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Context
Meaning of the title

“Machine learning-based solutions for channel decoding in M2M-type communications”

←− ←− ←−

▶ M2M communications: direct exchange of data between devices.

▶ Channel coding: detect and correct errors caused by the channel.

▶ Machine learning: learn from data without explicit programming.
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Machine learning for communications - why?

Several advantages over classical solutions:

▶ End-to-end design.

▶ Do not require an accurate model of the
communication setting.

▶ Adaptability to varying communication
conditions.

▶ For channel decoding: Online
complexity (real-time) can be traded for
offline complexity (training process).

Figure: ChatGPT-generated image that symbolizes
Intelligent communications.
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Machine learning for communications - why?

Figure: Research heatmap of Artificial Intelligence for Communications[1].

[1]Neng Ye et al. “Artificial Intelligence for Wireless Physical-Layer Technologies (AI4PHY): A Comprehensive Survey”. In: IEEE Transactions on
Cognitive Communications and Networking (2024), pp. 1–1
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Machine learning for channel decoding

▶ Decoders in M2M require:
▶ Low latency.
▶ Short packet length.
▶ Low complexity.

▶ However, optimal decoders for short codes are usually very complex and with
considerable latency (e.g. SCL for Polar codes).

▶ Machine learning appears as a potential solution for optimal and low-complexity
decoding of short codes.

Work in progress...

⇑ performance ⇓ complexity ⇑ applicability

compared to previous machine learning-based decoders.
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Channel decoding problem

Encoder Mod +

w ∼ CN (0, σ2I)

Decoder
u

{0, 1}k

c

{0, 1}n

x

Cn′

y

Cn′

û

{0, 1}k

Figure: General system model.

The Bit Error Probability is defined as follows:

Pe ≜
1

k

k∑
i=1

P{Ui ̸= Ûi}. (1)

The optimal decoder is the bit-MAP decoder,
defined for every i ∈ [1 : k] as:

g(i)(y) ≜ argmax
u∈{0,1}

PUi|Y (u|y). (2)
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First machine learning-based solutions and limitations[2]

Encoder BPSK +

w ∼ N (0, σ2I)

DecoderNeural
network

u

{0, 1}k

c

{0, 1}n

x

{−1,+1}n

y

Rn

û

{0, 1}k

Figure: General system model.

We can build the training dataset as follows:

Inputs → yi, for i ∈ [1 : Ndata]
Outputs → ui, for i ∈ [1 : Ndata]

[2]Tobias Gruber et al. “On deep learning-based channel decoding”. In: 2017 51st Annual Conference on Information Sciences and Systems (CISS).
IEEE, Mar. 2017
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Curse of dimensionality (CoD)

message size = k codeword space size = 2k

4 16

16 65536

64 18446744073709551616

200 1.6× 1060 ≈ atoms in 100 Suns

Table: Number of valid codewords vs. message size.

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 7 / 46



Introduction SVM for joint demodulation and decoding SBND for BPSK SBND for higher-order modulations Conclusion

Curse of dimensionality (CoD)

For a code of size (n, k) and error-correction capability of t bits:

Codeword space

2k

Noise realizations

at least
t∑

i=0

(
n

i

)
per codeword

Size of the neural network

Increases significantly with the
code dimensions to maintain

performances
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Summary of contributions

To train without noise realizations (Chapter 2):

1. Propose a new SVM-based approach that trains on only noiseless codewords.

2. Under AWGN, prove its equivalence to the bit-MAP decoder.

To reduce the training codeword space & size of the network (Chapters 3 and 4):

1. Employ the SBND approach –which is trained using a single codeword– and propose a
message-oriented approach that improves performances.

