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Robust Optical Flow Estimation in
Cardiac Ultrasound Images Using

a Sparse Representation
Nora Ouzir , Student Member, IEEE, Adrian Basarab , Member, IEEE,

Olivier Lairez, and Jean-Yves Tourneret , Senior Member, IEEE

Abstract— This paper introduces a robust 2-D cardiac
motion estimation method. The problem is formulated as
an energy minimization with an optical flow-based data
fidelity term and two regularization terms imposing spa-
tial smoothness and the sparsity of the motion field in
an appropriate cardiac motion dictionary. Robustness to
outliers, such as imaging artefacts and anatomical motion
boundaries, is introduced using robust weighting functions
for the data fidelity term as well as for the spatial and sparse
regularizations. The motion fields and the weights are com-
puted jointly using an iteratively re-weighted minimization
strategy.The proposedrobustapproach is evaluatedon syn-
thetic data and realistic simulation sequences with available
ground-truth by comparing the performance with state-of-
the-art algorithms. Finally, the proposed method is validated
using two sequences of in vivo images. The obtained results
show the interest of the proposed approach for 2-D cardiac
ultrasound imaging.

Index Terms— Cardiac ultrasound, robust motion estima-
tion, optical flow, sparse regularization, dictionary learning.

I. INTRODUCTION

ULTRASOUND imaging (UI) has been used succesfully in
many practical applications because of its low cost, non-

ionisation properties and reduced discomfort for the patients. 
In the context of cardiac ultrasound (US), the high temporal
resolution of echocardiography allows the fast and complex
motion of the heart to be captured. Cardiac motion estimation 
from US images is therefore an esssential tool for the diagnosis
of cardiovascular diseases [1]–[3].
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Speckle tracking algorithms are among the most widely
used techniques for cardiac motion estimation [4], [5]. These
methods exploit the image characteristics to match blocks
between consecutive frames using a similarity measure, e.g.,
cross-correlation [6] or the sum of absolute differences [7].
Elastic registration methods use a non-rigid transformation
to represent the motion. In particular, B-splines have been
widely used as a parametric model for cardiac motion [8]–[10].
Groupwise motion estimation has also been investigated for
cardiac US [8], [11]. In contrast with the pairwise approach,
groupwise methods make use of the whole image sequence,
allowing temporal consistency to be incorporated. In the
context of UI, some methods have combined the B-mode data
with Doppler imaging using, e.g., single [12] or multiplane
images [10]. These methods benefit from the high temporal
resolution of Doppler imaging and have been shown to be
more resilient to image noise.

Another well-established motion estimation method for UI
is optical flow (OF) [6], [13], [14]. OF methods rely on
brightness constancy, i.e., the assumption that the intensity
of a pixel remains constant over a short period of time. The
motion is then estimated by matching image intensities across
frames. OF methods, as many motion estimation strategies,
are generally formulated as ill-posed inverse problems. It is
therefore necessary to introduce some a priori information
about the motion, e.g., regarding the way it is expected to
vary spatially. Common priors used for motion fields include
spatial or temporal smoothness [15], [16]. Smoothness can
be incorporated into the motion estimation problem by means
of explicit regularization constraints [17] or using parametric
motion models, e.g., by imposing an affine transformation on
the motion vectors [18]. Finally, recent works have investi-
gated sparse regularizations for motion estimation [19]–[22].
In these works, a classical smoothness regularization (i.e., total
variation) is combined with a patch-wise sparse regularization.
The latter imposes sparsity on all motion patches when decom-
posed on a dictionary of typical cardiac motion patterns.

Despite its advantages, UI presents several shortcomings
that make the interpretation of US images a difficult task.
These limitations are principally related to the poor signal-to-
noise-ratio caused by the so-called multiplicative speckle noise
but also to acquisition-related artefacts. In echocardiography,
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the interactions with artificial or anatomical highly reflective
structures, e.g., ribs, calcifications or prosthetic material, cause
the so-called shadowing artefacts. Shadows are a primary
cause of signal loss. Conversely, many other factors can
produce brighter speckles or pseudoenhancement. Reverber-
ations, ringdown and mirror artefacts are also common in UI.
They are due to echoes bouncing multiple times before
reaching the transducer, and thus, generating apparent false
images or reflections. Several other types of UI artefacts are
referred to as clutter [23], [24]. Common consequences of
clutter include low tissue-chamber contrast and overlaying
stationary or moving structures that obscure the signal. The
above-mentioned artefacts affect cardiac motion estimation.
For example, regions with signal drop-outs or static rever-
beration clutter will seem akinetic. Motion artefacts can also
affect the estimated displacements of adjacent tissues due to
the smoothing commonly used in motion estimation problems.
Anatomical boundaries, e.g., between the myocardium and
the background, can create motion discontinuities that violate
these smoothness assumptions. Other factors affecting motion
estimation in 2D cardiac US include out-of-plane motions
resulting in discrepancies in the speckle pattern and erroneous
estimations. Finally, random background motions (e.g., in the
blood) can affect the motion estimates inside the myocardium.

