Introduction 0000000000 SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Machine learning-based solutions for channel decoding in M2M-type communications PhD defense - December 13th, 2024

PhD candidate: Gastón DE BONI ROVELLA

Jury:

M. Raphaël LE BIDAN, Rapporteur (IMT Atlantique, Brest)
M. Maël LE TREUST, Rapporteur (Université de Rennes/CNRS)
Mme Inbar FIJALKOW, Examinatrice (ENSEA/CNRS)
M. Charly POULLIAT, Examinateur (ENSEEIHT)
M. Jérôme LACAN, Directeur de thèse (ISAE-SUPAERO)
Mme Meryem BENAMMAR, Co-directrice de thèse (ISAE-SUPAERO)

Membres invités: M. Hugo MERIC (CNES) M. Tarik BENADDI (TAS)

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December

h, 2024 1 / 46

Table of contents

1 Introduction

- 2 SVM for joint demodulation and decoding
- 3 SBND for BPSK
- 4 SBND for higher-order modulations

5 Conclusion

Table of contents

1 Introduction

2 SVM for joint demodulation and decoding

3 SBND for BPSK

4 SBND for higher-order modulations

5 Conclusion

Introduction	SVM for joint demodulation and decoding	SBND for BPSK	SBND for higher-order modulations
Context Meaning of the	e title		

"Machine learning-based solutions for channel decoding in M2M-type communications"

- M2M communications: direct exchange of data between devices.
- Channel coding: detect and correct errors caused by the channel.
- Machine learning: learn from data without explicit programming.

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Machine learning for communications - why?

Several advantages over classical solutions:

- End-to-end design.
- Do not require an accurate model of the communication setting.
- Adaptability to varying communication conditions.
- For channel decoding: Online complexity (real-time) can be traded for offline complexity (training process).

Figure: ChatGPT-generated image that symbolizes *Intelligent communications*.

Machine learning for communications - why?

Category		Coding	Modulation	MIMO	Multiple Access	Channel Estimation	
· ·	Supervised Learning						
Learning Unsur		ervised Learning					
Method	Reinforcement Learning						
	Shallow	SVM					
Learning Data Model Mode Deep	Model	Decision Tree					
	Data-driven Deep Model	FC-DNN					
		CNN					
		RNN / LSTM					
	Model-driven Deep Model	DNN Unfolding					
		DNN Parameterization					
Training	Offline Training						
Method	Online Training						
Low \leftarrow Research Heat Level \rightarrow High							

Figure: Research heatmap of Artificial Intelligence for Communications^[1].

^[1]Neng Ye et al. "Artificial Intelligence for Wireless Physical-Layer Technologies (AI4PHY): A Comprehensive Survey". In: *IEEE Transactions on Cognitive Communications and Networking* (2024), pp. 1–1

5 / 46

Machine learning for channel decoding

- Decoders in M2M require:
 - Low latency.
 - Short packet length.
 - Low complexity.
- However, optimal decoders for short codes are usually very complex and with considerable latency (e.g. SCL for Polar codes).
- Machine learning appears as a potential solution for optimal and low-complexity decoding of short codes.

Work in progress...

 $\Uparrow \ \text{performance}$

 \Downarrow complexity

 \Uparrow applicability

compared to previous machine learning-based decoders.

TÉSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 20:

SVM for joint demodulation and decoding

SBND for BPSK

Channel decoding problem

Figure: General system model.

The Bit Error Probability is defined as follows:

$$P_e \triangleq \frac{1}{k} \sum_{i=1}^{k} \mathbb{P}\{U_i \neq \hat{U}_i\}.$$
 (1)

The optimal decoder is the bit-MAP decoder, defined for every $i \in [1:k]$ as:

$$g^{(i)}(\boldsymbol{y}) \triangleq \operatorname*{argmax}_{u \in \{0,1\}} P_{U_i|\boldsymbol{Y}}(u|\boldsymbol{y}).$$
(2)

SBND for BPSK

SBND for higher-order modulations

Conclusion

First machine learning-based solutions and limitations^[2]

Figure: General system model.

