
Doctorat de
l’Université de Toulouse

délivré par l'ISAE-SUPAERO

Solutions de décodage canal basées sur l'apprentissage
automatique pour les communications de type machine-à-

machine

Thèse présentée et soutenue, le 13 décembre 2024 par

Gastón DE BONI ROVELLA
École doctorale
EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse

Spécialité
Informatique et Télécommunications

Unité de recherche
ISAE-ONERA SCANR Signal communication Antennes Navigation Radar

Thèse dirigée par
Jérôme LACAN et Meryem BENAMMAR

Composition du jury
M. Raphaël LE BIDAN, Rapporteur, IMT Atlantique Brest
M. Maël LE TREUST, Rapporteur, Université de Rennes, CNRS, INRIA/IRISA
Mme Inbar FIJALKOW, Examinatrice, ENSEA/CY Cergy Paris Université/CNRS
M. Charly POULLIAT, Examinateur, Toulouse INP - ENSEEIHT
M. Jérôme LACAN, Directeur de thèse, Institut Supérieur de l'Aéronautique et de l'Espace
Mme Meryem BENAMMAR, Co-directrice de thèse, Institut Supérieur de l'Aéronautique et de
l'Espace

Membres invités
M. Hugo MERIC, Centre Nationale d'Études Spatiales
M. Tarik BENADDI, Thalès Alénia Space

Acknowledgments

The following hundred-and-something pages you are about to read are but the result of all the
people in my life who have consistently shown support, affection, encouragement, comfort,
and everything else that gives one the strength to carry on. As unfair and insufficient as it
certainly is, I will do my best to express my gratitude in only a few paragraphs. I apologize
in advance for anyone I may forget.

I would like to start by thanking the jury, M. Raphaël Le Bidan, M. Maël Le Treust,
Mme Inbar Fijalkow and M. Charly Poulliat, who kindly agreed to take part in this process.
Their comments, questions, and suggestions far exceeded my expectations, and their warm
and generous words filled my inner motivation battery for at least a couple of years.

Let me continue with my Ph.D. supervision team. I thank my directors, Meryem Be-
nammar and Jérôme Lacan, for the incredible opportunity and for all the help and guidance
they have provided throughout the past three years. This work would not have been possible
without them. I also thank my co-supervisors, Hugo Méric from and Tarik Benaddi, for their
valuable remarks and suggestions during our meetings.

On a more personal level, four great pillars have managed to support me with the ever-
increasing weight that a Ph.D. carries, and I believe each one deserves —at least— a special
mention.

First, the ISAE-SUPAERO team. The ComIT research group welcomed me to their
trenches, and the rest of the Ph.D. students from the DEOS department made sure I never
lacked company for my morning coffee. Les vieux (Damien, Stéphanie, Wallance, José, and
Meryem) who made the best efforts to keep a friendly and welcoming workplace, with regular
team meals and the occasional —strictly professional— pool party. Les jeunes (Benjamin,
Fabio, Khaled, Leila, Steven, Cyril, Florent, Antoine, César, Thomas, Javier, Agathe, Martin,
Asnate, Joanna, Marco, Sarah, Titouan, Max, and others), that constitute the social backbone
that every Ph.D. student needs to maintain sanity and good spirits. I must reserve at least one
line to thank Nadia, who put up with my nonsense throughout my entire time in SUPAERO,
and who has promised (very seriously) to come visit me in Uruguay. From now on, and as
long as this document exists, she is welcome anytime.

Second, we have the TéSA family. Why did I get assigned to this lab, where there is
not one single person associated with my Ph.D.? The question could open another field of
research. But I am deeply thankful it turned out this way. Corinne, I think your office is
too small for the size of your heart. Evelyne, Hamish and Youssra, thank you for doing such
great theses, it is no pressure for me at all. Finally, thanks to all the rest of the people who
make up this family-lab: Esteban, Raoul, Philippe, JY, Serge, Samy, Kareth, Joan, Marta,
Valérian, Maurine, Jeff, Jihanne, Younes, Paul and Léa. Only one thing: next time, let me
choose the movie.

i

ii

Third, to my family, that group of stubborn, truthful, unbending, and trustworthy indi-
viduals that have carved me into who I am today. They have carried me in these past three
years in more ways than they probably know. My fearless sister, I owe you the courage. My
brilliant brother, I owe you the perspective. My kind father, I owe you the empathy. My
loving mother, I owe you everything.