One way of overcoming the problem of image artefacts
is to use detection or filtering strategies [23]–[25] prior to
motion estimation. While this method can be efficient for
specific types of artefacts, it does not solve the other problems
affecting motion estimation, i.e., motion discontinuities and the
presence of atypical motions. For this purpose, more general
techniques have been investigated to handle outliers in motion
estimation problems. The most common approaches are based
on robust M-estimators. The latter are defined according to
the theory of robust statistics and provide the possibility of
directly handling outliers. For example, M-estimators have
been used for OF estimation in [26] and [27] and an iter-
atively re-weighted approach has been considered in [28].
Many other strategies have been studied for robust motion
estimation, e.g., local OF methods based on the least median
of squares [29], [30], the use of multiple images to address
the problem of drift between frames [31] or feature extrac-
tion techniques to account for illumination variations [31].
Motion discontinuities have been taken into account in [32]
for myocardial boundaries. In this work, image segmentation
is used to down-weight the epicardial motions. In the context
of 3D US, an M-estimator-based OF method using a robust
spatial smoothness term is proposed in [33] for brain images.
A specific similarity measure accounting for temporal speckle
correlation is also considered in [9] for 3D cardiac US. In [34],
a topology-preserving cardiac motion inference employing an
M-estimator function for the data term is investigated for
ultrafast US data. Robustness to data outliers has also been
studied in the context of 2D elastography [35]. In this work,
a robust weighting function is introduced within an iteratively
re-weighted minimization strategy to deal with uncorrelated
radio-frequency data.

This work focuses on 2D echocardiography, which is still
more routinely used than emerging 3D UI in clinical practice.

The proposed motion estimation method is based on a recent
work that has shown the benefits of a sparsity-based prior
for cardiac motion estimation [21]. In addition to exploit-
ing the sparse regularization promoted in [21], this paper
investigates a new motion estimation method mitigating the
effect of outliers. The problem is formulated within a general
OF-based energy minimization framework. As in [21], two
regularization terms are used to enforce spatial smoothness
and sparsity of motion in a learnt cardiac motion dictionary.
Moreover, robustness is introduced using weighting functions
derived from M-estimators. In order to reduce the influence
of imaging artefacts, motion discontinuities and background
motions, weights are assigned to the data fidelity and regular-
ization terms. Finally, an iterative strategy is used to jointly
estimate the motions, the sparse codes and the corresponding
weights.

This paper is organized as follows. Section II briefly
reviews the theory of M-estimators and weight functions.
Details about the proposed robust motion estimation method
and the implementation strategy are provided in Section III.
In Section IV, synthetic experiments are used to investigate
the interest of robustness for the data fidelity and regular-
ization terms. The proposed method is then compared to
the previous non-robust cardiac motion estimation method
of [21] and to the robust OF method of [26], using realistic
simulations of cardiac images. The feasibility of the method
for real data is also demonstrated using in vivo images.
Finally, discussions and concluding remarks are reported
in Sections V and VI.

II. WEIGHTING FUNCTIONS

M-estimators are robust functions that address the issue of
outliers by reducing their impact on the estimates. In this
work, we use weight functions associated with redescending
M-estimators. The latter allow the impact of outliers to be
further reduced by controlling the decrease of the M-estimator
function to zero. These functions depend on the first derivative
of their corresponding M-estimator, i.e., w(ei ) = r ′(ei )/ei ,
where w denotes the weight function, r is an appropriate
objective function, r ′ is the derivative of r and ei is the residual
error at pixel i . In order to ensure robustness, the weights of
inliers tend to 1, while those of outliers tend to 0. In this paper,
two weight functions of redescending robust M-estimators are
considered. The first one is the Lorentzian M-estimator, which
is characterized by a differentiable weight function, with a
gradual transition between the inliers and outliers defined as

wL(ei ) = 1

1+ (ei/cσ)2 (1)

where σ > 0 is a scale parameter and c > 0 is a con-
stant. The second example is the Tukey bisquare weight,
referred to as Tukey Biweight and investigated for motion
estimation in [28]. This function provides a hard rejec-
tion of outliers in comparison with the Lorentzian and is
defined by

wB(ei ) =
{
[1− (ei/cσ)2]2, |ei | ≤ cσ

0, |ei | > cσ
(2)



Fig. 1. Weights associated with different M-estimator functions.

where c > 0 is also a constant and σ > 0 a scale parameter.
Fig. 1 shows the shapes of the weight functions (1) and (2)
as a function of the residual error. The weights resulting
from the least-squares and Huber formulations are also shown
for comparison. In the least-squares case, all the weights
have unit values and therefore all estimates contribute equally
to the solution. This figure shows how observations with
high residual errors result in considerably lower weights for
the robust estimators. Note that for the Lorentzian function,
the weights decrease gradually, whereas the transition from
inliers to outliers is more abrupt for the Tukey Biweight
function.

In this work, the weight functions (1) and (2) will be used
to mitigate the effect of outliers for the data fidelity term (5)
and the regularizations (6) and (8) that will be considered for
motion estimation.

Parameter Estimation

The two weight functions in (1) and (2) have tuning
parameters c and σ that allow the outlier rejection threshold to
be controlled, i.e., the value of the residual error above which
an estimate is considered as an outlier. The scale parameter σ
can be computed jointly with the current estimate [36]. This
parameter represents the standard deviation of the residual
errors for the inlier estimates. Due to the presence of outliers,
the standard deviation of the errors is typically estimated
using a robust estimator, for example, the median absolute
deviation (MAD) [36] defined as

σ̂MAD = σ0median
i=1,...,N

[|ei −median(e)|] (3)

with e = (e1, . . . , eN )T . In order to be consistent, the MAD
estimator of scale needs to be multiplied by a constant factor
σ0 (e.g., σ0 = 1.4826 for Gaussian errors [28]). Further-
more, the value of the parameter c is fixed a priori. This
value depends on the considered M-estimator and allows the
resilience to outliers to be controlled. The influence of the
tuning parameters for the Lorentzian M-estimator is illustrated
in Fig. 1 (with different parameter values, such as cσ = 1 and
cσ = 0.1). In particular, smaller values of cσ result in more
outliers, i.e., the weights tend to zero for relatively smaller
residuals. Note that lowering the threshold value provides more
robustness to outliers at the cost of lower efficiency for inliers.