2. Analyze the impact of the parity-check matrix and propose an algorithm to optimize it.

3. Introduce a reduced-complexity neural architecture with competitive performances.

4. Extend the SBND approach to higher-order modulations and discuss the changes in the training
dataset.

github.com/gastondeboni/SVM_for_Channel_Decoding

github.com/gastondeboni/Syndrome_Based_Neural_Decoding

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 9 / 46

github.com/gastondeboni/SVM_for_Channel_Decoding
github.com/gastondeboni/Syndrome_Based_Neural_Decoding


Introduction SVM for joint demodulation and decoding SBND for BPSK SBND for higher-order modulations Conclusion

Table of contents

1 Introduction

2 SVM for joint demodulation and decoding

3 SBND for BPSK

4 SBND for higher-order modulations

5 Conclusion

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 9 / 46



Introduction SVM for joint demodulation and decoding SBND for BPSK SBND for higher-order modulations Conclusion

Why Support Vector Machine (SVM) for decoding?
The maximum margin property

N
N
cl
as
si
fie
rf ≥ 0 f < 0

SVM
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SVM for decoding
System model

Because SVMs only work with real numbers...

Encoder Mod. +

w

[ · , · ]

Re(·)

Im(·)

SVM
Decoder

u

{0, 1}k

c

{0, 1}n

x

Cn′

y ỹ

R2n′

û

{0, 1}k

where w ∼ CN (0, σ2I).
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Support Vector Machines - theory

With a linearly separable dataset {ỹi, li}1≤i≤N , we
compute the hyperplane f(ỹ) = 0 such that:

f(ỹ) < 0

f(ỹ) ≥ 0
f(ỹ) = 0

Support vectors
|f(ỹ)| = 1

Decision
margin

Decision hyperplane

With linearly non-separable data, we employ the
kernel method, where a function Φ projects the
data into a high-dimensional space.

Φ

f(ỹ) = 0

f(Φ(ỹ)) = 0
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Support Vector Machines - theory
Mathematical foundation

Suppose a dataset {ỹi, li}1≤i≤N . We must compute the solution α⋆, ν⋆ to the
following opt. problem:

argmax
α

L(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

liljαiαjK(ỹi, ỹj), α ∈ R2n′

subject to αi ≥ 0 ∀i ∈ [1 : N ] and
N∑
i=1

αili = 0,

(3)

where K(ỹ, ỹ′) ≜ e−γ||ỹ−ỹ′||2 , γ ∈ R+ . The final SVM classifier is given by:

f(x) =

N∑
i=1

liα
⋆
iK(x, ỹi) + ν⋆. (4)
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SVM for decoding

How is SVM applied to channel decoding in the literature?
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SVM for decoding
Previous works - multi-class classification[3][4]

Figure: One vs. rest approach.

This solution implies the evaluation of 2k functions:

û = uj∗ , where j
∗ = argmax

j∈[1:2k]

f (j)(ỹ). (5)

[3]V. Sudharsan and B. Yamuna. “Support Vector Machine based Decoding Algorithm for BCH Codes”. In: Journal of Telecommunications and
Information Technology 2.2016 (June 2016), pp. 108–112

[4]R. Ramanathan et al. “Generalised and Channel Independent SVM Based Robust Decoders for Wireless Applications”. In: 2009 International
Conference on Advances in Recent Technologies in Communication and Computing. IEEE, Oct. 2009
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SVM for decoding

Limitation Contribution

Need to evaluate 2k functions Bit-wise approach

Several noise realizations
per codeword

Noiseless training

Lack of theoretical analysis
Optimality study

and closed-form solution
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Contributions
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Contributions
1) Bit-wise SVM decoder

Outline of the decoding process:

1. we receive ỹ ∈ R2n′
;

2. if f (1)(ỹ) ≥ 0 then û1 = 1;

3. else û1 = 0;

4. continue for f (2), ..., f (k).

Obs: The k decison functions can be
evaluated in parallel.

This solution reduces the number of functions from 2k to k.

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 16 / 46
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Contributions
2) Noiseless training

Because we are dealing with an AWGN channel...

The dataset is reduced to only 1 sample per class (i.e., per codeword).

