
𝑛

− 2

𝜎6
𝑛

∥x − f (𝜽)∥2
����
𝜎2
𝑛=𝜎̄

2
𝑛

=
𝑁

𝜎̄4
𝑛

− 2tr(nn𝐻 )
𝜎̄6
𝑛

. (22)

By taking the expectation w.r.t. the true data distribution 𝑝𝝐̄ and following the same calculation done

in (16), we get:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
∇⊤
𝜎2
𝑛
ln 𝑓𝝐 (x; 𝝐̄)

]
=
𝑁

𝜎̄4
𝑛

− 2tr (𝚺)
𝜎̄6
𝑛

= − 𝑁

𝜎̄4
𝑛

, (23)

where we used their linearity to invert the order of the expectation and trace operators. Similarly, we155

have that;

𝐸𝑝𝝐̄

[(
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐̄)

)2]
= 𝐸𝑝n

[(
− 𝑁

𝜎̄2
𝑛

+ n𝐻n

𝜎̄4
𝑛

)2]
=
𝑁2

𝜎̄4
𝑛

− 2𝑁tr (𝚺)
𝜎̄6
𝑛

+
𝐸𝑝n

[
(n𝐻n)2

]
𝜎̄8
𝑛

=
𝐸𝑝n

[
(n𝐻n)2

]
− 𝜎̄4

𝑛𝑁
2

𝜎̄8
𝑛

. (24)

Note that the term 𝐸𝑝n

[
(n𝐻n)2

]
cannot be further developed without specifying the true pdf of the

noise 𝑝n. We will further discuss this point in the next section.

2. Evaluation of the terms related to 𝜽

From the assumed Gaussian pdf in eq. (8), we have:160

∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽) = − 1

𝜎̄2
𝑛

∇𝜽 ∥x − f (𝜽)∥2
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=
1

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽)

)∗ ∇𝜽 𝑓𝑘 +
(
𝑥𝑘 − 𝑓𝑘 (𝜽)

)
∇∗
𝜽 𝑓𝑘

]
=

2

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
𝑛∗𝑘∇𝜽 𝑓𝑘

}
, (25)

where, for ease of notation, we posed ∇𝜽 𝑓𝑘 (𝜽) = ∇𝜽 𝑓𝑘 .

According to the eq. (20), we can evaluate the matrix B(𝝐̄) as showed in eq. (26) reported at the

bottom of this page. It is worth noticing that, in the step (26d), we used the circularity assumption on

{𝑛𝑘 : ∀𝑘}, i.e. 𝐸𝑝𝑛 [𝑛𝑘𝑛 𝑗 ] = 0, ∀𝑘, 𝑗 (see Assumption 1). The matrix P(𝜽) in (26g) has been introduced

for further reference.165

Moreover, again through direct calculation, we have :

∇𝜽∇⊤
𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽)

=
1

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽)

)∗ ∇𝜽∇⊤
𝜽 𝑓𝑘 − ∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
]
+ 1

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

[ (
𝑥𝑘 − 𝑓𝑘 (𝜽)

) [
∇𝜽∇⊤

𝜽 𝑓𝑘
]∗ − ∇∗

𝜽 𝑓𝑘∇
⊤
𝜽 𝑓𝑘

]
=

2

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{(
𝑥𝑘 − 𝑓𝑘 (𝜽)

) [
∇𝜽∇⊤

𝜽 𝑓𝑘
]∗} − 2

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
. (27a)

Then we can introduce the matrix A(𝜽) as

A(𝜽) ≜ 𝐸𝑝𝝐̄

[
∇𝜽∇⊤

𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽)

]
(28)

= − 𝑁

𝜎̄2
𝑛

[
2

𝑁

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}]
≜ − 𝑁

𝜎̄2
𝑛

K(𝜽),

where, again, we have introduced the matrix K(𝜽) for further reference. Note that the expectation of

the term in (27a) is nil since 𝐸𝑝𝝐̄

[
𝑥𝑘 − 𝑓𝑘 (𝜽)

]
= 𝐸𝑝𝝐̄ [𝑛𝑘] = 0,∀𝑘.

3. Evaluation of the cross-terms170

From the circularity of the noise process (see Assumption 1), it is immediate to verify that:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐̄)∇⊤

𝜽 ln 𝑓𝝐 (x; 𝜎̄2
𝑛 , 𝜽)

]
=

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝝐̄)∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽)
]⊤

= 01×𝑝 . (29)

Moreover, we have that:

∇𝜎2
𝑛
∇𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽) = ∇𝜽∇𝜎2
𝑛
ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽)

=
2

𝜎̄4
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
𝑛∗𝑘∇𝜽 𝑓𝑘

}
. (30)
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Consequently, since the noise process is zero-mean, we trivially have that:

𝐸𝑝𝝐̄

[
∇𝜎2

𝑛
∇⊤
𝜽 ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽)
]

= 𝐸𝑝𝝐̄

[
∇𝜽∇𝜎2

𝑛
ln 𝑓𝝐 (x; 𝜎̄2

𝑛 , 𝜽)
]⊤

= 01×𝑝 . (31)

4. Definition of the matrices A(𝝐̄) and B(𝝐̄)
By collecting the previous results, we have that the matrix A(𝝐̄) in eq. (19) can be expressed as:175

A(𝝐̄) = 𝑁 ©­«
−1/𝜎̄4

𝑛 01×𝑝

0𝑝×1 − 1
𝜎̄2
𝑛
K(𝜽)

ª®¬ . (32)

Similarly, for the matrix B(𝝐̄) in eq. (20), we have:

B(𝝐̄) = 𝑁 ©­«
(𝐸𝑝n [ (n𝐻n)2]− 𝜎̄4

𝑛𝑁
2 )

𝑁 𝜎̄8
𝑛

01×𝑝

0𝑝×1
1
𝜎̄4
𝑛
P(𝜽)

ª®¬ . (33)

As we can see from eq. (33), the matrix B(𝝐̄) is function of the matrix P(𝜽) in (26g) and the term