We can build the training dataset as follows:

^[2] Tobias Gruber et al. "On deep learning-based channel decoding". In: 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, Mar. 2017

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th,

SVM for joint demodulation and decodin

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Curse of dimensionality (CoD)

message size $= k$	codeword space size $= 2^k$
4	16
16	65536
64	18446744073709551616
200	$1.6 imes 10^{60}~pprox$ atoms in 100 Suns

Table: Number of valid codewords vs. message size.

SVM for joint demodulation and decodin

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Curse of dimensionality (CoD)

For a code of size (n, k) and error-correction capability of t bits:

Codeword space

Noise realizations

 2^k

at least $\sum_{i=1}^{t} \binom{n}{i}$

per codeword

Size of the neural network

Increases significantly with the code dimensions to maintain performances

Summary of contributions

To train without noise realizations (Chapter 2):

- 1. Propose a new SVM-based approach that trains on only noiseless codewords.
- 2. Under AWGN, prove its equivalence to the bit-MAP decoder.

To reduce the training codeword space & size of the network (Chapters 3 and 4):

- 1. Employ the SBND approach –which is trained using a single codeword– and propose a message-oriented approach that improves performances.
- 2. Analyze the impact of the parity-check matrix and propose an algorithm to optimize it.
- 3. Introduce a reduced-complexity neural architecture with competitive performances.
- 4. Extend the SBND approach to higher-order modulations and discuss the changes in the training dataset.

github.com/gastondeboni/SVM_for_Channel_Decoding github.com/gastondeboni/Syndrome_Based_Neural_Decoding SBND for BPSK

Table of contents

1 Introduction

2 SVM for joint demodulation and decoding

3 SBND for BPSK

4 SBND for higher-order modulations

5 Conclusion

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications Decem

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Why Support Vector Machine (SVM) for decoding?

The maximum margin property

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 10 / 46

Because SVMs only work with real numbers...

where $\boldsymbol{w} \sim \mathcal{CN}(\boldsymbol{0}, \sigma^2 I)$.

SBND for BPSK

Conclusion 0000

Support Vector Machines - theory

With a linearly separable dataset $\{\tilde{y}_i, l_i\}_{1 \le i \le N}$, we compute the hyperplane $f(\tilde{y}) = 0$ such that:

With linearly non-separable data, we employ the **kernel method**, where a function Φ projects the data into a high-dimensional space.

(4)

Support Vector Machines - theory

Mathematical foundation

Suppose a dataset $\{\tilde{y}_i, l_i\}_{1 \le i \le N}$. We must compute the solution α^*, ν^* to the following opt. problem:

$$\underset{\boldsymbol{\alpha}}{\operatorname{argmax}} \quad \mathcal{L}(\boldsymbol{\alpha}) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} l_i l_j \alpha_i \alpha_j K(\tilde{\boldsymbol{y}}_i, \tilde{\boldsymbol{y}}_j), \quad \boldsymbol{\alpha} \in \mathbb{R}^{2n'}$$

$$\text{subject to} \quad \alpha_i \ge 0 \quad \forall i \in [1:N] \quad \text{and} \quad \sum_{i=1}^{N} \alpha_i l_i = 0,$$

$$\text{where } \boxed{K(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{y}}') \triangleq e^{-\gamma ||\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{y}}'||^2}, \ \gamma \in \mathbb{R}^+}_{N}. \text{ The final SVM classifier is given by:}$$

$$N$$

$$(3)$$

$$f(\boldsymbol{x}) = \sum_{i=1}^{N} l_i \alpha_i^* K(\boldsymbol{x}, \tilde{\boldsymbol{y}}_i) + \nu^*.$$

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 13 / 46

SVM for decoding

How is SVM applied to channel decoding in the literature?

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th; 2024 13 / 46

SBND for BPSK

Conclusion 0000

SVM for decoding

Previous works - multi-class classification^{[3][4]}

Figure: One vs. rest approach.

