
  

 

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 10433 

To link to this article : doi:10.1109/LSP.2013.2290329 
URL : http://dx.doi.org/10.1109/LSP.2013.2290329 

To cite this version : Pereyra, Marcelo and Dobigeon, Nicolas and 
Batatia, Hadj and Tourneret, Jean-Yves Computing the Cramer-Rao 
bound of Markov random field parameters: Application to the Ising and 
the Potts models. (2014) IEEE Signal Processing Letters, vol. 21 (n° 1). 
pp. 47-50. ISSN 1070-9908 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Computing the Cramer–Rao Bound of Markov
Random Field Parameters: Application to

the Ising and the Potts Models
Marcelo Pereyra, Nicolas Dobigeon, Hadj Batatia, and Jean-Yves Tourneret

Abstract—This letter considers the problem of computing the
Cramer–Rao bound for the parameters of a Markov random
field. Computation of the exact bound is not feasible for most
fields of interest because their likelihoods are intractable and
have intractable derivatives. We show here how it is possible to
formulate the computation of the bound as a statistical inference
problem that can be solve approximately, but with arbitrarily
high accuracy, by using a Monte Carlo method. The proposed
methodology is successfully applied on the Ising and the Potts
models.

Index Terms—Cramer–Rao bound, intractable distributions,
Markov random fields, Monte Carlo algorithms.

I. INTRODUCTION

T HE estimation of parameters involved in intractable sta-
tistical models (i.e., with intractable likelihoods) is a dif-

ficult problem that has received significant attention in the re-
cent computational statistics and signal processing literature [1],
[2], [3], [4]. Particularly, estimating the parameters of a Markov
random field (MRF) is an active research topic in image pro-
cessing [5], [6], [7], [8], [9]. Several new unbiased estimators
have been recently derived, mainly based on efficient Monte
Carlo (MC) methods [1], [2], [9], [10].
This letter addresses the problem of computing the

Cramer–Rao bound (CRB) [11] for estimators of MRF pa-
rameters. Knowing the CRB of a statistical model is of great
importance for both theoretical and practical reasons. From a
theoretical point of view, the CRB establishes a lower limit
on how much information a set of observations carries about
unknown parameters. Specifically, it defines the minimum
variance for any unbiased estimator of these parameters. From
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a practical perspective, the CRB is used as a means to charac-
terize the performance of unbiased estimators in terms of mean
square error (i.e., estimation variance). Unfortunately, the CRB
for most MRF models is difficult to compute because their
likelihoods are intractable [12, Chap. 7].
This letter addresses this difficulty by formulating the com-

putation of the CRB as a statistical inference problem that can
be solved using MC methods [13]. Precisely, we propose to ex-
press the CRB in terms of expectations that can be efficiently
estimated by MC integration [13, Chap. 3]. The proposed CRB
estimation method is demonstrated on specific MRF models
that have been widely used in the image processing community,
namely the Potts and Ising models. The remainder of the letter
is organized as follows: Section II defines the class of statistical
models considered in this work and proposes an original method
to estimate their CRB based on a MC algorithm. The applica-
tion of the proposed methodology to the Ising and Potts models
is presented in Section III. Conclusions are finally reported in
Section IV.

II. COMPUTING THE FISHER INFORMATION MATRIX

Let be an unknown parameter vector and
an observation vector whose elements

take their values in a set . This paper considers the case where
and are related by the following generic distribution

(1)

where is a sufficient statistic and is the
normalizing constant given by

(2)

where integration is performed in the Lebesgue sense with re-
spect to an appropriate measure on . Note that the model (1)
defines an important subclass of the exponential family. It com-
prises several standard distributions, such as Gaussian, Laplace
or gamma distributions, as well as multivariate distributions fre-
quently used in signal and image processing applications, such
as Markov random fields [12]. In this latter case, the normal-
izing constant, also known as partition function, is generally in-
tractable owing to the inherent difficulty of evaluating integrals
over when is large [12].
The Cramer–Rao bound of establishes a lower bound on

the covariance matrix of any unbiased estimator of [11].
Because the existence of the bound requires that verifies



some weak regularity conditions, we will assume that is
continuously differentiable (i.e., ). Then the CRB is
equal to the inverse of the Fisher information matrix (FIM) of
[11], i.e.,

cov CRB (3)

where the inequality (3) means that the matrix cov
is positive semidefinite and where is an

positive semidefinite symmetric matrix whose element is
given by [11]

(4)

where denotes the expectation operator with respect to
. By applying the definition (4) to (1) we obtain that