𝐸𝑝n
[(n𝐻n)2]. Now, in order to provide asymptotic results on the number of observations, i.e. as

𝑁 → ∞, the norm of the matrix matrix B(𝝐̄) has to remain bounded as 𝑁 → ∞. As discussed in [4],

the polynomial decrease of 𝑟𝑛 [ 𝑗] is needed to guarantees that B(𝝐̄) will not explode as 𝑁 → ∞. 3
180

Finally, the MCRB in (18) can be expressed as:

MCRB(𝝐̄) = A(𝝐̄)−1B(𝝐̄)A(𝝐̄)−1

=
1

𝑁

©­«
(𝐸𝑝n

[
(n𝐻n)2

]
− 𝜎̄4

𝑛𝑁
2)/𝑁 01×𝑝

0𝑝×1 C(𝜽)
ª®¬ , (34)

where

C(𝜽) ≜ K(𝜽)−1P(𝜽)K(𝜽)−1. (35)

It is important to note that, due to the block-diagonal structure of MCRB(𝝐̄), the MCRB of the

parameter of interest vector 𝜽 can be simply obtained as:

MCRB(𝜽) = 𝑁−1C(𝜽). (36)

Remarkably, this result tells us that the estimation of 𝜽 is asymptotically decorrelatd from the nuisance185

parameter 𝜎̄2
𝑛 .

3Roughly speaking, the Assumption 1 guarantees the existence of a matrix B0, such that det(B0 ) > 0 and a⊤ (B0−B(𝝐̄ ) )a → 0
as 𝑁 → ∞, for any non-zero real vector a ∈ R𝑝+1.
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4.1. Consistent estimation of the matrix P(𝜽)

Let us take a closer look to the matrix P(𝜽) in eq. (26f). It can be immediately noted that it depends

on the a-priori knowledge of the autocorrelation function of the noise 𝑟𝑛 [ 𝑗] ≜ 𝐸𝑝n
[𝑛∗

𝑘+ 𝑗𝑛𝑘]. However, to

evaluate it, we need to know the true pdf 𝑝n of the noise. This is in contrast with the Assumption 1 where190

𝑝n ∈ C is left unspecified. We should then rely on a consistent estimator P̂𝑁 of P(𝜽). Thanks to Assumption

1, deriving such consistent estimator is possible, even in presence of dependent observations. Following [4],

let us define the estimator P̂𝑁 of P(𝜽) as:

P̂𝑁 =
2

𝑁

∑︁𝑁2

𝑘=𝑁1

|𝑛𝑘 |2Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘

}
+ 4

𝑁

∑︁𝑙

𝑗=1

∑︁𝑁2− 𝑗

𝑘=𝑁1

Re
{
𝑛∗𝑘+ 𝑗𝑛𝑘∇𝜽 𝑓𝑘+ 𝑗∇𝐻

𝜽 𝑓𝑘

}
, (37)

where 𝑙 ⩽ 𝑁2 − 𝑁1 + 1 is the so-called correlation lag formally defined in Theo. 1, 𝑛𝑘 ≜ 𝑥𝑘 − 𝑓𝑘 (𝜽𝑁 ) and

∇𝜽 𝑓𝑘 ≜ ∇𝜽 𝑓𝑘 (𝜽𝑁 ) and 𝜽𝑁 is a
√
𝑁-consistent estimator of the true parameter vector 𝜽. Among all the195

possible consistent estimators, the best choice is the asymptotic efficient one that we are going to introduce

in the subsequent Sec. 6. The consistency of the estimator P̂𝑁 in (37) is established in [4, Theo. 3.5]:

Theorem 1. Under Assumption 1 and other technical regularity conditions (see A1a, A3, A4 and A7 in

[4]), if the correlation lag 𝑙 grows at the rate 𝑙 = 𝑜(𝑁1/3) as 𝑁 → ∞,4 we have that P̂𝑁 is a consistent

estimator of P(𝜽):200

P̂𝑁

𝑝
→ P𝑁 (𝜽), (38)

where
𝑝
→ indicates the convergence (element by element) in probability.

By a direct application of the Continuous Mapping Theorem and of the Slutsky’s Lemma [16, Theo. 2.3

and Lemma 2.8], we have that the matrix C(𝜽) in (35) can be consistently estimated as:

Ĉ𝑁 ≜ K(𝜽𝑁 )−1P̂𝑁K(𝜽𝑁 )−1
𝑝
→ C(𝜽), (39)

that can be exploited to get a consistent estimation of the MCRB on the vector of the parameters of interest

𝜽.205

5. MCRB expression for CES uncorrelated data

In order to highlight the importance and the generality of the results obtained in the previous section, let

us consider the particular case, yet important in applications, where the noise process {𝑛𝑘 : ∀𝑘} is assumed

to be white with independent and identically Complex Elliptically Symmetric (CES)-distributed samples.

More formally, we assume that:210

4Given a real-valued function 𝑓 (𝑥 ) and a strictly positive real-valued function 𝑔 (𝑥 ), 𝑓 (𝑥 ) = 𝑜 (𝑔 (𝑥 ) ) if for every positive
real number 𝑎, there exists a real number 𝑥0 such that | 𝑓 (𝑥 ) | ≤ 𝑎𝑔 (𝑥 ) , ∀𝑥 ≥ 𝑥0.
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Assumption 2. Let {𝑛𝑘 : ∀𝑘} be a zero-mean, white WSS discrete and circular complex-valued process [13]

such that:

1. each sample 𝑛𝑘 follows a CES distribution 𝑛𝑘 ∼ 𝑝𝑛 = 𝐶𝐸𝑆(0, 𝜎̄2
𝑛 , 𝑔) with unspecified density generator

𝑔,

2. its autocorrelation satisfies 𝑟𝑛 [ 𝑗] ≜ 𝐸𝑝n
[𝑛∗

𝑘+ 𝑗𝑛𝑘] = 𝜎̄
2
𝑛𝛿[ 𝑗], where 𝛿[ 𝑗] is the Kronecker delta sequence.215

As a direct consequence of Assumption 2, we have that:

• the joint pdf 𝑝n of the noise vector n ∼ 𝑝n is the product of the marginal densities, i.e. 𝑝n (n; 𝜎̄2
𝑛 , 𝑔) =∏𝑁2

𝑘=𝑁1
𝑝𝑛𝑘 (𝑛𝑘 ; 𝜎̄2

𝑛 , 𝑔)

• the covariance matrix of n ∈ C𝑁 is a diagonal matrix, i.e. 𝚺 ≜ 𝐸𝑝𝑛 [nn𝐻 ] = 𝜎̄2
𝑛I𝑁 .