This solution implies the evaluation of 2^k functions:

 $\hat{oldsymbol{u}} = oldsymbol{u}_{j^*}, ext{ where } j^* = rgmax_{j \in [1:2^k]} f^{(j)}(ildsymbol{ ilde{y}}).$

(5)

14 / 46

^[3]V. Sudharsan and B. Yamuna. "Support Vector Machine based Decoding Algorithm for BCH Codes". In: Journal of Telecommunications and Information Technology 2.2016 (June 2016), pp. 108–112

^[4]R. Ramanathan et al. "Generalised and Channel Independent SVM Based Robust Decoders for Wireless Applications". In: 2009 International Conference on Advances in Recent Technologies in Communication and Computing. IEEE, Oct. 2009

TÉSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024

SBND for BPSK

SVM for decoding

Limitation	Contribution
Need to evaluate 2^k functions	Bit-wise approach
Several noise realizations per codeword	Noiseless training
Lack of theoretical analysis	Optimality study and closed-form solution

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th; 2024 15 / 46

Introduction 0000000000 SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Contributions

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 15 / 46

Contributions

1) Bit-wise SVM decoder

Introduction 0000000000	SVM for joint demodulation and decoding	SBND for BPSK	SBND for higher-order modulations	Conclus
Contribu 2) Noiseless 1	tions			
Becaus	se we are dealing with an AWO	GN channel	center points	

The dataset is reduced to only 1 sample per class (i.e., per codeword).

Maximum margin

Decision hyperplane

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th; 2024 17 / 46

Contributions

1+2) New optimization problem^[5]

Bitwise approach + noiseless training = k opt. problems for $j \in [1:k]$:

$$\begin{aligned} & \underset{\alpha}{\operatorname{argmin}} \ \frac{1}{2} \sum_{i,m=1}^{2^k} \alpha_i \alpha_m l_i^{(j)} l_m^{(j)} K(\tilde{\boldsymbol{x}}_i, \tilde{\boldsymbol{x}}_m) - \sum_{i=1}^{2^k} \alpha_i, \quad \text{where } K(\tilde{\boldsymbol{x}}_i, \tilde{\boldsymbol{x}}_m) = e^{-\gamma ||\tilde{\boldsymbol{x}}_i - \tilde{\boldsymbol{x}}_m||^2} \\ & \text{subject to: } \alpha_i \geqslant 0 \text{ and } \sum_{i=1}^{2^k} l_i^{(j)} \alpha_i = 0, \end{aligned}$$

where $l_i^{(j)} = +1$ if the *j*th bit of the *i*th message is a 1, and $l_i^{(j)} = -1$ otherwise.

$$f^{(j)}(\tilde{y}) = \sum_{i=1}^{2^k} l_i^{(j)} \alpha_i^{\star(j)} e^{-\gamma ||\tilde{y} - \tilde{x}_i||^2} + \nu^{\star(j)}.$$
 (6)

^[5]Gastón De Boni Rovella et al. "On the Optimality of Support Vector Machines for Channel Decoding". In: 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit). IEEE, June 2024

TéSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December (311, 2024 18 / 46

Bitwise approach + noiseless training = k decision functions for $j \in [1:k]$;

$$f^{(j)}(\tilde{\boldsymbol{y}}) = \sum_{i=1}^{2^{k}} l_{i}^{(j)} \alpha_{i}^{\star(j)} e^{-\gamma ||\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{x}}_{i}||^{2}} + \nu^{\star(j)}.$$
(7)

Theorem (Optimal solution and equivalence to bit-MAP)

1. For $\gamma \gg 1$, $\alpha^{\star} = (1, 1, ..., 1)$, and $\nu^{\star} = 0$, for all k opt. problems.

2. With the previous solution (α^*, ν^*) , if $\gamma = 1/\sigma^2$, the proposed decoding rule is equal to the bit-MAP decoder.