(5)

where is the th component of the vector field
. Unfortunately, evaluating (5)

for MRF models is rarely possible because of the intractability
of the derivatives . Note that difficulty cannot be
addressed by numerical differentiation because is it-
self intractable.
This letter proposes to exploit a property of the exponential

family to replace the intractable derivatives in by expecta-
tions that can be efficiently approximated using MC integration
[13, Chap. 3]. Precisely, we use the following property that re-
lates the derivatives to the expectations of [14,
p. 118]

(6)

Again, integration is performed in the Lebesgue sense with re-
spect to an appropriate measure on . By substituting property
(6) in equation (5) we obtain the matrix

cov (7)

whose elements are

(8)

The property (6) has been used previously to derive the statis-
tical moments of from the derivatives of in cases where

is known and can be differentiated analytically [15, p. 116]
as well as to study the physical properties of lattice systems [16,
Chap. 31]. However, to the best of our knowledge this is the first
time that this property is used in a statistical inference context
to compute a CRB.
Expression (8) differs from (5) by the fact that derivatives

are replaced by expectations of w.r.t. . From a compu-
tational perspective this alternative expression is fundamentally
better than (5) because the expectations, in spite of being in-
tractable, can be efficiently approximated with arbitrarily high

accuracy by MC integration [13, Chap. 3]. Note that MC ap-
proximations are particularly well suited for high-dimensional
models given that their accuracy depends exclusively on the
number of MC samples used and not on the dimension of the
model.
Lastly, approximating by MC integration requires sim-

ulating samples distributed according to . In this letter,
this is achieved by using a Gibbs sampler that admits as
unique stationary distribution [13]. This sampler belongs to the
class of Markov chainMonte Carlo (MCMC) algorithms, which
are interesting forMRFs because they not require to know .
The output of this algorithm is a Markov chain of sam-
ples that can be used to approximate through
the sample covariance matrix

(9)

with . The ergodicity of the Gibbs sam-
pler guarantees that as the number of samples increases
converges to (for details about MCMC algorithms and
their practical application please see [13], [17]). Moreover, note
that is semipositive definite by construction and it is in-
vertible whenever is large enough such that
spans . In practice this condition is satisfied almost surely
if is large enough to produce a stable estimate of .
Finally, note that (9) is valid regardless of the specific MCMC
method used to simulate from . For simplicity this letter
considers that samples are generated using a Gibbs sampler,
which provides a general solution that it is easy to apply to any
given MRF [12]. However, the Gibbs sampler is not always the
most efficient method to simulate from a specific MRF (e.g.,
the Ising and Potts models are more efficiently sampled with a
Swendsen-Wang algorithm [18]). More details about the pro-
posed Monte Carlo scheme are provided in a separate technical
report [19].

III. APPLICATION TO THE ISING AND POTTS
MARKOV RANDOM FIELDS

A. Ising and Potts Models

This section applies the proposed methodology to the compu-
tation of the CRB of two important intractable models, namely
the homogeneous Ising and Potts MRF. For completeness these
models are recalled below.
Let be a discrete random vector whose

elements take their values in the finite set .
The Ising and the Potts MRF are defined by the following prob-
ability mass function

(10)

with

(11)

where is the index set of the neighbors associated with the
th element, is the Kronecker function and is the



Fig. 1. Cramer–Rao bound for an Ising (MRF) defined on a toroidal graph.
True CRB (solid red), estimates obtained by MC integration (blue crosses).

granularity coefficient or inverse temperature parameter. The
Gibbs distribution (10) corresponds to the Ising MRF when

, and to the Potts MRF for . In our experiments
will be considered to be a bidimensional first-order

(i.e., 4-pixel) neighborhood structure. However, the proposed
method is valid for any correct neighborhood structure (see [12]
for more details). Finally, note that despite their simplicity these
models are extensively used in modern image segmentation
and/or classification applications (see [20], [21] and references
therein) and that the estimation of the granularity parameter
is still an active research topic [9].

B. Validation With Ground Truth

To validate the proposed MC method under controlled con-
ditions (i.e., for a known CRB), the proposed methodology has
been first applied to an Ising model defined on a toroidal graph
(i.e., with cyclic boundary conditions) of size . Un-
like most MRF models, this particular MRF has a known nor-
malizing constant and FIM [8].
Fig. 1 compares the estimates obtained for different values of
with the true CRB [8]. These estimates have been computed

from Markov chains of 1 000 000 samples generated with a
Gibbs sampler. More details about this experiment are provided
in a separate technical report [19].
We observe in Fig. 1 that the estimates obtained with the

proposed method are in good agreement with the true values
of the CRB. We also observe that the error introduced by
using a Monte Carlo approximation varies slightly with the
value of and is larger at approximately , coin-
ciding with the phase-transition temperature of the Ising MRF
( ). These variations with are due to
the fact that the mixing properties of the Gibbs sampler deterio-
rate at temperatures close to due to long range dependencies
between the elements of [13, p. 339]. As a result the Markov
chains associated with different values of have different
effective samples sizes [13, p. 499] (i.e., different numbers
of equivalent independent samples) and produce estimates
with different accuracies. Indeed, the effective sample size,
measured from the chain’s autocorrelation function, is 870
000 samples for , it decreases progressively to 20 000