And finally, there is this girl that I have been dating for. . . ten years? I think it’s getting
serious. I suppose there is not much I could say to Flo in a few words that I haven’t said
since I was 16. I am sorry for being away for so many years. If you let me, I will spend the
rest of our lives trying to make it up to you.

Contents

List of Acronyms xi

Notations xiii

Introduction 1

1 Preliminaries on coding theory and linear modulations 11

1.1 Introduction to binary linear block codes . 12

1.2 Linear modulations and log-likelihood ratios 17

1.3 System model . 19

1.4 Classical decoders . 21

2 Support Vector Machines for joint demodulation and decoding 27

2.1 Introduction to SVMs . 28

2.2 Previous works on SVM-based decoding . 33

2.3 Contributions: proposed system and training framework 35

2.4 Numerical results and analysis . 39

2.5 Conclusion and perspectives . 43

3 Syndrome-based neural decoding for BPSK 45

3.1 Model-free decoding approach . 47

3.2 Contributions to the model-free decoder . 52

3.3 Experiments . 63

4 Application of SBND to higher-order modulations 73

4.1 Preliminaries and problem statement . 75

4.2 Model-free decoding for BICM . 77

iii

iv Contents

4.3 On the optimality of SBND for BICM . 80

4.4 Experiments . 84

4.5 Discussion: SBND for a generic CM scenario 89

Conclusion 91

A Optimality of the SBND 95

A.1 Proof of Theorem 3.2 . 95

A.2 Proof of Lemma 3.1 . 97

B Parity-check matrix analysis 99

B.1 Proof of Theorem 3.3 . 99

B.2 Proof of 3.2 . 100

C Bit-Interleaved Coded Modulations 101

C.1 Proof of LLR expressions . 101

C.2 Proof of Theorem 4.1 . 104

C.3 Proof of Theorem 4.2 . 106

C.4 Proof of Lemma 4.4 . 107

References 115

List of Figures

1.1 Simplified schematic of binary channel coding. An imperfect channel (e.g.
a binary symmetric channel) adds errors to the transmitted codeword. The
decoder seeks to correct these errors. 12

1.2 Polar encoder diagram (or factor graph) of Example 1.2. 17

1.3 Constellation diagrams. 18

1.4 System model of a simplified communication chain. For clarity, the domain of
the signal in each stage of the system is added below. 19

1.5 Maximum likelihood bound flowchart. ĉmlb denotes the MLB-estimated code-
word. 25

2.1 System model of a simplified communication chain, including the concatenation
of the real and imaginary parts for the SVM processing. 29

2.2 Visual aid for the SVM deduction. 30

2.3 Visual representation of an SVM classifier. 32

2.4 Visual representation of the kernel method. In its original form, the data is
not linearly separable. However, through the transformation Φ, the space is
now three-dimensional and the data can be separated with a plane. 33

2.5 Visual representation of the one vs. rest approach. Each class is put against
all others to produce a binary classifier. The procedure is repeated 2k times,
once for each valid codeword. 34

2.6 Visual representation of the proposed bit-wise approach. 35

2.7 Visual demonstration of noiseless optimization: noisy scenario (left) and noise-
less scenario (right). 37

2.8 BER of the suggested decoder for both a BCH and a polar code of size (32, 11),
with a 16-QAM modulation and under an AWGN channel. 40

2.9 Eb/N0 corresponding to a BER of 10−3 as a function of s. 41

2.10 Optimal values of α and ν —i.e. solutions to the optimization problem (2.28)—
as a function of s. 42

3.1 General system model for model-free BPSK decoding. 47

v

vi List of Figures

3.2 Decoder framework proposed in [BCK18a]. 49

3.3 MLP-based architecture for the noise estimator. The number of neurons (i.e.,
the output size) is indicated below each layer, where α ∈ N+, and n denotes
the code’s block length. 51