Introduction 0000000000 SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Results

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 19 / 46

SBND for BPSK

Results

Convergence to optimal solution

$$\gamma_s riangleq 1/\sigma_s^2$$
, where σ_s^2 is such that $E_b/N_0 = s \mathsf{dB}$:

Theorem

- 1. For $\gamma \gg 1$, $\alpha^* = (1, 1, ..., 1)$, and $\nu^* = 0$, for all k opt. problems.
- 2. With the previous solution (α^*, ν^*) , if $\gamma = 1/\sigma^2$, the proposed decoding rule is equal to the bit-MAP decoder.

$$f(\tilde{\boldsymbol{y}}) = \sum_{i=1}^{2^k} l_i \alpha_i^{\star} e^{-\gamma ||\tilde{\boldsymbol{y}} - \tilde{\boldsymbol{x}}_i||^2} + \nu^{\star}.$$

Figure: Solutions to the opt. problem vs. value of γ , for Polar and BCH codes of size (32,11) under 16QAM.

Results

Bit error rate studies

$$\gamma_s \triangleq 1/\sigma_s^2$$
, where σ_s^2 is such that $E_b/N_0 = s \mathsf{dB}$:

Theorem

- 1. For $\gamma \gg 1$, $\alpha^* = (1, 1, ..., 1)$, and $\nu^* = 0$, for all k opt. problems.
- 2. With the previous solution (α^*, ν^*) , if $\gamma = 1/\sigma^2$, the proposed decoding rule is equal to the bit-MAP decoder.

$$f(\boldsymbol{x}) = \sum_{i=1}^{2^k} l_i \alpha_i^{\star} e^{-\gamma ||\boldsymbol{x} - \tilde{\boldsymbol{x}}_i||^2} + \nu^{\star}.$$

Conclusion

Take-away points:

- 1. The proposed approach (bitwise + noiseless training) reduces the number of SVM classifiers from 2^k to k and the dataset to only one sample per class.
- 2. However, the theoretical analysis shows equivalence to MAP for AWGN.

Perspectives:

- 1. Applying the system in a more complex channel where the MAP decoding rule is not available in closed form? (frequency or time selective, fading, unknown, etc.).
- 2. Training on a subset of valid codewords?

	One vs. rest	Bitwise + noiseless opt. (ours)
# of SVM functions	2^k	k
dataset size	$N_{data} \gg 2^k$	2^k

Table: Complexity comparison between methods.

$$f(ilde{oldsymbol{y}}) = \sum_{i=1}^{2^k} l_i lpha_i e^{-\gamma || ilde{oldsymbol{y}} - ilde{oldsymbol{x}}_i||^2} +
u.$$

TéSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 21 / 46

Table of contents

1 Introduction

2 SVM for joint demodulation and decoding

3 SBND for BPSK

4 SBND for higher-order modulations

5 Conclusion

TéSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 21 / 46

SVM for joint demodulation and decodi

SBND for BPSK

SBND for higher-order modulations

Conclusion

Deep Neural Networks for decoding

Recall the curse of dimensionality: for message of length $k \Rightarrow 2^k$ possible codewords.

There are two approaches that employ single-codeword training:

- Model-based (deep unfolding of Belief Propagation)^[6].
- Model-free (syndrome-based neural decoding)^[7].

^[6]Eliya Nachmani, Yair Be'ery, and David Burshtein. "Learning to Decode Linear Codes Using Deep Learning". In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, Sept. 2016

^[7] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. "Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach". In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018

SVM for joint demodulation and decodin

SBND for BPSK

SBND for higher-order modulations

Previous works: model-based^[6]

For the parity-check matrix

 $H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

Figure: Neural Belief Propagation (2 iter).

- > The structure of Tanner graph defines the network architecture.
- Improves on the BP algorithm for specific codes (short and/or dense).
- The performances are often worse than the model-free method.

^[6] Eliya Nachmani, Yair Be'ery, and David Burshtein. "Learning to Decode Linear Codes Using Deep Learning". In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, Sept. 2016

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Model-free approach: Syndrome-Based Neural Decoding (SBND)^[7]

Why adopt this approach?

- $\blacktriangleright \text{ No intrinsic loss of optimality: } P_{C_i|\boldsymbol{Y}}(c_i|\boldsymbol{y}) = P_{E_i^b||\boldsymbol{Y}|,H\boldsymbol{Y}^b}(c_i \oplus y_i^b||\boldsymbol{y}|,H\boldsymbol{y}^b), \ \forall i \in [1:n].$
- ► The inputs (*Hy^b*, |y|) are independent of *c* under BPSK, which enables the single-codeword training property.
- > This bypasses the codeword space aspect of the CoD (train on 1 codeword instead of 2^k).