It is worth stressing here the generality of an unspecified CES distribution for the noise samples. The220

CES ones is a wide class of non-Gaussian and heavy-tailed distributions encompassing the Gaussian, the

Generalized Gaussian, the 𝑡−, the 𝐾− and the Weibull distributions as special cases [15]. Since its nominal

density generator 𝑔 is left unspecified, we let the noise 𝑛𝑘 ∼ 𝑝𝑛𝑘 have any possible distribution in the CES

class.

From the Stochastic Representation Theorem [15, Theo. 3], each entry 𝑛𝑘 can be represented as [15,225

Theo. 3]:

𝑛𝑘 =𝑑

√︁
𝑄𝑘𝜎̄𝑛𝑢𝑘 , (40)

where 𝑢𝑘 is a complex univariate random variable uniformly distributed on C𝑆 ≜ {𝑢 ∈ C| |𝑢 | = 1}, i.e.

𝑢𝑘 ∼ 𝑈 (C𝑆). The second order modular variate 𝑄𝑘 ∼ Q is a positive random variable, independent from

𝑢𝑘 with pdf 𝑝Q (𝑞) = 𝛿−1𝑔 𝑔(𝑞), where 𝛿𝑔 ≜
∫ ∞
0
𝑔(𝑞)𝑑𝑞 is a normalizing constant (see [15, Eq. (19)]). Since

the density generator 𝑔 is left unspecified, it is immediate to verify that there is a scale ambiguity between230

𝜎̄2
𝑛 and 𝑔 itself. To avoid this problem, we impose that 𝐸 [Q] = 1. Note that, this constraint allows us to

consider 𝜎̄2
𝑛 as the statistical power 𝑃 of the noise 𝑛𝑘 , (see the discussion in [15, Sec. III.C]), since from (40),

we have that:

𝑃 ≜ 𝐸 [|𝑛𝑘 |2] = 𝐸 [Q]𝐸 [|𝑢𝑘 |2]𝜎̄2
𝑛 = 𝜎̄2

𝑛 , (41)

where 𝐸 [|𝑢𝑘 |2] = 1 [15, Lemma 1].

Let us now apply the general expression of the MCRB obtained in (34) to the special case of an i.i.d.235

CES-distributed noise process formally characterized in Assumption 2. To this end, it is immediate to verify

that the matrix A(𝝐̄) in (32) remain unchanged. Let us now focus on the matrix B(𝝐̄) in (33). We will

proceed as follows.

1. Evaluation of the term [B(𝝐̄)]1,1 in (24).
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Let us start by evaluating the term 𝐸𝑝n

[
(n𝐻n)2

]
. Under Assumption 2 and by exploiting the stochastic240

representation in (40), the term 𝐸𝑝n
[(n𝐻n)2] can be evaluated as shown in (42), reported at the bottom

of the page,where we used:

• the mutual independence between 𝑄𝑖 ∼ Q and 𝑄 𝑗 ∼ Q and between 𝑢𝑖 and 𝑢 𝑗 (see Assumption

2),

• from the i.i.d. assumption, we have that 𝐸
[
𝑄2

𝑖

]
= 𝐸

[
Q2

]
,∀𝑖,245

• the constraint 𝐸 [𝑄𝑖] = 𝐸
[
𝑄 𝑗

]
= 𝐸 [Q] = 1,

• the relations 𝐸
[
|𝑢 𝑗 |2

]
= 1 and 𝐸

[
|𝑢 𝑗 |4

]
= 1 from [15, Lemma 1].

By using this result, the term [B(𝝐̄)]1,1 can be readily expressed as:

[B𝑖𝑖𝑑 (𝝐̄)]1,1 = 𝑁 (𝐸
[
Q2

]
− 1)/𝜎̄4

𝑛 (43)

2. Evaluation of the matrix B(𝝐̄)

By putting in the general expression of B(𝜽) in (26) the autocorrelation function 𝑟𝑛 [ 𝑗] = 𝜎̄2
𝑛𝛿[ 𝑗] (see250

Assumption 2), it is immediate to verify that:

B𝑖𝑖𝑑 (𝜽) =
2

𝜎̄2
𝑛

𝑁2∑︁
𝑘=𝑁1

Re
{
∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
≜
𝑁

𝜎̄2
𝑛

K(𝜽), (44)

where K(𝜽) is the matrix already defined eq. (28).

Consequently, the matrix B(𝝐̄), under Assuption 2, can be expressed as:

B𝑖𝑖𝑑 (𝝐̄) = 𝑁
©­«
(𝐸 [Q2] − 1)/𝜎4

𝑛 01×4

04×1
1
𝜎̄2
𝑛
K(𝜽)

ª®¬ . (45)

Finally, from the general expression in (34), the MCRB for the estimation of 𝝐̄ under Assumption 2 can

be expressed as:255

MCRB𝑖𝑖𝑑 (𝝐̄) = A(𝝐̄)−1B𝑖𝑖𝑑 (𝝐̄)A(𝝐̄)−1 =
1

𝑁

©­«
𝜎4
𝑛 (𝐸 [Q2] − 1) 01×4

04×1 𝜎̄2
𝑛K(𝜽)−1

ª®¬ , (46)

and consequently, due to the block-diagonal structure of MCRB𝑖𝑖𝑑 (𝝐̄), the MCRB on the vector of the

parameters of interest 𝜽 is given by:

MCRB𝑖𝑖𝑑 (𝜽) =
𝜎̄2
𝑛

𝑁
K(𝜽)−1. (47)