3.4 RNN-based architecture for the noise estimator. The architecture is slightly
changed with respect to [BCK18a], adding a final dense layer to obtain the
correct output dimension. 51

3.5 Example of a parity-check matrix of a Hamming code of size (7, 4) and its
corresponding mask for the MH-SA block. Black squares correspond to ones
and white squares to zeros. 52

3.6 Transformer-based architecture for the noise estimator, as proposed by [CW22a]. 53

3.7 Proposed message-oriented SBND. 55

3.8 r-ECCT solution proposed for the bitflip estimator. 57

3.9 Mutual information between Ebi and Sj as a function of the weight of the jth
row Nj , for different bitflip probabilities p ∈ {0.02, 0.05, 0.1}. 61

3.10 Possible parity-check matrices for a BCH code of size (127, 64). Ones are
represented in black and zeros in white. Their sparsity (percentage of zeros in
the matrix) is also displayed. 63

3.11 MPMI between the syndrome S and each bitflip component Ebi 64

3.12 Bit error rate comparison for two BCH code of sizes (63, 45) and (127, 64) under
a BPSK modulation scheme, employing the three considered architectures from
the state-of-the-art. The MLB curve was computed using an OSD of order 3. 67

3.13 Bit error rate comparison for a Polar code of size (64, 32) under a BPSK mod-
ulation scheme. Both neural decoders are implemented using RNNs. 68

3.14 Bit error rate comparison for two BCH codes of size n = 63 and k = {45, 39},
under a BPSK modulation scheme, employing the codeword-oriented approach
(cw-dec) and message-oriented (m-dec). 68

3.15 Bit error rate comparison for a Polar code of size (128, 64) under a BPSK
modulation scheme. Both neural decoders are implemented using the ECCT. 69

3.16 Bit error rate comparison for three BCH codes of size n = 63 and k =
{57, 51, 45}, under a BPSK modulation scheme. 70

3.17 Bit error rate comparison for three Polar codes of size n = 64 and k =
{48, 32, 22}, under a BPSK modulation scheme. 70

List of Figures vii

3.18 Bit error rate comparison for a BCH code of size (127, 64) under a BPSK mod-
ulation scheme, employing the r-ECCT architecture and the four considered
matrices. The sparsity of each matrix is also added in the legend. 71

3.19 Performance comparison between our proposed solution (with all considered
elements) and the previous solutions from [BCK18a; CW22a; Nac+18] for a
BCH code of size (127, 64) and a BPSK modulation. 72

4.1 General system model for BICM. 76

4.2 BICM channel model extended to bit-LLRs. 76

4.3 Equivalence between traditional decoding (left) and the model-free approach
(right) as presented in [BCK18a] for a BPSK modulation scheme. The esti-
mated bitflip pattern êb is used to correct the hard-decision vector yb. 77

4.4 Proposed architecture for the channel decoder in a BICM scenario. No as-
sumption has been made so far regarding the implementation of the bitflip
estimator. 79

4.5 Constellations for 8-PSK (left) and 16-QAM (right) modulation schemes. . . 80

4.6 BER comparison for two BCH codes of sizes (63, 57) (dashed lines) and (63, 51)
(solid lines) and an 8-PSK modulation scheme using the SBND, employing the
three considered architectures. The ML curve was computed using an OSD of
order 2. 86

4.7 BER comparison for two BCH codes using an 8-PSK modulation scheme, em-
ploying the three considered architectures. The ML decoder curves were com-
puted using an OSD of order 3. 87

4.8 BER comparison for three Polar codes of sizes (64, 48) (dash-dotted lines),
(64, 32) (solid lines), and (64, 22) (dashed lines), and a 16-QAM modulation
scheme, employing the three considered architectures. The MLB curve was
computed using an OSD of order 3. 88

4.9 BER comparison for two Polar codes of sizes (128, 96) (dashed lines) and
(128, 64) (solid lines), and a 16-QAM modulation scheme, employing the three
considered architectures. The MLB curve was computed using an OSD of
sufficiently high order. 88