^[7] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. "Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach". In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018

Introduction 0000000000 SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion

SBND: architectures in the literature^{[7][8]}

(a) Recurrent Neural Network (RNN)³.

^[7]Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. "Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach". In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018

^[8]Yoni Choukroun and Lior Wolf. "Error Correction Code Transformer". In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022, pp. 38695–38705

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 25 / 46

SBND approach

Contributions

Limitation	Contribution
deword c is estimated ad of the message u	essage-oriented decoder
work is often very large L0s million parameters)	recurrent ECCT
rge impact of the trix H on performance	PC matrix study and optimization

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 26 / 46

Introduction 0000000000 SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Contributions

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 26 / 46

Contributions

1) Proposed message-oriented framework^[9]

Theorem (Sufficient statistics)

The following equation holds, for all $i \in [1:k]$: $P_{U_i|\mathbf{Y}}(u_i|\mathbf{y}) = P_{E_{u,i}^b||\mathbf{Y}|,H\mathbf{Y}^b}(u_i \oplus \tilde{u}_i | |\mathbf{y}|,H\mathbf{y}^b).$ (8)

- Maintains the single-codeword training property.
- It allows for a deeper focus on the information bits during training (sacrificing redundant bits).
- Network complexity is reduced (only *k* outputs).
- It is directly applicable to non-systematic codes.

^[9]Gastón De Boni Rovella and Meryem Benammar. "Improved Syndrome-based Neural Decoder for Linear Block Codes". In: *GLOBECOM 2023 - 2023 IEEE Global Communications Conference*. IEEE, Dec. 2023

TéSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2

27 / 46

SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion

Results

1) Message-oriented vs. codeword-oriented

Obs: RNN has 4M weights, ECCT has 2M weights.

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 28 / 46

Contributions

2) Recurrent transformer-based (r-ECCT) architecture^[10]

Results:

- Number of weights divided by $N \approx 10$.
- Decoding performances globally maintained (even slightly improved).

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 29 / 46

^[10] Gastón De Boni Rovella et al. "Syndrome-Based Neural Decoding for Higher-Order Modulations (submitted)". In: IEEE Transactions on Communications (2024)

SBND for BPSK

Results

2) Recurrent Error Correction Code Transformer (r-ECCT) and complexity analysis

$$W_{\mathsf{RNN}} = 3 \left((2d_l - 1)\alpha^2 + \alpha \right) r^2 + (3d_l + k)\alpha r + k \approx \mathcal{O}((2n - k)^2)$$
$$W_{\mathsf{ECCT}} = 12Nd_e^2 + (13N + r + 3)d_e + (r + 1)k + 1 \approx \mathcal{O}(Nd_e^2)$$
$$W_{\mathsf{r}\mathsf{ECCT}} = 12d_e^2 + (16 + r)d_e + (r + 1)k + 1 \approx \mathcal{O}(d_e^2)$$

where:

- ▶ $r \triangleq 2n k$, where (n, k) are the code parameters;
- N the number of encoders in the ECCT architecture;
- and d_e the embedding dimension of the ECCT and r-ECCT.

Figure: BCH (63,45).

Contributions

3) Influence of the Parity-Check Matrix (PCM)

1. As a metric, we propose the *pairwise* Mutual Information (MI) between a single input and output of the decoder, and we compute the formula for our case:

$$MI(E_i^b; S_j) = \left[\mathcal{H}_b(\mathcal{E}(N_j)) - \mathcal{H}_b(\mathcal{E}(N_j - 1))\right] \mathbb{I}\{H_{ij} = 1\},$$
(9)

where

- $\blacktriangleright \mathcal{H}_b(a) \triangleq -a \log_2 a (1-a) \log_2 (1-a);$
- > N_j Hamming weight of the *j*th row of H;
- ▶ and $\mathcal{E}(N_j) \triangleq \frac{1}{2} + \frac{1}{2}(1-2p)^{N_j}$, p denoting the bitflip probability for a given E_b/N_0 .