III. ROBUST MOTION ESTIMATION

A. Problem Formulation

This section formulates the motion estimation problem for
a pair of consecutive frames in a US image sequence. The
intensities of the two images (with N pixels) are concatenated
in I ∈ R

2N and the motion field between these two images is
denoted as U = (uT , vT )T ∈ R

2N , where u ∈ R
N and v ∈ R

N

are the horizontal and vertical displacement vectors. The
proposed robust motion estimation method is formulated as
an energy minimization in an OF framework. The considered
energy is defined as the sum of a data fidelity term denoted
as E Q and regularizations denoted as ES and EW . The first
regularization ES ensures a smooth spatial variation of the
motion field, while the second one EW exploits the patch-
wise sparse properties of the motion vectors in U , when
decomposed on a learnt dictionary D [21], [22]. The motion
field is obtained through the minimization of the resulting cost
function

min
α,U

{
E Q(U, I)+ λs ES(U)+ λd EW (U,α)

}
(4)

where α is the sparse coefficient vector, λd and λs are two
regularization parameters that control the influence of the two
regularizations. Prior to the motion estimation, the motion
dictionaries are learnt offline from a set of training cardiac
motion fields as in [21]. In a second step, the motion of
each pair of test images is estimated using the minimization
problem (4). In this work, we make use of robust weight
functions (see Section II) in order to mitigate the effect of
outliers. Further details about the way the data fidelity term
and regularizations of (4) are defined are provided in the
following sections.

B. Robust Data Fidelity Term

This work considers an OF data fidelity term for motion
estimation. OF estimation methods have been investigated
in the context of cardiac motion estimation [13], [14], and
more recently, for cardiac motion estimation with sparsity
regularization [22]. In differential OF methods, the motion is
usually estimated by linking the spatial and temporal image
intensity variations within a least squares estimation. The
main drawback of this quadratic formulation is the lack
of robustness to outliers. For example, attenuated or noisy
image pixels result in large residuals leading to important
biases in the estimated motions. In order to address this
issue, we propose to penalize less strictly the violations of
the brightness constancy assumption using a weight matrix
Q = diag[q(1), . . . , q(N)] ∈ R

N×N . More specifically, data
outliers are assigned low weights (i.e., q(i) close to 0) while
inlying estimates are not affected by the weighting process
(i.e., q(i) close to 1), where i is the pixel index. Denoting as
∂t I the temporal derivative of I at time t and as ∇ IT =
[diag(∇ Ix ), diag(∇ Iy)] ∈ R

N×2N , with ∇ Ix and ∇ Iy the
spatial intensity gradients in both directions and ∇ indicating
the gradient operator, the proposed robust data fidelity term is
finally defined as follows

E Q(U, I) = ‖Q1/2(∂t I +∇ IT U)‖22. (5)



The spatially-variant data weights Q are obtained using a
robust weight function (i.e., wL or wB) introduced in Section II
and the corresponding residual error ed such that, q(i) =
wL ,B(ed (i)),∀i and ed = ∂t I + ∇ IT U . As explained in
Section II, the scale parameter σd is iteratively and jointly
estimated with the motion estimates using (3).

C. Robust Spatial Regularization

The spatial regularization ensures the smoothness of
the motion estimates. A classical choice is Espatial(U) =
‖∇U‖22 [17]. This spatial regularization enforces weak spatial
gradients on the two motion components. However, due to the
use of the l2-norm, motion discontinuities are also penalized
leading to over-smoothing and estimation errors around motion
boundaries. In cardiac motion estimation, the regions associ-
ated with over-smoothing typically correspond to the inner and
outer contours of the myocardium. In this work, we propose a
weighted spatial regularization preserving motion discontinu-
ities by assigning them lower weights (s(i) close to 0), while
still imposing smoothness in homogeneous regions (where s(i)
is close to 1). The associated robust spatial regularization term
can be written as follows

ES(U) = ‖S1/2∇U‖22 (6)

where S = diag[s(1), . . . , s(2N)] ∈ R
2N×2N . The spatial

weighting matrix S is computed using the error es = ∇U
associated with the magnitude of the motion field gradient such
that, s(i) = wL ,B(es(i)) for i = 1, . . . , 2N . Higher values
of es result from rapidly varying motions, e.g., at motion
discontinuities. Because these discontinuities are of the same
nature in both directions, the horizontal and vertical weights
share the same spatial scale σs computed using (3). Note that
the horizontal and vertical motion fields u and v are weighted
separately. Note also that distinct weights could be assigned
to the horizontal and vertical gradients, resulting in a set of
four weights for each pixel. However, in the case of cardiac
motion estimation, the motion discontinuities usually occur
in anatomical boundaries between the myocardium and the
background, characterized by a similar discontinuous motion
in both horizontal and vertical directions.

D. Robust Sparse Regularization

The proposed sparse regularization consists in finding the
motion field U that is best described by a few atoms of
a dictionary containing typical patterns of cardiac motion.
This strategy has been used sucessfully for cardiac motion
estimation in [21] and [22]. In these works, the sparse regular-
ization was performed patch-wise, so that each pair of motion
patches P pU is constrained to have a sparse representation
with respect to the motion dictionary D, i.e,

Esparse(U,α) =
∑

p
‖P pU − Dα p‖22 (7)

where P p ∈ R
2n×2N is an operator that extracts the pth pair

of patches in the horizontal and vertical directions from U ,1

1 P p is a block diagonal matrix whose blocks are P ′p , which extracts the
pth patch in the horizontal or vertical direction.

α ∈ R
2q×2Np is a sparse coding matrix whose columns are

α p = (αT
u,p,α

T
v,p)

T , D ∈ R
2n×2q is a block diagonal matrix

whose blocks are Du ∈ R
n×q and Dv ∈ R

n×q , n denotes
the patch size, q the number of atoms in each dictionary
and Np the number of patches. In order to ensure a sparse
decomposition of the patches in the dictionary, the vectors α p

in (7) are constrained to be sparse, i.e., ‖αu,p‖0 ≤ K and
‖αv,p‖0 ≤ K , with K a fixed maximum number of non zero
coefficients.