It is worth highlighting here an interesting result: under the misspecificed scenario discussed in this
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section, i.e. when the data follow a CES, i.i.d. (true) model while the assumed one is a Gaussian, i.i.d.,

model, we have that:260

A(𝜽) + B𝑖𝑖𝑑 (𝜽) = 0. (48)

As explained in [6, Lemma 4.1], the result in (48), along with the block-diagonal structure of MCRB𝑖𝑖𝑑 (𝝐̄)

in (46), implies that the simplified Gaussian assumption does not lead to any degradation of the asymptotic

estimation performance of the parameter vector of interest 𝜽. In fact, MCRB𝑖𝑖𝑑 (𝜽) coincides with the lower

bound that we can get if the true data model was an i.i.d. Gaussian one. This intriguing outcome can be

explained through the semiparametric theory (refer to [17, Sec. IV;B] and [18, Sec. III.B]) that allows us265

to prove that the lack of knowledge of the density generator 𝑔 does not have any asymptotic impact on the

estimation of 𝜽.

Finally, if the true distribution is a Gaussian one, the term 𝐸 [Q2] is equal to 2 as proved in [9, Eq. (41)]

and this lead us to the classical result about the CRB on the estimation of the variance in complex Gaussian

data.270

We note, in passing, that the same outcomes discussed in this section can be obtained, in a different yet

equivalent way, from the Misspecified Slepian-Bangs formula [9], as discussed in [19].

6. An asymptotic efficient estimator under dependent observations

Let us go back now to the general misspecified nonlinear regression problem presented in Sec. 2. After

having derived the MCRB for the vector of the parameters of interest 𝜽 in (36), the crucial question that275

arises is as follows: is it possible to derive, under the misspecified Gaussian model F𝝐 in (7), a consistent

estimator 𝜽𝑁 of 𝜽 able to achieve the MCRB, at least asymptotically?

It is well known that, under the i.i.d. case, the answer to this question is positive and 𝜽𝑁 is given by the

Missmatched Maximum Likelihood estimator (MMLE) [1, 2, 7, 5, 6]. The extension to the dependent case

has been provided in [4] where the asymptotic behaviour of the nonlinear least square estimator (NLLSE)280

for 𝜽 under the dependent data generating process in (2), that is:

𝜽𝑁 = argmin
𝜽∈Θ

{
1

𝑁

∑︁𝑁2

𝑘=𝑁1

|𝑥𝑘 − 𝑓𝑘 (𝜽) |2
}
, (49)

has been investigated. Note that, when the misspecified Gaussian model F𝝐 in (7) is assumed, it is immediate

to verify that, for any finite 𝑁, the NLLSE coincides with the MMLE. In fact, from (8), the misspecified

log-likelihood function is 𝑙 (𝜽) = −𝑁 ln(𝜋𝜎2
𝑛 ) − ||x − f (𝜽) | |2/𝜎2

𝑛 , then the MMLE for 𝜽 in F𝝐 is given by:

argmax
𝜽∈Θ

𝑙 (𝜽) = argmin
𝜽∈Θ

{
| |x − f (𝜽) | |2

}
= 𝜽𝑁 , (50)

that is the same estimator of the one in (49).285
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Remarkably, in [4] it has been proved that:

Theorem 2. Under Assumption 1 and other technical regularity conditions (see A1-A9 in [4]), 𝜽𝑁 in (49)

satisfies the following properties:

1. Consistency w.r.t. the true parameter vector:

𝜽𝑁

𝑎.𝑠.→ 𝜽 , (51)

where
𝑎.𝑠.→ indicates the almost sure convergence.290

2. Asymptotic normality: Let us indicate as ∼
𝑁→∞

the convergence in distribution, we have:

√
𝑁

[
P(𝜽)

]−1/2
K(𝜽)

(
𝜽𝑁 − 𝜽

)
∼

𝑁→∞
N(0, I). (52)

It follow directly from (52) that the asymptotic error covariance matrix of 𝜽𝑁 equates the MCRB(𝜽) in

(36), i.e.:

lim
𝑁→∞

w𝑇
(
𝑁𝐸𝑝𝝐̄

[
(𝜽𝑁 − 𝜽) (𝜽𝑁 − 𝜽)⊤

]
−K(𝜽)−1P(𝜽)K(𝜽)−1

)
w = 0, ∀w ∈ R𝑝/{0}. (53)

Consequently, the NLLSE in (49) (that coincides with the MMLE under misspecified Gaussian assumption)

is exactly the consistent and asymptotically efficient estimator that we were looking for.295

To conclude, it can be noted that, in the i.i.d. case discussed in Sec. 5, eq. (53) simplifies to:

lim
𝑁→∞

w𝑇
(
𝑁𝐸𝑝𝝐̄

[
(𝜽𝑁 − 𝜽) (𝜽𝑁 − 𝜽)⊤

]
− 𝜎̄2

𝑛K(𝜽)−1
)
w = 0, ∀w ∈ R𝑝/{0}. (54)

7. Application to Time-delay and Doppler estimation

Time-delay and Doppler estimation is fundamental in a plethora of engineering domains, including com-

munications, radar, and navigation [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], as it serves as the initial step at the

receiver [24, 27, 28]. Due to its importance, understanding the achievable estimation performance in terms of300

MSE is of paramount practical interest. This crucial insight is typically provided by the CRB. Over the past

few decades, numerous CRB expressions have been developed for time-delay and Doppler estimation prob-

lems, encompassing both finite narrow-band and wideband signals [21, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

Furthermore, recent studies have explored scenarios in which the actual signal model at the receiver dif-

fers from the assumed one [40, 41, 42, 43]. In these investigations, expressions for estimation bounds, as305

determined by the MCRB, have been established.

However all these prior studies share a common assumption: both the noise in the true signal model and

the noise in the signal model assumed by the receiver follow a centered complex normal distribution with
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uncorrelated covariance matrix, i.e. a diagonal matrix. Surprisingly, despite the extensive research in this

area, there is a notable absence in the literature regarding the ultimate attainable estimation performance310

for time-delay and Doppler (in terms of MSE) when the true signal model features a correlated non-Gaussian

distributed noise. The aim of this section is then to fill this gap by relying on the theoretical results derived

in the previous sections.