Fig. 2. Cramer–Rao bound for an Ising ( ) and two Potts MRF (
and ) close to phase-transition and for different field sizes . Results
are displayed in log-log scales.

samples for and then increases to 235 000 samples for
.

C. Asymptotic Study of the CRB

The second set of experiments shows the evolution of the
CRB with respect to the size of observation vector (i.e., the
number of field components ). The CRB has been computed
for the following 5 field sizes , cor-
responding to bidimensional MRFs of size , ,

, and . Experiments have been per-
formed using an Ising MRF, a 3-state and a 4-state Potts MRF
(i.e., , and respectively) defined on a reg-
ular lattice (not a toroid). CRB estimates have been computed
from Markov chains of 2500 000 samples. Finally, for each
model, the parameter was set close to the critical phase-transi-
tion value, i.e., to introduce a strong depen-
dency between the components of the MRF. Fig. 2 shows the
resulting CRBs versus the size of the MRF in logarithmic
scales.
We observe that for all models the logarithm of the CRB de-

creases almost linearly with the logarithm of the number of field
components. This result shows that the strong dependency be-
tween the field components does not modify significantly the
linear behavior that is generally observed for models defined by
statistically independent components. We also observe that the
CRB decreases with the number of states , indicating that an
accurate estimation of for the Ising model is more difficult
than for a Potts MRF.

D. Evaluation of State-of-the Art Estimators of

The third set of experiments compares the CRB to the em-
pirical variance of three state-of-the art estimation methods, the
auxiliary variable [1], exchange [2] and ABC [9] algorithms. As
explained previously, the CRB is often used as a means to mea-
sure the performance of unbiased estimators in terms of mean
square error. In this letter, the three algorithms studied in [1], [2],
[9] have been used to compute an approximate maximum-likeli-
hood (ML) estimation of for the 3-state Potts MRF (additional
results with an Ising MRF are provided in a separate technical
report [19]).



Fig. 3. Cramer–Rao bounds for a 3-state Potts models of size . Results
are displayed in logarithmic scale.

Experiments were conducted as follows. First
synthetic observation vectors ,
were generated using an appropriate Gibbs sampler. Then,
for each observation , three ML estimates ,
and were computed using the three estimation methods
mentioned above. Finally, the variance of each estimator
was approximated by computing the sample variance, e.g.,

with
. More details about this experi-

ment are provided in a separate technical report [19].
Fig. 3 compares the CRB estimated with our method for the

3-state Potts MRF with the variance of the ML estimates ob-
tained with the state-of-the art algorithms. These values have
been computed for which is the range of interest for
this model (for all the field components have almost
surely the same color). We observe the good performance of the
ML estimators based on the exchange [2] and the ABC [9] for
small values of (i.e., ). However, their performance de-
creases progressively for , a behavior that is explained
by the fact that the estimators use a Gibbs sampler to approx-
imate the intractable likelihood. As explained previously, the
mixing properties of this sampler deteriorate as increases to-
wards the critical value . This results in a degradation of the
approximation of the likelihood and in a larger ML variance.
Moreover, one can also see that the estimator based on the aux-
iliary variable method [1] has a larger variance than the others
for all values of . This result is in accordance with the experi-
ments reported in [2], [9].

IV. CONCLUSION

This letter studied the problem of computing the CRB for the
parameters of Markov random fields. For these distributions the
CRB depends on the derivatives of the normalizing constant or
partition function , which is generally intractable. This dif-
ficulty was addressed by exploiting an interesting property of
the exponential family that relates the derivatives of the nor-
malizing constant to expectations of the MRF potential.
Based on this, it was proposed to estimate the Fisher informa-
tion matrix of the MRF (and therefore the CRB) using a Monte
Carlo method. The proposed approach was successfully applied
to the Ising and the Potts models, which are frequently used

in signal processing applications. The resulting bounds have
been used, in turn, to assess the statistical efficiency of three
state-of-the art estimation methods that are interesting for image
processing applications. An extension of the proposed method
to hidden MRFs is currently under investigation. Perspectives
for future work include the derivation of Bayesian bounds for in-
tractable models whose unknown parameters are assigned prior
distributions.
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