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 17 / 46
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Contributions
1+2) New optimization problem[5]

Bitwise approach + noiseless training = k opt. problems for j ∈ [1 : k]:

argmin
α

1

2

2k∑
i,m=1

αiαml
(j)
i l(j)m K(x̃i, x̃m)−

2k∑
i=1

αi, where K(x̃i, x̃m) = e−γ||x̃i−x̃m||2

subject to: αi ⩾ 0 and
∑2k

i=1 l
(j)
i αi = 0,

where l
(j)
i = +1 if the jth bit of the ith message is a 1, and l

(j)
i = −1 otherwise.

f (j)(ỹ) =

2k∑
i=1

l
(j)
i α

⋆(j)
i e−γ||ỹ−x̃i||2 + ν⋆(j). (6)

[5]Gastón De Boni Rovella et al. “On the Optimality of Support Vector Machines for Channel Decoding”. In: 2024 Joint European Conference on
Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, June 2024
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Contributions
3) Optimality analysis

Bitwise approach + noiseless training = k decision functions for j ∈ [1 : k]:

f (j)(ỹ) =

2k∑
i=1

l
(j)
i α

⋆(j)
i e−γ||ỹ−x̃i||2 + ν⋆(j). (7)

Theorem (Optimal solution and equivalence to bit-MAP)

1. For γ ≫ 1, α⋆ = (1, 1, ..., 1), and ν⋆ = 0, for all k opt. problems.

2. With the previous solution (α⋆, ν⋆), if γ = 1/σ2, the proposed decoding rule is
equal to the bit-MAP decoder.
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Results
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Results
Convergence to optimal solution

γs ≜ 1/σ2
s , where σ2

s is such that Eb/N0 = sdB:

Theorem

1. For γ ≫ 1, α⋆ = (1, 1, ..., 1), and
ν⋆ = 0, for all k opt. problems.

2. With the previous solution (α⋆, ν⋆), if
γ = 1/σ2, the proposed decoding rule is
equal to the bit-MAP decoder.

f(ỹ) =
2k∑
i=1

liα
⋆
i e

−γ||ỹ−x̃i||2 + ν⋆.
Figure: Solutions to the opt. problem vs. value of γ,
for Polar and BCH codes of size (32,11) under 16QAM.
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Results
Bit error rate studies

γs ≜ 1/σ2
s , where σ2

s is such that Eb/N0 = sdB:

Theorem

1. For γ ≫ 1, α⋆ = (1, 1, ..., 1), and
ν⋆ = 0, for all k opt. problems.

2. With the previous solution (α⋆, ν⋆), if
γ = 1/σ2, the proposed decoding rule is
equal to the bit-MAP decoder.

f(x) =
2k∑
i=1

liα
⋆
i e

−γ||x−x̃i||2 + ν⋆.
Figure: Polar (32,11), 16QAM.
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Conclusion

Take-away points:

1. The proposed approach (bitwise + noiseless
training) reduces the number of SVM
classifiers from 2k to k and the dataset to
only one sample per class.

2. However, the theoretical analysis shows
equivalence to MAP for AWGN.

Perspectives:

1. Applying the system in a more complex
channel where the MAP decoding rule is
not available in closed form? (frequency or
time selective, fading, unknown, etc.).

2. Training on a subset of valid codewords?

One vs. rest
Bitwise +

noiseless opt. (ours)

# of SVM
functions

2k k

dataset size Ndata ≫ 2k 2k

Table: Complexity comparison between methods.

f(ỹ) =

2k∑
i=1

liαie
−γ||ỹ−x̃i||2 + ν.
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Deep Neural Networks for decoding

Encoder BPSK +

w ∼ N (0, σ2)

Decoder
u

{0, 1}k

c

{0, 1}n

x

{−1,+1}n

y

Rn

û

{0, 1}k

Recall the curse of dimensionality: for message of length k ⇒ 2k possible codewords.

There are two approaches that employ single-codeword training:

▶ Model-based (deep unfolding of Belief Propagation)[6].

▶ Model-free (syndrome-based neural decoding)[7].

[6]Eliya Nachmani, Yair Be’ery, and David Burshtein. “Learning to Decode Linear Codes Using Deep Learning”. In: 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, Sept. 2016

[7]Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. “Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach”. In: 2018
IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018
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Previous works: model-based[6]

For the parity-check matrix

H =

[
1 1 0
0 1 1

]
Figure: Neural Belief Propagation (2 iter).