The sparse prior in (7) is based on the assumption of
a Gaussian error (expressed by the l2-norm) between the
motion patches and their sparse representation in the learnt
dictionaries. This assumption can be violated for outliers, i.e,
patches containing displacements too far from the patterns
of the dictionary. Since the dictionary contains only trained
motions of the myocardium, typical outliers in cardiac motion
estimation are the background motions and the patches located
on the contours of the myocardium. In order to ensure robust-
ness to outliers, we propose a weighting approach similar
to the one adopted for (5) and (6). The influence of each
patch is controlled by varying weights, i.e., the pixels in the
patches corresponding to outlying motions are assigned lower
weights (wp(i) close to 0), whereas the patch elements that are
sufficiently close to the dictionary have higher weights (w p(i)
close to 1). The robust sparse regularization term considered
in this work is formulated as follows

EW (U,α) =
∑

p
‖W 1/2

p (P pU − Dα p)‖22 (8)

where W p = diag [wu,p(1), . . . ,wu,p(n),wv,p(1), . . . ,
wv,p(n)] ∈ R

2n×2n is the weight matrix associated with the
pth patch (n is the patch size). More specifically, the sparse
coding weights are computed separately for the horizontal
and vertical motion components according to wu,p(i) =
wL ,B(eu,p(i)) and wv,p(i) = wL ,B(ev,p(i)), with eu,p =
P ′pu − Duαu,p and ev,p = P ′pv − Dvαv,p the residual
sparse coding errors of the pth patch. Note that the corre-
sponding scale parameters σu and σv are computed using the
global reconstructed errors eu,g = ∑

p P ′Tp eu,p and ev,g =∑
p P ′Tp ev,p instead of the patch-wise ones (i.e., resulting

in a different outlier threshold for each patch). While the
latter approach works well for motion boundaries, where a
few pixels have large errors with respect to the rest of the
patch, it does not guarantee the rejection of an entire outlying
patch. The global errors eu,g and ev,g allow a common
threshold to be computed for all patches. The patches with
high but homogeneous errors are thus discarded.

Finally, the combination of (5), (6) and (8) results in a fully
robust cardiac OF estimation, i.e., with robust data fidelity,
spatial smoothness and sparsity constraints, which allows the
outliers to be mitigated for a better motion estimation. The
next section studies the optimization algorithm that will be
used to solve (4).

E. Alternate Minimization

After learning the motion dictionaries offline, the cardiac
motion estimation problem (4) can be solved using an alternate



minimization strategy as in [21] and [37]. It is based on an iter-
ative approach, where the optimization alternates with respect
to the motion U and the sparse codes α for fixed regularization
parameters λs and λd , before increasing the sparsity parameter
λd and repeating the process. In this work, this strategy
allows us to incorporate an iterative re-weighted minimization
of (4), where the weights are determined in closed form
and jointly with the motion estimates and the corresponding
sparse coefficients at each iteration. More specifically, all the
weights are initialized to 1 (no weighting). The residuals of
the energy terms are then used to update the weights at each
iteration according to the considered weight function (see
Section II). This approach allows outliers (i.e., estimates with
high residuals) to be removed from the estimation by gradually
assigning them lower weights. Further details about these two
steps are provided below.

1) Sparse coding and weight estimation: The motion vec-
tors in U are fixed and the optimization is performed
with respect to α. The horizontal sparse vectors at the
current iteration are determined by solving

min
αu

∑
p
‖P ′

pu − Duαu,p‖22 s.t., ‖αu,p‖0 ≤ K , ∀p

This sparse coding problem is NP-hard and is solved
using the orthogonal matching pursuit (OMP) algo-
rithm [38]. A similar problem is solved to find the
vertical sparse codes αv . The sparse regularization
weights W p are then updated for each patch as explained
in Section III-D.

2) Motion field, data weight and spatial weight estima-
tion: Once the sparse codes α have been determined,
the motion field U is updated by solving the following
minimization problem

min
U

E Q(U, I)+ λd EW (U,α)+ λs ES(U) (9)

where the matrices Q and S have been determined at
the previous iteration. The minimization problem (9)
is solved using the scaled conjugate gradient algorithm
(SCG) [39]. The data and spatial weights Q and S are
then computed for the next iteration using the obtained
motions U (see Sections III-B and III-C).

A full description of the sparse coding and motion estimation
steps with an iterative weighting is provided in Algorithm 1.

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed method using images
with synthetic motions, realistic US simulations (with a con-
trolled ground-truth) and real data. For the data with available
ground-truth, the performance is evaluated using the endpoint
error described in [18]. For each pixel i , this error is defined as
ε(i) = √[u(i)− û(i)]2 + [v(i)− v̂(i)]2, where u(i), v(i) and
û(i), v̂(i) are the true and estimated horizontal and vertical
flow fields at pixel i . The cumulative displacement error εc

is also computed, providing a global performance measure
for the considered time instants. Finally, a paired t-test [40]
is used to evaluate the statistical significance of the errors
obtained with the proposed method and two other algorithms.