7.1. Signal model

We consider the transmitter 𝑇𝑋 to receiver 𝑅𝑋 direct transmission of a band-limited signal 𝑎 (𝑡) with315

bandwidth 𝐵

𝑎 (𝑡) =
𝑁2∑︁

𝑛=𝑁1

𝑎 (𝑛𝑇𝑠) sinc (𝜋𝐵 (𝑡 − 𝑛𝑇𝑠)) , 𝑇𝑠 = 1/𝐵, (55)

over a carrier with frequency 𝑓𝑐 (𝜆𝑐 = 𝑐/ 𝑓𝑐, 𝜔𝑐 = 2𝜋 𝑓𝑐). The transmitter is located at position 𝑷𝑇𝑋 (𝑡)

and the receiver is located at position 𝑷𝑅𝑋
(𝑡). The distance travelled by the transmitted signal is 𝑷𝑇𝑋𝑅𝑋

=

∥𝑷𝑇𝑋 (𝑡 − 𝜏0 (𝑡)) − 𝑷𝑅𝑋
(𝑡)∥≈ (𝑷𝑇𝑋

−𝑷𝑅𝑋
)

𝑐
+ 𝑣

𝑐
𝑡, that is, a first order approximation where 𝜏 =

(𝑷𝑇𝑋
−𝑷𝑅𝑋

)
𝑐

and

𝑏 = 𝑣
𝑐

with 𝑣 the relative velocity between the transmitter and the receiver. Once the baseband demodulation320

process has been completed, the received signal can be expressed as [30, 36, 44]

𝑥 (𝑡; 𝜼̄) = 𝛼̄𝑎
(
(𝑡 − 𝜏) (1 − 𝑏)

)
𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏 ) ) + 𝑛 (𝑡) , (56)

yielding to

𝑥 (𝑡; 𝜼̄) = 𝛼̄𝑎 (𝑡 − 𝜏) 𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑡−𝜏 ) ) + 𝑛 (𝑡) , (57)

under the narrowband assumption, i.e. the influence of the Doppler parameter on the baseband signal

samples is omitted. The term 𝛼̄ = 𝜌𝑒 𝑗Φ̄ represents a complex gain, while 𝑛(𝑡) is a zero-mean, generally non

Gaussian, wide sense stationary (WSS) continuous random process. The discrete signal model is built from325

𝑁 = |𝑁1 − 𝑁2 + 1| samples at 𝑇𝑠 = 1/𝐹𝑠 = 1/𝐵,

x = 𝛼̄𝝁(𝜼̄) + n = 𝜌𝑒 𝑗Φ̄𝝁(𝜼̄) + n, (58)

with x = (. . . , 𝑥 (𝑘𝑇𝑠) , . . .)⊤, 𝑁1 ≤ 𝑘 ≤ 𝑁2 signal samples. Moreover, by posing (𝜼̄) = [𝜏, 𝑏]⊤, we have:

𝝁(𝜼̄) = (. . . , 𝑎(𝑘𝑇𝑠 − 𝜏)𝑒− 𝑗2𝜋 𝑓𝑐 (𝑏 (𝑘𝑇𝑠−𝜏 ) , . . .)⊤. (59)

Consequently, by defining the true vector of the parameters of interest as 𝜽
⊤
=

(
𝜌, Φ̄, 𝜼̄⊤

)
the signal model

in eq. (58) follows the form in (1):

x = 𝛼̄𝝁(𝜼̄) + n = f (𝜽) + n. (60)
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Finally, standard receivers assumes that the noise vector n ∈ C𝑁 is distributed as a centered complex330

normal random vector with diagonal covariance matrix, i.e. n ∼ CN(0, 𝜎2
𝑛 𝑰𝑁 ). Note that this represents

the same misspecified scenario introduced in Sec. 2.2. Specifically, we have that the pdf of the observation

vector x in (60) belongs to the misspecified model in (7), i.e. x ∼ 𝑓𝝐 ∈ F𝝐 .

7.2. Time-delay and Doppler Closed-Form MCRB Expression for a Band-Limited Signal

It is interesting to note the likelihood between the expression obtained in previous sections and those335

already derived in the state of art. In particular, we may note that the matrix −A(𝜽) derived in (28)

represents the FIM of a single source conditional signal model (CSM) [45]. A compact expression of this

FIM, that depends only on the baseband signal samples, was recently derived in [36] as:

−A(𝜽) = 2𝐹𝑠

𝜎2
𝑛

Re
{
QWQ𝐻

}
(61)

with

W =


𝑤1 𝑤∗

2 𝑤∗
3

𝑤2 𝑊2,2 𝑤∗
4

𝑤3 𝑤4 𝑊3,3


, (62a)

340

Q =



𝑒 𝑗Φ̄ 0 0

𝑗 𝛼̄ 0 0

𝑗 𝛼̄2𝜋 𝑓𝑐𝑏 0 −𝛼̄

0 − 𝑗 𝛼̄2𝜋 𝑓𝑐 0


, (62b)

where the elements of W can be expressed w.r.t. the baseband signal samples as,

𝑤1 =
1

𝐹𝑠
a𝐻a, 𝑤2 =

1

𝐹2
𝑠

a𝐻Da, 𝑤3 = a𝐻Λa, (63)

𝑤4 =
1

𝐹𝑠
a𝐻DΛa, 𝑊2,2 =

1

𝐹3
𝑠

a𝐻D2a, 𝑊3,3 = 𝐹𝑠a
𝐻Va.

with a, the baseband samples vector, D, Λ and V defined as,

a = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1≤𝑛≤𝑁2
, (64a)

D = diag (. . . , 𝑛, . . .)𝑁1≤𝑛≤𝑁2
, (64b)