▶ The structure of Tanner graph defines the network architecture.

▶ Improves on the BP algorithm for specific codes (short and/or dense).

▶ The performances are often worse than the model-free method.

[6]Eliya Nachmani, Yair Be’ery, and David Burshtein. “Learning to Decode Linear Codes Using Deep Learning”. In: 2016 54th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, Sept. 2016
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Model-free approach: Syndrome-Based Neural Decoding (SBND)[7]

Traditional
Decoder

=⇒y ĉ

abs

bin H
Bitflip

estimator
+y

Hyb

|y|
êb

yb

ĉ

Why adopt this approach?

▶ No intrinsic loss of optimality: PCi|Y (ci|y) = PEb
i | |Y |,HY b(ci ⊕ yb

i | |y|, Hyb), ∀ i ∈ [1 : n].

▶ The inputs (Hyb, |y|) are independent of c under BPSK, which enables the single-codeword
training property.

▶ This bypasses the codeword space aspect of the CoD (train on 1 codeword instead of 2k).

[7]Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. “Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach”. In: 2018
IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018
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SBND: architectures in the literature[7][8]

g1

g2

...

gdl

g1

g2

...

gdl

. . .

. . .

. . .

g1

g2

...

gdl

D
e
n
s
e

[ |y|, Hyb ]

h1,0

h2,0

hD,0

h1,1

h2,1

hdl,1

h1,2

h2,2

hdl,2

h1,T−1

h2,T−1

hdl,T−1
ê

(a) Recurrent Neural Network (RNN)3.

Embedding • Embedding de

Encoder

Layer Normalization

Multi-head masked
self-attention

mask(H)

+

Layer Normalization

Dense layers

+

×N

Decoder

Layer Normalization

Dense layers

[ |y|, Hyb ]

ê

(b) Transformer (ECCT)4.

[7]Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. “Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach”. In: 2018
IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018

[8]Yoni Choukroun and Lior Wolf. “Error Correction Code Transformer”. In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo
et al. Vol. 35. Curran Associates, Inc., 2022, pp. 38695–38705
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SBND approach
Contributions

Limitation Contribution

The codeword c is estimated
instead of the message u

message-oriented decoder

The network is often very large
(1s to 10s million parameters)

recurrent ECCT

Large impact of the
PC matrix H on performance

PC matrix study
and optimization
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Contributions
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Contributions
1) Proposed message-oriented framework[9]

bin

abs

H Message
bitflip

estimator

+

pinv

y

yb Hyb

|y|

êb
u

û

ũ

Theorem (Sufficient statistics)

The following equation holds, for all i ∈ [1 : k]:

PUi|Y (ui|y) = PEb
u,i| |Y |,HY b(ui ⊕ ũi | |y|, Hyb). (8)

▶ Maintains the single-codeword
training property.

▶ It allows for a deeper focus on the
information bits during training
(sacrificing redundant bits).

▶ Network complexity is reduced
(only k outputs).

▶ It is directly applicable to
non-systematic codes.

[9]Gastón De Boni Rovella and Meryem Benammar. “Improved Syndrome-based Neural Decoder for Linear Block Codes”. In: GLOBECOM 2023 -
2023 IEEE Global Communications Conference. IEEE, Dec. 2023
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Results
1) Message-oriented vs. codeword-oriented

0 2 4 6
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10−6
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Eb/N0 (dB)

B
E
R

ECCT cw-dec
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RNN cw-dec

RNN m-dec

OSD 0,1,2

ML bound

(a) BCH (63,45).

0 2 4 6
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10−4
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B
E
R
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RNN cw-dec

RNN m-dec

OSD 0,1,2
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(b) BCH (63,39).

Obs: RNN has 4M weights, ECCT has 2M weights.
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Contributions
2) Recurrent transformer-based (r-ECCT) architecture[10]

Embedding

[ |y|, Hyb ]

(2n− k, 1)

Enc1(1)

(2n− k, de)

Enc2(2)

. . .