Algorithm 1: Robust Motion Field Estimation
Input : I ,D,K ,λs ,λd , OuterSteps, InnerSteps

Initialization: U = 0, Q = 1 ,Wp = 1, S = 1
1 for k = 1 to OuterSteps do
2 for j = 1 to InnerSteps do

%Sparse coding
3 α ← OMP(U ,D,K );

%Sparse weight update
• Compute the residuals eu,p ← P ′pu − Duαu,p,

ev,p ← P ′pv − Dvαv,p

• Reconstruct the global errors eu,g ← ∑
p P ′Tp

eu,p , ev,g ← ∑
p P ′Tp ev,p

• Compute the scales σu ← σ0MAD(eu,g),
σv ← σ0MAD(ev,g)

• Update the weights W p for p = 1, . . . , Np

%Motion estimation
4 U ← min

U
‖Q1/2(∂t I +∇ IT U)‖22 +

λs‖S1/2∇U‖22 + λd
∑

p ‖W1/2
p (P pU − Dα p)‖22;

%Data and spatial weight update

• Compute the residuals ed ← (∂t I +∇ I T U)
and es ← ∇U

• Compute the scales σd ← σ0MAD(ed)
and σs ← σ0MAD(es)

• Update the weights Q and S
5 end

• Adjust λd

6 end
Output: Motion U , weights Q, Wp, S and sparse codes α.

This test requires to define a significance level, which was
set to α = 0.05 and an asterisk (∗) is used to indicate the
statistical significance of the reported values in comparison
with the other two methods.

A. Dictionary Learning Parameters

For all tests, the motion dictionaries were learnt using a
realistic simulation sequence with available ground-truth. This
sequence, referred to as LADdist, contains realistic motion
fields generated according to [41].2 The dictionaries were
learnt for patches of size 16 × 16, resulting in a dictionary
size of 256 × 384, where 384 is the number of dictionary
atoms. Note that the selected patch size allowed a compromise
between the number of patches and the size of the dictionary.
The sparsity parameter K representing the maximum number
of non-zero coefficients used to represent a patch was fixed to
K = 5 using cross-validation. This parameter is usually much
smaller than the number of training atoms and is related to the
noise level [42]. Note finally that the dictionaries were learnt
separately for the horizontal and vertical directions and fixed
before motion estimation, i.e., learnt offline.

2More details about the data generation process can be found at https://team.
inria.fr/ asclepios/data/straus/.



Fig. 2. Estimated horizontal (top) and vertical (bottom) motion fields (in pixels) using the non-robust (a,b), robust spatial regularization only (c,d),
robust data fidelity only (e,f) and fully robust (g,h) formulations.

B. Synthetic Data
The synthetic data consists of pairs of images that were

used to evaluate the robust data fidelity term and the spatial
and sparse regularizations used separately and jointly. In
particular, the interest of the data fidelity and spatial regu-
larization terms was highlighted using simple motions defined
by translations. Pairs of synthetic cardiac images were then
used to investigate the influence of the robust sparse regu-
larization. After generating the different motions, the images
were corrupted using a multiplicative Rayleigh noise, which
is widely accepted in UI [43]. In this section, we use the
Tukey Biweight function (2). This choice was motivated by
the fact that the synthetic images present abrupt transitions
with clear boundaries (see Section II). Cross-validation was
used to determine suitable parameters for all the synthetic
experiments, leading to cp = cd = cs = 7.4 for all energy
terms and λs = 0.1 for the spatial regularization parameter.

1) Robust Data Fidelity and Spatial Regularization: This
section first considers the example of a pair of images with
a simple translation as in [26]. The images correspond to
a simple motion boundary with two parts with different
intensities: the first one translates 1 pixel to the right in
the horizontal direction, while the second one remains static.
A vertical boundary separates the two regions, which are both
contaminated by a multiplicative Rayleigh noise. In order to
investigate the influence of the robust data fidelity and spatial
terms, the sparse regularization was first removed by setting
λd = 0. The motion field was then estimated using a non-
robust formulation of (4) for which the weights are not updated
(i.e., q(i) = s(i) = 1,∀i ). The weights were then updated
separately for the spatial and data fidelity terms and finally the
motion was estimated using the fully robust formulation (4).
Fig. 2 shows the resulting horizontal (top row) and verti-
cal (bottom row) motion fields. The non-robust formulation
associated with Fig. 2 (a,b) shows errors resulting from the
data fidelity term and the over-smoothing at the boundary.
By introducing a robust spatial regularization, discontinuities
are allowed and the resulting motion in Fig. 2 (c,d) is noisy.
The use of a robust data fidelity term allows this noise to

TABLE I
MEANS AND STDS OF THE ERRORS FOR THE

SIMPLE TRANSLATION IMAGES

Fig. 3. Estimated weights S and Q for the images subjected to
translations.

be mitigated by relaxing the brightness constancy assumption.
The resulting motion displayed in Fig. 2 (e,f) is smooth
with discontinuities that are not allowed at the boundary.
Finally, the fully robust formulation results in a smooth motion
field shown in Fig. 2 (g,h) with less data errors and a
clear discontinuity in the horizontal flow between the two
parts of the images. Quantitative results associated with the
different formulations are reported in Table I. The fully robust
formulation provides competitive results in terms of mean and
standard deviation (std) of the endpoint error. The final weights
Q and S associated with the fully robust formulation are
shown in Fig. 3. The lowest weight values correspond to the
remaining outliers and are located near the motion boundary.
Note that due to the absence of vertical motion in both parts
of the images, the associated weights Sv do not outline any
spatial outliers in Fig. 3 (middle).

2) Robust Sparse Regularization: This section investigates
the interest of using a robust sparse regularization term. A pair
of synthetic cardiac images was considered to compute the
motion accuracy and analyze the resulting robust weights. The
images were generated by corrupting an initial myocardium



Fig. 4. Synthetic cardiac image and its sparse weights W , spatial weights
S and data weights Q. The colorbar indicates the weight values.

TABLE II
MEANS AND STDS OF THE ERRORS FOR A PAIR

OF SYNTHETIC CARDIAC IMAGES

mask with a multiplicative Rayleigh noise and moving
it according to peak-systole ground-truth displacements
(i.e., the largest displacements in the sequence). The back-
ground motion was generated using a mixture of two Gaussian
distributions with variances equal to 5 and 25. The masks
and the ground-truth motions were taken from the LADprox
sequence of realistic simulations in [41] (see Section IV-C).
In order to simulate a UI artefact, a region of size 15×15 pixels
was translated from 1 pixel in both horizontal and vertical
directions. The amplitude of the artefact was set to 10 dB
above the images (see Fig. 4).