Contributions

3) Influence of the Parity-Check Matrix (PCM)

2. We notice that this pairwise MI decreases with the respective row's weight:

Figure: Pairwise MI vs. row's weight.

4. We propose a sparsifying algorithm.

Results

3) Influence of the PCM

VM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Results

3) Influence of the PCM

Introduction 0000000000 SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion 0000

Results (all combined)

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 34 / 46

Results

Every element put together vs. best neural solutions in the literature: BCH (127,64)

Message-oriented approach + r-ECCT (reduced complexity) + sparsified matrix:

Figure: BCH (127,64), comparison with SOTA.

- [6] Eliya Nachmani et al. "Deep Learning Methods for Improved Decoding of Linear Codes". In: IEEE Journal of Selected Topics in Signal Processing 12.1 (Feb. 2018).
- [7] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. "Deep Learning for Decoding of Linear Codes - A Syndrome-Based Approach". In: 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, June 2018.
- [8] Yoni Choukroun and Lior Wolf. "Error Correction Code Transformer". In: Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran Associates, Inc., 2022.

Conclusion

Summary of contributions

Summary of contributions:

- 1. Message-oriented approach (increased performance).
- 2. r-ECCT architecture (reduced complexity).
- 3. Optimization of PCM (increased performance).

Future works:

- 1. Can we extend this to higher-order modulations?
- 2. To be continued...

Table of contents

1 Introduction

2 SVM for joint demodulation and decoding

3 SBND for BPSK

4 SBND for higher-order modulations

5 Conclusion

Conclusion

System model for Higher-Order Modulations (HOM)

Bit-Interleaved Coded Modualtions

Figure: Proposed system with Bit-Interleaved Coded Modulations (BICM)^[11].

- 1. The bit-interleaver Π shuffles the codewords before modulation.
- 2. The deinterleaver Π^{-1} retrieves the original bit order.

[11] G. Caire, G. Taricco, and E. Biglieri. "Bit-Interleaved Coded Modulation". In: IEEE Transactions on Information Theory 44.3 (May 1998), pp. 927–946

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 37 / 46

Contributions

- 1. SBND decoder for HOM construction.
- 2. Optimality analysis.
- 3. Training dataset design.

SBND for BPSK

Contributions

Proposed decoder and optimality

Figure: Proposed decoder with Bit-Interleaved Coded Modulations (BICM).

Theorem (Sufficient statistics for HOM)

The following equation holds, for all $i \in [1:k]$: $P_{\boldsymbol{E}_{\boldsymbol{u}}^{b}|\boldsymbol{L}}(\boldsymbol{e}_{\boldsymbol{u}}^{b}|\boldsymbol{l}) = P_{\boldsymbol{E}_{\boldsymbol{u}}^{b}||\boldsymbol{L}|,H\boldsymbol{L}^{b}}(\boldsymbol{e}_{\boldsymbol{u}}^{b}||\boldsymbol{l}|,H\boldsymbol{l}^{b}).$ (10)

Contributions

Proposed decoder and optimality - proof outline

$$P_{E_{u}^{b}|L}(e_{u}^{b}|l) = P_{E_{u}^{b}||L|,L^{b}}(e_{u}^{b}||l|,l^{b})$$
(11)

$$= P_{E_{u}^{b}||L|,HL^{b},AL^{b}}(e_{u}^{b}||l|,Hl^{b},Al^{b}) \quad ([H^{T},A^{T}] \text{ is invertible})$$
(12)

$$= P_{E_{u}^{b}||L|,HL^{b},AL^{b}}(e_{u}^{b}||l|,Hl^{b},A(c \oplus e^{b}))$$
(13)

$$= P_{E_{u}^{b}||L|,HL^{b},AL^{b}}(e_{u}^{b}||l|,Hl^{b},u \oplus e_{u}^{b})$$

 $\boldsymbol{U} \sim \mathsf{Bern}(0.5)$ and $\boldsymbol{E}_{\boldsymbol{u}}^b$ is independent of \boldsymbol{U} (thanks to BICM):

$$P_{E_{u}^{b}|L}(e_{u}^{b}|l) = P_{E_{u}^{b}||L|,HL^{b}}(e_{u}^{b}||l|,Hl^{b})$$
(14)

Contributions

3) Training set design

Figure: Distribution of |l| for BPSK modulation and 16-QAM.