EncN (N)

Out layer

êu

W1

W2

WN

Enc1(2) . . . Enc1(N)

Out layer

W̃1

(2n− k, de)

êu

(k, 1) Results:

▶ Number of weights divided by
N (≈ 10).

▶ Decoding performances globally
maintained (even slightly improved).

[10]Gastón De Boni Rovella et al. “Syndrome-Based Neural Decoding for Higher-Order Modulations (submitted)”. In: IEEE Transactions on
Communications (2024)
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Results
2) Recurrent Error Correction Code Transformer (r-ECCT) and complexity analysis

0 2 4 6
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R

RNN - 4M weights

ECCT - 2M weights

r-ECCT - 200k weights

ML bound

Figure: BCH (63,45).

WRNN = 3
(
(2dl − 1)α2 + α

)
r2 + (3dl + k)αr + k ≈ O((2n−k)2)

WECCT = 12Nd2e + (13N + r + 3)de + (r + 1)k + 1 ≈ O(Nd2
e)

Wr-ECCT = 12d2e + (16 + r)de + (r + 1)k + 1 ≈ O(d2
e)

where:

▶ r ≜ 2n− k, where (n, k) are the code parameters;

▶ N the number of encoders in the ECCT architecture;

▶ and de the embedding dimension of the ECCT and r-ECCT.
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Contributions
3) Influence of the Parity-Check Matrix (PCM)

1. As a metric, we propose the pairwise Mutual Information (MI) between a single input and output of
the decoder, and we compute the formula for our case:

MI(Eb
i ;Sj) =

[
Hb(E(Nj))−Hb(E(Nj − 1))

]
I{Hij = 1}, (9)

where

▶ Hb(a) ≜ −alog2 a− (1− a)log2(1− a);

▶ Nj Hamming weight of the jth row of H;

▶ and E(Nj) ≜ 1
2
+ 1

2
(1− 2p)Nj , p denoting the bitflip probability for a given Eb/N0.
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Contributions
3) Influence of the Parity-Check Matrix (PCM)

2. We notice that this pairwise MI decreases with
the respective row’s weight:

2 4 6 8 10 12 14 16
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0.2

0.3

0.4

Nj (Hamming weight of row j)

M
I
(E

b i
,
S
j
)

p = 0.1

p = 0.05

p = 0.02

Figure: Pairwise MI vs. row’s weight.

4. We propose a sparsifying algorithm.

⇓ Sparsifying algorithm
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Results
3) Influence of the PCM
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(a) Four considered PCMs for a BCH (127,64).

0 200 400 600 800 1,000
0.06

0.1

0.2

0.4

epoch

T
ra
in
in
g
lo
ss

Random

Original

Standard

Sparsified

(b) Loss function with different sparsities.
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Results
3) Influence of the PCM
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Figure: BCH (127,64), different sparsities.
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Results (all combined)
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Results
Every element put together vs. best neural solutions in the literature: BCH (127,64)

Message-oriented approach + r-ECCT (reduced complexity) + sparsified matrix:
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[6]
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Ours, 200k weights

Figure: BCH (127,64), comparison with SOTA.

[6] Eliya Nachmani et al. “Deep Learning Methods for Improved
Decoding of Linear Codes”. In: IEEE Journal of Selected
Topics in Signal Processing 12.1 (Feb. 2018).

[7] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. “Deep
Learning for Decoding of Linear Codes - A Syndrome-Based
Approach”. In: 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE, June 2018.

[8] Yoni Choukroun and Lior Wolf. “Error Correction Code
Transformer”. In: Advances in Neural Information Processing
Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates,
Inc., 2022.

Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 35 / 46



Introduction SVM for joint demodulation and decoding SBND for BPSK SBND for higher-order modulations Conclusion

Conclusion
Summary of contributions

Summary of contributions:

1. Message-oriented approach (increased performance).

2. r-ECCT architecture (reduced complexity).