Fig. 4 shows the estimated weights for the two images. For
brevity, the horizontal and vertical sparse weights were merged
such that W = diag−1(Wu Wv ). The spatial weights Su and Sv

were combined similarly. The motion boundaries between the
myocardium and the background produced the lowest spatial
and sparse weights. As seen in Section III, these motion
discontinuities result in high gradient values and sparse coding
residuals due to the absence of boundary elements among the
training atoms. The low weights in these regions prevent over-
smoothing, but also allow the sparsity constraint to be relaxed.
Table II compares the estimation accuracy obtained with robust
and non-robust sparse regularizations. These results are in
favour of the fully robust formulation for these images.

C. Realistic Simulations

This section evaluates the proposed method using real-
istic simulated US images with ground-truth motions [41].
The simulation sequences span an entire cardiac cycle of
34 frames with a frame rate of 22 Hz. The original 3D
images were of size 224 × 176 × 208, with a voxel size of
0.7 × 0.9 × 0.6 mm3. The middle slice of the considered

imaging plane was extracted for each sequence in order to
create 2D images. The considered sequences include one
healthy sequence (i.e., Normal), two ischemic cases with
occlusions of the proximal and distal parts of the left anterior
descending coronary artery (i.e., LADprox and LADdist) and
one case with occlusion of the left circumflex coronary artery
(i.e., LCX). The true displacements of the ischemic sequence
LADdist were used to learn the dictionaries. This choice
allowed us to evaluate the method for different scenarios,
i.e., when the dictionary contains patterns of similar or dif-
ferent pathologies when compared to the test sequence. More
specifically, the motion estimation accuracy was evaluated
using the healthy sequence (i.e., Normal), a sequence with
a pathology similar to the training sequence (i.e., LADprox)
and a sequence with a distinct pathology (i.e., LCX). Finally,
a different imaging plane (i.e., the short-axis view (SAX)) was
considered for the LADprox sequence.

Tests were first conducted for the original sequences,
containing only native outliers, e.g., motion boundaries (see
Section IV-C.2). In a second step, synthetic artefacts were
introduced in order to corrupt the LADprox sequence (see
Section IV-C.3). The performance of the proposed method was
compared with two different methods. The first one is a robust
motion estimation algorithm referred to as BA (for Black
and Anandan) [26]. The BA method uses a robust OF-based
data fidelity term with a robust smoothness constraint based
on the gradient of the flow. The second non-robust method
(referred to as NR for non-robust) was studied in [21] and
is based on an energy minimization framework. Its energy is
defined using 1) a data fidelity term based on the assumption
of multiplicative Rayleigh noise, and 2) a sparse prior based
on dictionary learning.

1) Robust Estimation and Regularization Parameters: Using
realistic simulation sequences with available ground-truth
allowed the selection of motion estimation parameters provid-
ing the smallest average error (using cross-validation). For the
proposed method, the optimal spatial parameter was λs = 0.05
for the LADprox SAX sequence and λs = 0.2 for all other
sequences. For each outer iteration, the sparse regularization
parameter λd was logarithmically increased from 10−4 to 10
(see Section III-E) in 4 iterations. The Lorentzian weight
function was used for all the considered sequences. This choice
was motivated by the fact that the images used in this section
have realistic motion boundaries with more gradual transitions,
contrary to the experiments considered in Section IV-B. The
parameters used for the computation of the robust weights
were fixed to cd = 1 for the data fidelity term, and to
cp = cs = 2.38 for the sparse and spatial regularization
weights, whereas the corresponding scale parameters were
computed as explained in Section III. For the BA method,
the Lorentzian robust norm was used for the data and spatial
terms, with a control parameter σBA1 = 0.01 for the data
fidelity term and σBA2 = 0.1 for the spatial regularization.
The smoothness parameter was fixed to λBA = 1 for the
LADprox SAX sequence and λBA = 5 for all other sequences.
The value of the spatial parameter for the NR method was
adjusted by cross-validation, leading to λNR = 0.75 for the
LADprox sequence, λNR = 0.25 for the LADprox SAX



TABLE III
ERROR MEANS ± STDS (εc × 10−4) FOR THE SEQUENCES

WITHOUT ARTEFACTS

Fig. 5. Estimated motions (in pixels) for the 4th frame of the
LADprox sequence for (a) the proposed robust method and (b) the NR
method of [21].

sequence and λNR = 0.5 for the data with artefacts. The
dictionary learning and sparse regularization parameters were
adjusted as in [21].

2) Data Without Artefacts: The proposed robust method was
first tested for the sequences without artefacts. Note that native
outliers such as motion boundaries or motions from outside
the myocardium can be present in the images. A comparison
between the different methods in terms of the mean and stds of
the motion estimation errors is provided in Table III. This table
shows that the proposed method provided smaller mean errors
for the considered sequences. tIn the case of the LADprox
SAX sequence, the statistical significance of the differences
between the errors of the proposed and BA methods was
not found and the corresponding p-value was 0.497, whereas
this p-value was less than 0.001 for the other sequences.
Fig. 7 (a,c) shows the mean errors for each frame of the cardiac
cycle for the LADprox sequence. An improved performance
can be observed, specifically for the large displacements in
the beginning of the sequences (systole). These results show
that robustness can also be beneficial for motion estimation
accuracy in the absence of UI artefacts. In order to show the
impact of the proposed robust approach on motion estimates,
Fig. 5 shows the motion maps obtained for the 4th frame of
the LADprox sequence compared to the NR method. It is
interesting to outline that the smoothing effects close to
the myocardium boundaries are significantly reduced for the
robust approach. The large motions of the valves have also
less impact on the regions near the base of the myocardium
(see Fig. 7 for the corresponding error maps).