(Λ)𝑛,𝑛′ =

������ 𝑛′ ≠ 𝑛 :
(−1) |𝑛−𝑛′ |

𝑛−𝑛′

𝑛′ = 𝑛 : 0
(64c)
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(V)𝑛,𝑛′ =

������ 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛
′ | 2

(𝑛−𝑛′ )2

𝑛′ = 𝑛 : 𝜋2

3

(64d)

Moreover, under the uncorrelated noise assumption, we note from (46) that, since B𝑖𝑖𝑑 (𝜽) = −A(𝜽), the

MCRB on the estimation of 𝜽 is given by:

MCRB𝑖𝑖𝑑 (𝜽) =
2𝐹𝑠

𝜎̄2
𝑛

Re
{
QWQ𝐻

}
(65)

In the case of correlated noise, the expression of the matrix B(𝜽) = 𝑁−1𝜎̄4
𝑛P(𝜽) in (26) is more challenging345

since P(𝜽) involves the autocorrelation function 𝑟𝑛 [ 𝑗]. We can distinguish between the following two cases.

If 𝑟𝑛 [ 𝑗] is a-priori known, for the application at hand P(𝜽) can be expressed as:

P(𝜽) = 2𝐹𝑠𝜎̄
2
𝑛

𝑁
Re

{
QWQ𝐻

}
+ 4𝐹𝑠
𝑁

𝑙∑︁
𝑗=1

Re
{
𝑟𝑛 [ 𝑗]QW 𝑗Q

𝐻
}

(66)

where 𝑙 is the correlation lag defined in Theo. 1 and:

W 𝑗 =


𝑤

( 𝑗 )
1 𝑤

( 𝑗 )∗
2 𝑤

( 𝑗 )∗
3

𝑤
( 𝑗 )
2 𝑊

( 𝑗 )
2,2 𝑤

( 𝑗 )∗
4

𝑤
( 𝑗 )
3 𝑤

( 𝑗 )
4 𝑊

( 𝑗 )
3,3


, (67)

and the elements of W 𝑗 can be expressed w.r.t. the baseband signal samples as,

𝑤
( 𝑗 )
1 =

1

𝐹𝑠
a𝐻𝑗+a 𝑗− , 𝑤

( 𝑗 )
2 =

1

𝐹2
𝑠

a𝐻𝑗+D 𝑗a 𝑗− , (68)

𝑤
( 𝑗 )
3 = a𝐻𝑗+Λ 𝑗a 𝑗− , 𝑤

( 𝑗 )
4 =

1

𝐹𝑠
a𝐻𝑗+D 𝑗Λ 𝑗a 𝑗− ,

𝑊
( 𝑗 )
2,2 =

1

𝐹3
𝑠

a𝐻𝑗+D
2
𝑗a 𝑗− , 𝑊

( 𝑗 )
3,3 = 𝐹𝑠a

𝐻
𝑗+V 𝑗a 𝑗− .

with a 𝑗− , a 𝑗+ , D 𝑗 , Λ 𝑗 and V 𝑗 defined as,350

a 𝑗+ = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1+ 𝑗≤𝑛≤𝑁2
, (69a)

a 𝑗− = (. . . , 𝑎(𝑛𝑇𝑠), . . .)⊤𝑁1≤𝑛≤𝑁2− 𝑗 , (69b)

D 𝑗 = diag (. . . , 𝑛, . . .)𝑁1≤𝑛≤𝑁2− 𝑗 , (69c)

(
Λ 𝑗

)
𝑛,𝑛′ =

������ 𝑛′ ≠ 𝑛 :
(−1) |𝑛−𝑛′ |

𝑛−𝑛′

𝑛′ = 𝑛 : 0
(69d)
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(
V 𝑗

)
𝑛,𝑛′ =

������ 𝑛′ ≠ 𝑛 : (−1) |𝑛−𝑛
′ | 2

(𝑛−𝑛′ )2

𝑛′ = 𝑛 : 𝜋2

3

(69e)

with 𝑁1 ≤ 𝑛, 𝑛′ ≤ 𝑁2 − 𝑗 . If 𝑟𝑛 [ 𝑗] is not a-priori known, from (37), a consistent estimator of P(𝜽) can be

implemented as:

P̂𝑁 = 𝑁−12𝐹𝑠Re
{
QWQ𝐻

} ∑︁𝑁2

𝑘=𝑁1

|𝑛𝑘 |2+

+ 𝑁−14𝐹𝑠
∑︁𝑙

𝑗=1
Re

{
𝑛∗𝑘+ 𝑗𝑛𝑘QW 𝑗Q

𝐻
}
,

(70)

where 𝑛𝑘 ≜ 𝑥𝑘 − 𝑓𝑘 (𝜽𝑁 ) and 𝜽𝑁 is the consistent estimator of 𝜽 defined as [43] 5:

𝜼̂ = argmax
𝜼



𝚷𝝁 (𝜼)x


2 (71)

𝜌̂ =

��� [𝝁𝐻 (𝜼̂) 𝝁 (𝜼̂)
]−1

𝝁𝐻 (𝜼̂) x
��� (72)

355

Φ̂ = arg
{[
𝝁𝐻 (𝜼̂) 𝝁 (𝜼̂)

]−1
𝝁𝐻 (𝜼̂) x

}
(73)

8. Simulation and Discussion

To support our theoretical analysis, we examine the transmission and reception of a GPS L1 C/A signal

[29]. This signal employs a baseband signal represented by a periodic binary phase-shift keying (BPSK)

Gold code with a length of 1023 chips of period 1ms. At the receiver, we set a sampling frequency 𝐹𝑠 = 4

MHz, which is the standard rate for most commercial receivers. The GNSS receiver assumes that the noise360

follows a standard centered normal distribution.

