

#### Université de Toulouse

# Managing Noisy and Missing Measurements in Time Scale Generation for a Swarm of Nanosatellites

Hamish McPhee<sup>1,2</sup>, Jean-Yves Tourneret<sup>1</sup>, David Valat<sup>3</sup>, Jérôme Delporte<sup>3</sup>, Yoan Grégoire<sup>3</sup>, Philippe Paimblanc<sup>2</sup> <sup>1</sup> University of Toulouse, Toulouse, France, <sup>2</sup> Télécommunications Spatiales et Aéronautiques (TéSA), Toulouse, France,

<sup>3</sup> Centre National d'Études Spatiales (CNES), Toulouse France

**RÉPUBLIQUE FRANÇAISE** Liberté Égalité Fraternité



**1. Space interferometry** Radio interferometry measurements rely on stable timing systems to obtain consistent Times of Arrival (TOA).

Placing the telescope array in lunar orbit allows it to be shielded from Earth-based radio interference [1].



**Figure 1:** Radio interferometry depends on precision of time of arrival (TOA) measurements, whether based on land or in space.

## 5. Missing Measurements

All measurements made between each unique pair of satellites can be presented as a linear combination of the N-1 time differences required to compute the BTSE for satellite 1:

$$\bigcirc \begin{bmatrix} z_{1,2}(t) \\ z_{1,3}(t) \\ z_{1,4}(t) \\ z_{2,3}(t) \\ z_{2,4}(t) \\ z_{3,4}(t) \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_{1,2}(t) \\ x_{1,3}(t) \\ x_{1,4}(t) \end{bmatrix} + \begin{bmatrix} n_{1,2}(t) \\ n_{1,3}(t) \\ n_{2,3}(t) \\ n_{2,4}(t) \\ n_{3,4}(t) \end{bmatrix} \bigcirc (9) \quad (1)$$

The above can be written in a matrix form when all measurements are available (12) and in a reduced matrix form (13) that excludes the missing measurements.

 $\mathbf{z}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{n}(t) \quad \text{or} \quad \mathbf{z}_r(t) = \mathbf{A}_r(t)\mathbf{x}(t) + \mathbf{n}_r(t) \quad (10)$ 

A Least Squares (LS) estimator reduces the impact of the measurement noise by estimating the required N-1 phase differences that minimize the summed square of the residuals.

$$\hat{\mathbf{x}}_{LS} = \min_{\mathbf{x}} \left\{ \|\mathbf{z} - \mathbf{A}\mathbf{x}\|^2 \right\} \quad \Longrightarrow \quad \hat{\mathbf{x}}_{LS} = \left(\mathbf{A}^T \mathbf{A}\right)^{-1} \mathbf{A}^T \mathbf{z} \quad (11)$$

### 2. Time Scales

The Basic Time Scale Equation details how satellite "i" can realize it's offset from the time scale "E" [2]:  $m (t) = h(t) = h(t) = \sum^{N} m(\hat{m} (t) = (t) = (t)$ 

$$x_{i,E}(t) = h_i(t) - h_E(t) = \sum_{j=1}^{n} w_j(x_{j,E}(t) - z_{j,i}(t))$$
(1)

The key components of the BTSE are:

 $\begin{array}{ll} \text{Clock phase} & \hat{x}_{i,E}(t) = x_{i,E}(t) + \tau y_{i,E}(t-\tau) + \frac{\tau^2}{2} d_{i,E}(t-\tau) & (2) \\ \text{Clock bias} & z_{j,i}(t) = h_j(t) - h_i(t) + n_{j,i}(t) & (3) \\ \text{measurements:} & w_j(t) = f\left(\hat{x}_{j,E}(t) - z_{j,i}(t)\right) & (4) \end{array}$ 

#### 3. Anomalies

Clock phase jumps:

$$\tilde{h}_i(t) = h_i(t) + \Delta h$$

Clock frequency jumps:

$$\tilde{h}_i(t) = h_i(t) + \Delta y(t - t_a) \quad (6)$$

Measurement anomalies:

The achievable noise reduction for the LS estimator depends on the total number of measurements after removing outliers and considering unavailable inter-satellite links.





1000

1500

2000



(5)

All

#### time s **Figure 5:** LS timing error when only one link is available. $\hat{\mathbf{x}}_{LS}(t) - \mathbf{x}(t)$ (iii) Corrupt links removed [ns]idu Anomaly detection can be Time scale algorithms can assign weights to be robust without detecting anomalies 1500 2000 500 1000 time [s] Figure 6: LS timing error with detection and removal of links with anomalies.

500

### 4. Removal/Reintroduction of Isolated Clocks

Renormalizing the weights used in the BTSE after resetting the weights of isolated or newly regained clocks ensures continuity in the time scale with N<sub>m</sub> missing clocks.

 $x_{i,E}(t_m)|_{N_m} = \sum_{j=1}^{N-N_m} w_j(t_m - \tau) \left[ \hat{x}_{j,E}(t_m) - z_{j,i}(t_m) \right] (8)$ 

Time Scale Phase

| v 100  | l . |  |  |  |  |
|--------|-----|--|--|--|--|
| g -100 | ί   |  |  |  |  |

### 6. Conclusion and Future Work

- Inter-satellite clock bias measurements can be corrupted by either malfunctioning clocks or outliers in the measurement noise.
- The availability of the satellite clocks affects the stability of the time scale but can be dealt with by appropriately assigning weights.
- Measurement noise on the intersatellite links can be filtered by taking advantage of every unique measurement as a linear combination of the desired measurements.



**Figure 3:** Time scale continuity and stability for 10 missing clocks during an outage period of 3000 s with and without the proposed reset methodology.

- O Dedicated detection methods should be investigated for identifying corrupted measurement links.
- Further work is required to determine the ideal smoothing time for reintroducing a missing clock into a robust time scale algorithm Real time applications.

### 7. References

[1] B. Cecconi, et al., "NOIRE study report: Towards a low frequency radio interferometer in space," in *Proc. IEEE Aerospace Conference*, (Big Sky, MT, USA), pp. 1-19, IEEE, Mar. 2018.

[2] P. Tavella and C. Thomas, "Comparative study of time scale algorithms," *Metrologia*, vol. 28, pp. 57-67, Jan. 1991.

[3] C. Trainotti et al., "Detection and identification of faults in clock ensembles with the generalized likelihood ratio test", *Metrologia*, vol. 59, pp. 045010, 2022

[4] H.McPhee, J-Y. Tourneret, D. Valat, J. Delporte, Y. Grégoire, P. Paimblanc, "Robust Time Scale for Space Applications Using the Student's t-distribution", Submitted to *Metrologia* 

[5] G. H. Revera, "Full Moon photograph taken 10-22-2010", Moon. (2024, April 19). In Wikipedia. https:// en.wikipedia.org/wiki/Moon