3) Data With Artefacts: In order to further investigate the
proposed robust approach, the LADprox sequence was cor-
rupted using two different types of artefacts. The attenuation of
an image region was used to simulate shadowing or loss of sig-
nal, while the increase in amplitude of a part of the image was
used to simulate moving reverberations, reflections or brighter

Fig. 6. First and second frames of the Corrupted1 simulation sequence.
The red boxes indicate the regions with attenuation and clutter artefacts.

TABLE IV
ERROR MEANS ± STDS (εc × 10−4 ) FOR THE SEQUENCES

WITH UI ARTEFACTS

speckles. Two sequences Corrupted1 and Corrupted2 were
created with different attenuation and reflection magnitudes.
For each pair of consecutive images, only one frame was atten-
uated in a region of size 15× 15 pixels, with attenuations of
10 dB and 15 dB. For all the images, a region of the same size
was corrupted using reflection amplitudes of 5 dB and 10 dB.
Between each pair of consecutive frames, the artefact moved
1 pixel in the horizontal and vertical directions. Fig. 6 shows
the first two frames of the Corrupted1 sequence.

Table IV summarizes the results obtained for the two
corrupted sequences in terms of the global endpoint and the
cumulative displacement errors. Note that the errors were
computed for the uncorrupted regions only3. The results show
that the proposed method provides a competitive performance
in terms of the error means and stds, as well as the cumulative
errors computed considering the entire sequence. In particular,
the proposed method clearly outperforms the non-robust NR
algorithm. Finally, the performance of the BA method was
similar for all the sequences, with larger mean endpoint errors
with respect to the proposed method.

Fig. 7 shows the time evolution of the mean endpoint errors
for the entire cardiac cycle. Note that large differences with
respect to the BA method can be observed at the beginning of
the sequence, i.e., the beginning of the cardiac cycle, where the
displacements are large. Note that unlike the proposed method
and NR, the BA algorithm uses a coarse-to-fine estimation
scheme to cope with large motions. Moreover, the performance
gap with respect to the NR method is consistent over the entire
cardiac cycle.

In order to understand the impact of robustness, Fig. 8
shows the error maps for one frame (peak-systole) for the
two corrupted sequences as well as the original LADprox
sequence. For both corrupted sequences the NR method pro-
vided large errors around the artefacts, due to over-smoothing

3The proposed robust and BA methods may result in different outliers.
However, in this paper, only the known outliers, i.e, added attenuation and
clutter artefacts, are discarded for the error computation in order to ensure a
comprehensible and efficient evaluation.



Fig. 7. Mean endpoint error for (a,b) the uncorrupted LADprox sequence
and (c,d) the two corrupted sequences.

Fig. 8. Error maps (in pixels) of the 4th frame (maximum displacement)
for the 3 simulated sequences.

for the clutter artefact and data errors for the attenuation. Also,
large errors can be observed in some uncorrupted portions
of the frame. This is due to the fact that in the non-robust
approach (NR) the solution was highly impacted by outliers.
Note that the errors for the corresponding regions in the
uncorrupted LADprox sequence were much smaller for the
NR method. The proposed robust as well as the BA methods
did not suffer from this kind of errors since they allowed
the impact of outliers to be mitigated. Globally, the proposed
method provided more accurate estimates in comparison with
the BA algorithm.

D. In Vivo

This section evaluates the proposed robust motion esti-
mation method using two sequences of real US cardiac

Fig. 9. Weights for two examples of in vivo images obtained for two
different patients. Images are displayed in (a) and (e) whereas the data,
spatial and sparse weights are shown in (b)(c)(d) and (f)(g)(h).

images. The sequences in vivo 1 (image size 445 × 399)
and in vivo 2 (image size 510 × 372) were acquired at
the Toulouse university hospital (CHU Rangueil, Cardiology
service) using a GE Vingmed Ultrasound Vivid E9 machine
equipped with a tsector M5Sc-D XDclear active matrix single
crystal phased array transducer working at 1.5−4.6 MHz. The
acquired sequences span a cardiac cycle of 50 frames. The
first patient (i.e., in vivo 1) is a 60-year-old man referred for
primary systemic disease (AL) with cardiac amyloidosis and
congestive heart failure. The second sequence (i.e., in vivo 2)
was acquired from a 18-year-old female referred for exercise
dyspnea, with a transthoracic echocardiography showing nor-
mal left ventricular systolic function. The patch-size was set
to 20×20 twith motion dictionaries of size 400×600 learned
using the LADdist sequence (see Section IV-A). The spatial
regularization parameters were tuned to give the best visual
tracking results (see Fig. 12), leading to λs = λNR = 0.2
for the proposed approach and the NR method and λBA = 1,
while the other parameters were the same as in Section IV-C.

The interest of the robust approach is first illustrated by
analysing the weights and motions obtained for a pair of
images in each sequence. Fig. 9 shows two images and
the corresponding data, spatial and sparse weights using the
Lorentzian function. In both cases, the lowest weights were
assigned to the contours of the myocardium, the valves and
some regions of the background. For the in vivo 2 sequence,
the reflection artefact (top right of the image Fig. 9 (e)) was
also assigned lower spatial and sparse weights. Note that,
as in the previous sections, the horizontal and vertical spatial
and sparse weights were merged. A visual analysis of the
motion fields obtained for the images in Fig. 9 is provided
in Fig. 10. For the in vivo 1 sequence, the regularization
across the borders of the myocardium is reduced for the
proposed method because of the low weights assigned to these
motion boundaries. Also, the motions resulting from isolated
brighter speckles are less spread to the neighboring mid and
apical regions in comparison with the NR method. The same
behaviour can be seen for the in vivo 2 sequence for the
proposed and BA methods in the regions near the valves
(i.e., the basal segments of the myocardium) characterized by
clear motion discontinuities.