4.10 BER comparison for a Polar code of size (64, 32) using a 16-QAM modulation
and an RNN architecture. For training, the three considered types of codeword
generation were employed. 89

viii List of Figures

4.11 BER comparison for a BCH code of size (63, 45) and an 8-PSK modulation
scheme, employing the three considered architectures. Solid lines denote the
BICM scenario, whereas dashed lines represent the generic, non-interleaved
CM layout. 90

C.1 Zone partitioning for the two considered constellations 102

C.2 Decision regions of the 8-PSK constellation. 105

C.3 Decision regions of the 16-QAM constellation. 106

List of Tables

1.1 Complexity of the classical decoding algorithms, where n denotes the code
length, L the list size of the SCL and p the order of the OSD. 25

2.1 Complexity comparison between methods. 42

3.1 Summary of the hyperparameters used in each simulated scenario, for each NN
architecture. 66

3.2 Summary of the approximate number of weights that configure each NN archi-
tecture. 66

4.1 Summary of the hyperparameters used in each simulated scenario, along with
the approximate number of weights that configure each NN architecture. . . . 84

4.2 Summary of the hyperparameters used in each simulated scenario, along with
the approximate number of weights that configure each NN architecture. . . . 86

C.1 Hard decisions and l1(y) for the 8-PSK. 102

C.2 Hard decisions and l1(y) for the 16-QAM. 103

ix

List of Acronyms

3GPP 3rd Generation Partnership Project

API Application Programming Interface

AWGN Additive White Gaussian Noise

BCH Bose–Chaudhuri–Hocquenghem

BEP Bit Error Probability

BER Bit Error Rate

BICM Bit-Interleaved Coded Modulations

BP Belief Propagation

BPSK Binary Phase-Shift Keying

BSC Binary Symmetric Channel

CM Coded Modulations

DNN Deep Neural Network

ECCT Error Correction Code Transformer

FEC Forward Error Correction

FEP Frame Error Probability

FER Frame Error Rate

FFNN Feed-Forward Neural Network

GF Galois Field

GNN Graph Neural Networks

GRAND Guessing Random Additive Noise Decoding

GRU Gated Recurrent Unit

iid independent and identically distributed

IoT Internet of Things

KKT Karush–Kuhn–Tucker

LDPC Low-Density Parity-Check

xi

xii List of Acronyms

LLR Log-Likelihood Ratio

LSTM Long Short-Term Memory

M2M Machine-to-Machine

MAP Maximum A Posteriori

MH-SA Multi-Head Self-Attention

MI Mutual Information

ML Maximum Likelihood

MLB Maximum Likelihood Bound

MLP Multi-Layer Perceptron

MPMI Mean Pairwise Mutual Information

MRI Most Reliable Independent

NN Neural Network

OSD Ordered Statistics Decoder

PHY Physical layer

pdf probability density function

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

r-ECCT Recurrent Error Correction Code Transformer

RBF Radial Basis Function

ReLU Rectified Linear Unit

RNN Recurrent Neural Networks

SBND Syndrome-Based Neural Decoder

SC Successive Cancellation

SCL Successive Cancellation List

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

Notations

Random variables and vectors are represented using italic capital letters (e.g., X and X),
whereas Roman and bold letters (e.g., x and x) denote their respective realizations. Matrices
are represented by italic capital letters (e.g. A), and are always defined in the body of the
text to prevent ambiguity. Additional notations are provided in the following list.

Symbol Description

In n× n identity matrix.

� Hadamard product.

|X | Cardinality of the finite set X .

PX(x) Probability distribution of X evaluated in x.

PX,Y (x, y) Joint probability distribution of (X,Y) evaluated in (x, y).

PX|Y (x|y) Conditional probability distribution of X given Y evaluated in (x, y).

X ↔ Y ↔ Z Markov chain meaning PZ|Y,X = PZ|Y .

P(X = x) Probability of the event {X = x}.

1(e) Indicator of the event {e} that takes the value 1 if and only if the event
{e} is true, and 0 otherwise.

[1 : n] Set of integers from 1 to n.

d·e Ceiling function.

b·c Floor function.