Scenario 1 In a first scenario, we set a true signal model where the noise is sampled from an autore-

gressive complex discrete random process with innovations following a complex centered 𝑡-distribution [6,

Sec. 4.6.1.1] with 𝜐 > 1 degrees of freedom (or shape parameter) that control the level of non-Gaussianity

and a scale parameter 𝜇. The second-order modular variate Q of a 𝑡-distribution is 𝐹-distributed according365

to [6, eq. 4.59]. Then, in order to meet the constraint 𝐸 [Q] = 1, the scale as to be set as 𝜇 = 𝜐

𝜎̄2
𝑛 (𝜐−1)

(see

[6, eq. 4.60]) where 𝜎̄2
𝑛 depends on the signal to noise ratio at the output of the match filter 𝑆𝑁𝑅𝑜𝑢𝑡 . The

𝑆𝑁𝑅𝑜𝑢𝑡 is defined as:

𝑆𝑁𝑅𝑜𝑢𝑡 =
|𝛼 |2a𝐻a
𝜎̄2
𝑛

. (74)

Furthermore, in this scenario, we employ two autoregressive processes (AR) of order 1 and 6, respectively,

to model the noise correlation. The poles of the process are set to 𝑝 = 0.9 · 𝑒 𝑗2𝜋 ·0.3 for the order 1 process370

5Let 𝑆 = 𝑠𝑝𝑎𝑛 (A), with A a matrix, be the linear span of the set of its column vectors. The orthogonal projector over 𝑆 is
ΠA = A

(
A𝐻A

)
A𝐻 .
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and 𝒑 = [0.5 · 𝑒− 𝑗2𝜋 ·0.4, 0.6 · 𝑒− 𝑗2𝜋 ·0.2, 0.7, 0.4 · 𝑒 𝑗2𝜋 ·0.1, 0.5 · 𝑒 𝑗2𝜋 ·0.3, 0.6 · 𝑒 𝑗2𝜋 ·0.35] for the order 6 process.

The MMLE for the joint estimation of the time-delay and Doppler is defined in (71). The root mean square

error (RMSE) results of the MMLE for the parameters of interest 𝜼𝑇 = [𝜏, 𝑏] are shown in Figs. 1 and 2

w.r.t. the 𝑆𝑁𝑅𝑜𝑢𝑡 . The number of Monte Carlo is set to 1000 iterations and 𝜐 = 2.5. In the results one

can observe that the RMSE (
√
𝑀𝑆𝐸) of the pseudotrue parameter converges to the asymptotic estimation375

performance derived in Sec. 4. These results confirm the theoretical derivation. Moreover, the Gaussian

i.d.d
√
𝐶𝑅𝐵 has been included to quantify the performance with respect to the correlated case. It is worth

to underline that the previous theoretical results are valid for any joint pdf 𝑝n admitting finite first and

second order moments and not only of the one obtained from a 𝑡-distribution.

Scenario 2 In the second scenario, we would like to illustrate the estimation performance in the case380

where the noise is i.i.d. To do so, we propose to set the true signal model as in the previous scenario,

i.e the noise process is complex centered 𝑡-distributed (we remind that in this particular case, the noise

is assumed to be i.i.d and there is not need to define any process to characterized the noise correlation).

Moreover, we also set a true signal model where the noise is distributed according to a complex centered

Generalized Gaussian (GG) distribution, [6, Sec. 4.6.1.2] with exponent 𝑠 > 0 and scale 𝑏 > 0, where385

𝑠 is a parameter controlling the level of non-Gaussianity. The second-order modular variate Q of a GG

distribution is given by Q =𝑑 𝐺
1/𝑠 where 𝐺 is a Gamma distributed random variable with parameter 1/𝑠

and 𝑏, i.e. 𝐺 ∼ Gam(1/𝑠, 𝑏) [15, Sec. IV.B]. In order to satisfy the constraint 𝐸{Q} = 1 (see Sec. 4), we

set 𝑏 =

(
𝜎̄2
𝑛Γ (1/𝑠)
Γ (2/𝑠)

)𝑠
. Again, 𝜎̄2

𝑛 set the 𝑆𝑁𝑅𝑜𝑢𝑡 . The RMSE results of the MMLE for the parameters of

interest 𝜼𝑇 = [𝜏, 𝑏] are shown in Figs. 3 and 4 w.r.t. the 𝑆𝑁𝑅𝑜𝑢𝑡 . The number of Monte Carlo is set to 1000390

iterations. In the simulation, complex centered Generalized Gaussian distributions with 𝑠 = {0.5, 1.5, 2.5}

and complex centered 𝑡-distributions with 𝜐 = {1.1, 2, 3} have been used as a true model. In the results one

can observe that the RMSE of the pseudotrue parameter converges to the asymptotic estimation performance

derived in Sec. 4. These results confirm the theoretical derivation. Note also that the
√
𝑀𝐶𝑅𝐵 is equal to

the
√
𝐶𝑅𝐵. It is important to underline that the preceding theoretical findings are applicable to all true noise395

models characterized by Complex Elliptically Symmetric (CES) distributions, not limited to the Gaussian

(GG) and 𝑡-distribution cases. As mentioned earlier, a thorough explanation of this phenomenon is rooted

in semiparametric theory (refer to [17, Sec. IV.B] and [18, Sec. III.B]), and a comprehensive explanation

will be provided in future research. For now, we restrict our discussion to this observation: the equivalence

between the MCRB and the CRB holds true only when the parameters of interest parameterize the mean400

of the observation vectors. Conversely, if some parameter of interest is involved in the covariance matrix of

the observations, this equivalence may no longer be valid.
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9. Conclusion

This paper focused on the performance evaluation of estimation procedures in nonlinear regression mod-

els. In particular, we were interested in analyzing the asymptotic performance of inference algorithms405

based on the simplistic i.i.d. Gaussian assumption in the presence of correlated and non-Gaussian noise.

To this end, the related MCRB has been evaluated and the consistency and efficiency properties of the

MMLE/NLLSE investigated. Under a weak condition on the rate of decay of the autocorrelation function

(Assumption 1), our results show that:

• The MCRB for the parameters of interest in the nonlinear regression model depends of the autocor-410

relation function of the noise but not on the joint pdf on the noise samples that can then be left

unspecified. Moreover, the MMLE/NLLSE is consistent and efficient with respect to the relevant

MCRB.