Fig. 10. Displacement maps (in pixels) obtained for the proposed,
NR and BA methods for the in vivo images in Fig. 9.

Fig. 11. Mean horizontal and vertical displacements (in pixels) in the
basal segment of the septal wall for (a,b) the in vivo 1 and (c,d) the
in vivo 2 sequences.

The time evolutions of the mean horizontal and vertical dis-
placements in the basal segment of the septal wall are shown
in Fig. 11 for the considered algorithms. This figure shows
that for both sequences the horizontal displacements have
positive values in the systole phase while these displacements
are negative in the diastole phase. Overall, the displacements
associated with the diseased patient (i.e., in vivo 1) have
smaller magnitudes in comparison with the healthy case
(i.e., in vivo 2).

Fig. 12 shows the displacements obtained for 6 land-
marks in comparison with a manual tracking (red circles).
The landmarks were located on the endocardium for both
sequences, in the diastole phase for the in vivo 1 sequence
(frames 26 to 36) and during systole for the in vivo 2 sequence
(frames 16 to 26). The manual tracking of the 10 consecutive
frames was also used to compute the corresponding motion

TABLE V
ERROR MEANS ± STDS FOR 10 FRAMES OF THE In Vivo SEQUENCES

estimation errors provided in Fig. 12 and Table V. This table
shows that the smallest error means and stds were obtained for
both sequences using the proposed method. For the non-robust
NR method, the displacements of the landmarks do not follow
the true motion of the endocardium and result in the largest
errors. In contrast, the motions obtained using the proposed
and BA methods were closer to the manual tracking, with
smaller errors for the proposed method.

V. DISCUSSION AND PERSPECTIVES

This paper presented a new motion estimation method
for robust 2D cardiac US images. The main objective of
this method was to robustify the cardiac motion estimation
algorithm of [21] (based on spatial and sparse regularizations)
in order to mitigate the effects of outliers. The obtained
fully robust approach allowed us to deal with the problem of
native outliers, e.g., motion boundaries or background motions,
as well as UI artefacts and image noise. It is worth mentioning
at this point that other strategies have been proposed in the
literature to address the problem of cardiac motion estimation
outliers (see Section I). For example, in [32] the myocardium
was segmented prior to the motion estimation, allowing to
down-weight the displacements located at the epicardial bor-
ders, and thus, to prevent over-smoothing in this area. In con-
trast with the method studied in [32], the proposed method
addressed the problem of spatial outliers for the entire motion
field (i.e., using pixel-wise weights). It allowed us to deal not
only with discontinuities at the contours, but also with outliers
located inside the myocardium. In addition, the proposed
strategy did not require a beforehand segmentation (which may
be difficult to obtain in some practical applications), allowing
spatial discontinuities to be directly compensated from the
estimated motions. More generally, the proposed approach
showed the interest of jointly robustifying the data fidelity
and regularization terms in a variational approach.

At this point, we would like to mention some issues that
would deserved to be considered in future work. The proposed
method relies strongly on the tuning of several parameters,
i.e., the regularization, dictionary learning and robust weight
parameters. The scale parameter σ was estimated jointly with
the motions using (3). However, the parameter c still needs to
be fixed a priori. We think that methods based on the Stein’s
unbiased risk estimate (SURE) [44] or Bayesian inference [45]
would deserve to be investigated for the estimation of these
parameters. Finally, the average execution time of the proposed
method for a pair of realistic simulation images was 87.32s
(compared to 52.33s for the NR method and 11.31s for BA),
which may be high for some applications. As mentioned
in [21], a more efficient implementation can be achieved



Fig. 12. Tracking results for 6 landmarks on the endocardial wall (magnified in the top-right part of the images) for (a) the in vivo 1 and (b) in vivo 2
sequences. The average errors for each frame in comparison with the manual tracking (red circles) are provided for the proposed (green triangles),
NR (blue squares) and BA (yellow stars) methods.

using parallel computing for the horizontal and vertical sparse
coding and sparse regularization terms.

Other prospects include the robustification of the dictionary
learning step. A robust learning of the cardiac motion dictio-
nary can be especially useful when using corrupted learning
data. For example, this is the case when the training set
contains patterns far from typical cardiac motions. If the
dictionary is learnt in an adaptive way, i.e., using the esti-
mated motions themselves, a robust learning approach would
allow us to discard erroneous motion estimates. Furthermore,
it would be worth to take advantage of the sparse codes,
the dictionary atoms and the robust weights that are obtained
using the proposed method. For example, a joint robust motion
estimation and segmentation could be obtained by combining
the information provided by the weights of the spatial and
sparse regularizations. Taking into account the increased use
of 3D UI, it is also worth mentioning that the proposed method
could be extended to 3D. However, the limitations of frame
rate and spatial resolution in the azimuthal direction imply that
the use of 3D US images does not lead necessarily to a more
accurate estimation when compared to 2D UI.

VI. CONCLUSIONS

This paper introduced a robust cardiac motion estimation
method for 2D ultrasound images. The proposed approach
exploited the sparse properties of motion when decom-

posed on a dedicated dictionary, while being robust to
outliers. The motion estimation problem was formulated as
a weighted energy minimization in an optical flow framework
with combined spatial and sparse regularizations. Robustness
was introduced using weight functions derived from robust
M-estimators. In order to ensure a fully robust estimation,
the weighting was applied jointly to the data fidelity term
and the spatial and sparsity regularizations. The effectiveness
of this fully robust formulation was demonstrated using syn-
thetic realistic simulation sequences. Finally, in vivo images
were used to show the interest of the method for real data
contaminated by artefacts.
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