⊕ Exclusive OR operation.

R(x) Real part of the complex number x.

I(x) Imaginary part of the complex number x.

xiii

Introduction

Context

These last few decades have been witnesses to unprecedented advances in the field of wireless
communications, including the fifth-generation (5G) mobile communication standard devel-
oped by the 3GPP [3GP18], which seeks to provide massive broadband seamless connectivity
along with ultra-reliable and low latency, with relatively low complexity. This is empowered
by enabling further development in communication protocols such as the Internet of Things
(IoT), Machine-to-Machine (M2M) type communications, and more [Jia+17; ZPH19]. How-
ever, due to the particular latency and complexity constraints for such new protocols —M2M
and IoT— the design of new-generation communication systems calls for more intricate and
adaptive schemes than the classical solutions. The main limitations of the classical commu-
nication techniques are that (i) they are often block-wise designed, (ii) they are based on
asymptotic optimality results, and (iii) they are very dependent on accurate modeling of the
communication scenario.

As an alternative to these classical schemes, machine learning-based solutions are cur-
rently being explored extensively as enhancers or substitutes for many components of the
communication chain [Eld+22; Sim18], focusing on applications in the physical layer (PHY)
[Ye+24] (channel coding, modulation and waveform design, channel estimation and equal-
ization, MIMO precoding and decoding, resource allocation, etc.) but also the access and
network layers [Ahm+20; MLL19]. The main advantages of machine learning-based solutions
are that they can allow for an end-to-end design, they may not require an accurate model
of the communication scenario, and they can adapt to varying communication conditions.
As such, these solutions are foreseen to play an even more prominent role in the upcoming
6G mobile communication standard, which will require even higher data rates and reliabil-
ity, lower latency, and an increased flexibility compared to 5G [Row+24; She+20]. Besides,
beyond the mobile communications settings (5G, 6G), recent works have also reported poten-
tial enhancements enabled by machine learning-based solutions in satellite communications,
where their applications include interference detection, flexible payload configuration, and
congestion prediction [Vaz+21]. Machine learning-based solutions are also being studied in
optical communications settings as a way of dealing with non-linearities, software-defined
networks, and parameter estimation, among other use cases [Kha+19; Zib+16].

As an essential —and often time-consuming— part of the communication system, channel
coding for next-generation mobile communications (M2M and IoT) calls for the use of shorter
block lengths, as they possess lower latencies compared to codes with longer block lengths.
However, classical channel coding schemes carry two major drawbacks: (i) they are less
reliable under non-asymptotic block lengths; and (ii) optimal decoders for short block lengths
usually have a large computational complexity, leading to higher latency [Row+24]. The
design of optimal and low-complexity decoders for short codes is thus of crucial importance

1

2 Introduction

for next-generation communication standards.

Early channel coding solutions using machine learning (more specifically, neural networks)
were presented over thirty years ago [YBW89]. In 1989, a neural network was proposed as
a Maximum Likelihood (ML) decoder for generic block codes [ZHA89]. In the same year,
Bruck and Blaum determined the equivalence between finding the global maximum of a neu-
ral network function and ML decoding [BB89], even though the problems were recognized as
NP-hard, and hence, intractable for the code lengths employed in realistic communication sce-
narios. These first works constituted only a proof-of-concept for deep learning-based channel
coding solutions due to the lack of maturity of deep learning solutions and the limitation in
the available computational power. However, the recent advances in deep learning triggered
a renewal of interest in machine learning-based channel coding with the work of Gruber et al.
[Gru+17] in 2017 which built a quasi-optimal neural network decoder for a very short Polar
code. This constituted a turning point in the literature after which the design of machine
learning-based channel coding schemes was massively undertaken by both the scientific and
the industrial research communities [Lim+24; Niu+21].