3. Optimization of PCM (increased performance).

Future works:

1. Can we extend this to higher-order modulations?

2. To be continued...
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System model for Higher-Order Modulations (HOM)
Bit-Interleaved Coded Modualtions

Encoder Π Mod +

w ∼ CN (0, σ2I)

Demod Π−1 Decoder
u

{0, 1}k

c

{0, 1}n

c̃

{0, 1}n

x

Cn′

y

Cn′

l̃

Rn

l

Rn

û

{0, 1}k

Figure: Proposed system with Bit-Interleaved Coded Modulations (BICM)[11].

1. The bit-interleaver Π shuffles the codewords before modulation.

2. The deinterleaver Π−1 retrieves the original bit order.

[11]G. Caire, G. Taricco, and E. Biglieri. “Bit-Interleaved Coded Modulation”. In: IEEE Transactions on Information Theory 44.3 (May 1998),
pp. 927–946
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Contributions
SBND for HOM

1. SBND decoder for HOM construction.

2. Optimality analysis.

3. Training dataset design.
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Contributions
Proposed decoder and optimality

Demod Π−1

bin

abs

H Message
bitflip

estimator

+

pinv

y l̃ l

lb Hlb

|l|
êb
u

û

ũ

Figure: Proposed decoder with Bit-Interleaved Coded Modulations (BICM).

Theorem (Sufficient statistics for HOM)

The following equation holds, for all i ∈ [1 : k]:

PEb
u|L(e

b
u|l) = PEb

u| |L|,HLb(e
b
u| |l|, Hlb). (10)
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Contributions
Proposed decoder and optimality - proof outline

PEb
u|L(e

b
u|l) = PEb

u| |L|,Lb(ebu| |l|, lb) (11)

= PEb
u| |L|,HLb,ALb(ebu| |l|, Hlb, Alb) ([HT , AT ] is invertible) (12)

= PEb
u| |L|,HLb,ALb(ebu| |l|, Hlb, A(c⊕ eb)) (13)

= PEb
u| |L|,HLb,ALb(ebu| |l|, Hlb,u⊕ ebu)

U ∼ Bern(0.5) and Eb
u is independent of U (thanks to BICM):

PEb
u|L(e

b
u|l) = PEb

u| |L|,HLb(ebu| |l|, Hlb) (14)
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Contributions
3) Training set design
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(a) BPSK.
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(b) 16-QAM - 1st position.

Figure: Distribution of |l| for BPSK modulation and 16-QAM.

We lose the single-codeword training property.
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Results
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Results
SBND + BICM employing different architectures[12]
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Figure: BCH codes, 8-PSK, different architectures.

[12]Gastón De Boni Rovella et al. “Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations”. In: 2024 IEEE International
Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, May 2024, pp. 341–346
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Results
SBND + BICM employing different architectures[12]
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Figure: Polar codes, 16-QAM, different architectures.

[12]Gastón De Boni Rovella et al. “Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations”. In: 2024 IEEE International
Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, May 2024, pp. 341–346
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Conclusion of SBND for HOM

Summary of contributions targeting applicability to HOM:

1. Extension of SBND to higher-order modulations (employing BICM).

2. Proof of optimality in this scenario.

3. Training set discussion.

Take-away points:

1. The SBND approach is successfully extended to higher-order modulations without loss of
optimality.

2. The single-codeword training property is mathematically lost in the way. However, training was
carried out on less than 3% of the codeword space for n = 64 and less than 10−9% for n = 128,
with good performances depending on code size and rate.
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Conclusion and final remarks

Final thoughts:

1. SVM: the complexity was reduced significantly, but still equivalent to the MAP decoder.

2. SBND: the different contributions resulted in increased performance (message-oriented
approach, PCM study), reduced complexity (r-ECCT), and wider applicability (non-systematic
codes and higher-order modulations) compared with existing solutions.

Future works:

1. Establish the basis for a comparative analysis against classical decoders.

2. Unified architecture[13].

3. Combine model-based and model-free approaches.

[13]Yongli Yan et al. Error Correction Code Transformer: From Non-Unified to Unified. 2024
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The end

Thank you!

Questions?

All codes are available in the following repositories:
github.com/gastondeboni/SVM_for_Channel_Decoding

github.com/gastondeboni/Syndrome_Based_Neural_Decoding
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