• If the noise samples are modeled as zero-mean, i.i.d. CES-distributed (with unspecified density gener-

ator) random variables, the MCRB on the parameter of interest equates the CRB derived under i.i.d.415

Gaussian assumption. This means that the asymptotic performance of Gaussian-based MMLE, i.e.

the NLLSE, are not affected by the lack of knowledge of the true non-Gaussian and heavy-tailed noise

distribution.

Since the i.i.d. Gaussian assumption is widely used in applications, these theoretical results are of great

practical interest. Specifically, they implies that, a practitioner can continue to use the i.i.d. Gaussian-420

based inference procedures without any loss in asymptotic estimation performance even when the noise

samples are heavy-tailed, non-Gaussian but still i.i.d. random variables. On the other hands, if the noise

samples are correlated heavy-tailed, non-Gaussian random variables, the asymptotic performance of i.i.d.

Gaussian-based procedures depends only on the autocorrelation function of the noise process and not on the

specific joint pdf of its samples. Our theoretical findings have been then used to investigate the asymptotic425

performance of Gaussian procedure in time-delay and Doppler estimation for GNSS.

Future works will focus on the possibility to derive lower bounds on the performance of estimation

procedures in the presence of an non-perfect knowledge of the nonlinear function characterizing the regression

model.
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Appendix

In this Appensix, we provide a simple proof that, in equation (12), the minimization w.r.t. to 𝜽 is

independent from the one of 𝜎2
𝑛 . Under some differentiability conditions, we have that:

argmin
𝝐∈Γ

{
𝐸𝑝𝝐̄

[
1

𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
}

⇒ ∇𝝐

(
𝐸𝑝𝝐̄

[
1

𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
)
|𝝐=𝝐0 = 0

⇒


∇𝜽

(
𝐸𝑝𝝐̄

[
1
𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
)
|𝜽=𝜽0 = 0

∇𝜎2
𝑛

(
𝐸𝑝𝝐̄

[
1
𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
)
|𝜎2

𝑛=𝜎
2
0
= 0

(75)

435

Now, it is immediate to verify that the first equation of the non-linear system associated to the gradient

can be expressed as:

∇𝜽

(
𝐸𝑝𝝐̄

[
1

𝜎2
𝑛

[
∥x − f (𝜽)∥2

] ]
+ 𝑁 ln(𝜎2

𝑛 )
)
|𝜽=𝜽0 = 0

⇒ 1

𝜎2
𝑛

(
∇𝜽𝐸𝑝𝝐̄

[ [
∥x − f (𝜽)∥2

] ]
+ ∇𝜽𝑁 ln(𝜎2

𝑛 )
)
|𝜽=𝜽0 = 0

⇒ ∇𝜽𝐸𝑝𝝐̄

[
∥x − f (𝜽)∥2

]
|𝜽=𝜽0 = 0,

(76)

that does not depend on 𝜎2
𝑛 . To conclude the proof, we can immediately note that this equation is equal to

(13b).
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∇𝜽 𝑓𝑘∇𝐻

𝜽 𝑓𝑘
}
+ 4

𝑁

∑︁𝑁2−𝑁1

𝑗=1

∑︁𝑁2− 𝑗

𝑘=𝑁1

Re
{
𝑟𝑛 [ 𝑗]∇𝜽 𝑓𝑘+ 𝑗∇𝐻

𝜽 𝑓𝑘
}]
≜
𝑁

𝜎̄4
𝑛

P(𝜽). (26g)

𝐸𝑝n

[
(n𝐻n)2

]
= 𝜎̄4

𝑛𝐸

[(∑︁𝑁2

𝑖=𝑁1

𝑄𝑖 |𝑢𝑖 |2
)2]

= 𝜎̄4
𝑛𝐸

[∑︁𝑁2

𝑖=𝑁1

∑︁𝑁2

𝑗=𝑁1

𝑄𝑖𝑄 𝑗 |𝑢𝑖 |2 |𝑢 𝑗 |2
]
= (42a)

𝜎̄4
𝑛𝐸

[∑︁𝑁2

𝑖=𝑁1

𝑄2
𝑖 |𝑢𝑖 |4

]
+ 𝜎̄4

𝑛𝐸

[
𝑁2∑︁

𝑖=𝑁1

𝑁2∑︁
𝑗=𝑁1 , 𝑗≠𝑖

𝑄𝑖𝑄 𝑗 |𝑢𝑖 |2 |𝑢 𝑗 |2
]
= (42b)

𝜎̄4
𝑛

[
𝑁2∑︁

𝑖=𝑁1

𝐸
[
𝑄2

𝑖

]
𝐸

[
|𝑢𝑖 |4

]
+

𝑁2∑︁
𝑖=𝑁1

𝑁2∑︁
𝑗=𝑁1 , 𝑗≠𝑖

𝐸 [𝑄𝑖] 𝐸
[
𝑄 𝑗

]
𝐸

[
|𝑢𝑖 |2

]
𝐸

[
|𝑢 𝑗 |2

] ]
(42c)

= 𝜎̄4
𝑛

(
𝑁𝐸

[
Q2

]
+ 𝑁 (𝑁 − 1)

)
= 𝜎̄4

𝑛

(
𝑁 (𝐸

[
Q2

]
− 1) + 𝑁2) , (42d)
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Figure 1: RMSE of the MMLE of the time-delay considering complex centered t-dist. with 𝜐 = 2.5 and two AR processes of
order 1 and 6, respectively, to model the noise correlation.
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Figure 2: RMSE of the MMLE of the Doppler considering complex centered t-dist. with 𝜐 = 2.5 and two AR processes of order
1 and 6, respectively, to model the noise correlation.
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Figure 3: RMSE of the MMLE of the time-delay considering complex centered GG dist. with 𝑠 = {0.5, 1.5, 2.5} and t-dist.
with 𝜐 = {1.1, 2, 3}.
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Figure 4: RMSE of the MMLE of the Doppler considering complex centered GG dist. with 𝑠 = {0.5, 1.5, 2.5} and 𝑡-dist. with
𝜐 = {1.1, 2, 3}.
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