We lose the single-codeword training property.

ecember 13th, 2024 41 / 46

Introduction 0000000000 SVM for joint demodulation and decoding

SBND for BPSK

SBND for higher-order modulations

Conclusion

Results

TéSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 41 / 46

SVM for joint demodulation and decoding

SBND for BPSK

Conclusion 0000

Results

SBND + BICM employing different architectures^[12]

Figure: BCH codes, 8-PSK, different architectures.

[12] Gastón De Boni Rovella et al. "Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations". In: 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, May 2024, pp. 341–346

TeSA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 42 / 46

SBND for BPSK

Results

SBND + BICM employing different architectures^[12]

Figure: Polar codes, 16-QAM, different architectures.

[12] Gastón De Boni Rovella et al. "Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations". In: 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN). IEEE, May 2024, pp. 341–346

TESA / ISAE-SUPAERO Machine learning-based solutions for channel decoding in M2M-type communications December 13th, 2024 43 / 46

Conclusion of SBND for HOM

Summary of contributions targeting applicability to HOM:

- 1. Extension of SBND to higher-order modulations (employing BICM).
- 2. Proof of optimality in this scenario.
- 3. Training set discussion.

Take-away points:

- 1. The SBND approach is successfully extended to higher-order modulations without loss of optimality.
- 2. The single-codeword training property is *mathematically lost* in the way. However, training was carried out on less than 3% of the codeword space for n = 64 and less than $10^{-9}\%$ for n = 128, with good performances depending on code size and rate.

Table of contents

1 Introduction

- 2 SVM for joint demodulation and decoding
- **3** SBND for BPSK
- 4 SBND for higher-order modulations

5 Conclusion

Conclusion and final remarks

Final thoughts:

- 1. SVM: the complexity was reduced significantly, but still equivalent to the MAP decoder.
- 2. SBND: the different contributions resulted in **increased performance** (message-oriented approach, PCM study), **reduced complexity** (r-ECCT), and **wider applicability** (non-systematic codes and higher-order modulations) compared with existing solutions.

Future works:

- 1. Establish the basis for a comparative analysis against classical decoders.
- 2. Unified architecture^[13].
- 3. Combine model-based and model-free approaches.

^[13]Yongli Yan et al. Error Correction Code Transformer: From Non-Unified to Unified, 2024

Publications

National conferences:

 G. De Boni Rovella, M. Benammar, D. Gourmel and M. Djelloul. "SVM pour la démodulation et le décodage conjoints," colloque GRETSI, Grenoble, France, 2023.

International conferences:

- [2] G. De Boni Rovella and M. Benammar, "Improved Syndrome-based Neural Decoder for Linear Block Codes," GLOBECOM 2023 - IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023.
- [3] G. De Boni Rovella, M. Benammar, H. Méric and T. Benaddi, "On the Optimality of Support Vector Machines for Channel Decoding," 2024 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Antwerp, Belgium, 2024.
- [4] G. De Boni Rovella, M. Benammar, T. Benaddi and H. Meric, "Scalable Syndrome-based Neural Decoders for Bit-Interleaved Coded Modulations," 2024 IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN), Stockholm, Sweden, 2024.

Journal articles:

- [5] G. De Boni Rovella, M. Benammar, T. Benaddi and H. Meric, "Syndrome-Based Neural Decoding for Higher-Order Modulations." In: IEEE Transactions on Communications (2024). (in review)
- [6] G. De Boni Rovella, M. Benammar, T. Benaddi and H. Meric, "Support Vector Machines for Optimal Channel Decoding." In: EURASIP Journal on Wireless Communications and Networking - Special Issue (2024). (in review)

The end

Thank you!

Questions?

All codes are available in the following repositories: github.com/gastondeboni/SVM_for_Channel_Decoding github.com/gastondeboni/Syndrome_Based_Neural_Decoding