Curse of dimensionality and contributions

Gruber et al. [Gru+17] trained a Multi-Layer Perceptron (MLP) to learn to decode very short
binary linear block codes, namely a (16, 8) Polar code [Ari09] and a (16, 8) random code. This
led to two very important conclusions. The first conclusion is that Deep Neural Networks
(DNN) —such as an MLP— can fully learn to decode a linear code with close-to-optimal error
probability when trained over the set of all valid codewords. However, this result remains valid
only for very short codes, for which training over all valid codewords is practically possible.
As the code length increases, the network’s learning capacity rapidly shrinks. The second
conclusion of [Gru+17] is that training a DNN on only a subset of the valid codewords (e.g.,
70% of the codeword space) entails a performance loss for both random and structured codes.
However, for random codes, the resulting error probability on the unseen codewords during
training corresponds to that of a random guess decoder, whereas for the structured code
(Polar code), the error probability of the unseen codewords outperforms that of a random
guess. Hence, the more structured the code, the better the generalization capability of the
DNN-based decoder.

These two conclusions establish the curse of dimensionality —originally introduced by
Wang in 1996 while implementing a neural-based Viterbi decoder [WW96]— which constitutes
a major challenge for the scientific communities that study machine learning for channel
decoding. The curse of dimensionality (also referred to as scalability problem) is due to three
main components. First, for an (n, k) channel code, the codeword space is composed of 2k valid
codewords of n bits. This exponential growth engenders a training dataset size exponentially
increasing in k, which becomes intractably large to be fully explored even for short-to-medium
length codes. Second, in order to prevent over-fitting to the noise realizations, the training
dataset should allow to see each codeword with a variety of noise realizations, which expands

Introduction 3

further the size of the training dataset. Last but not least, the larger the block length of the
code, the larger the structure of the neural network needed to properly learn the decoding
function, inducing thus an increase in the number of trainable parameters, in the number of
training epochs and, often, in the batch size. In the following, we detail our contributions in
tackling each of these manifestations of the curse of dimensionality.

1) Number of noise realizations: bitwise SVM

One important aspect of the curse of dimensionality due to noise realizations pertains to the
set of correctable noise realizations. To exemplify this, let us consider an (n, k) block linear
code used to communicate over a Binary Symmetric Channel (BSC). As the code length n

increases and the code rate R = k/n decreases, an optimal decoder is able to correct a larger
amount of bitflip patterns that affect the transmitted signal. For instance, for a code of
length n = 8 and with an error correction capability of t = 1 bit, there are 8 correctable
bitflip patterns1. In contrast, for a code of length n = 100 and an error correction capability
of t = 5 bits, the number of correctable bitflip patterns is equal to:

5∑
i=1

(
100
i

)
≈ 79× 106 (1)

This imposes an ever-growing number of possible noisy inputs that should be decoded as the
same codeword, and the same is valid for every possible codeword.

To tackle the curse of dimensionality due to the number of noise realizations, we explore
Support Vector Machines (SVM). SVMs are one of the most studied machine learning-based
approaches in the literature [AML12; Sal+14], and were introduced over thirty years ago by
Vapnik, Boser, Cortes, and Guyon [BGV92; CV95; Vap97]. They belong to the supervised
learning methods, and are appealing for several reasons. First, they exhibit the so-called
maximum margin property, since they entail a binary classifier which divides the dataset
with a hyperplane that is at an equal and maximum distance from both classes. This will
allow us to reduce the number of noise realizations for each class (codeword). Second, their
training consists in a convex optimization problem, which ensures the convergence to a global
minimum. Third, the mathematical construction of the classifier exploits usually a smaller
subset of the dataset (called the support vectors) to produce the classifying function. For
these reasons, SVMs have been widely employed in many communication applications, such
as channel estimation [APP20; Gar+06], physical layer security [HDL19], multiuser detection
[GK99], channel equalization [Gia+18; LHL05], and wireless signal identification [Tek+19],
among others.

Previous studies have addressed the application of SVMs in channel decoding, as in [DH10;
KB08; SY16]. For instance, [DH10] applies SVMs to adaptive modulation and coding in real-
time scenarios, achieving significant complexity reductions over prior algorithms. In [KB08],
the authors introduce a pairwise SVM-based decoder that demonstrates competitive perfor-

1There are probably a few more, but for simplicity, we only consider the patterns with at most t bitflips.

4 Introduction

mance for convolutional codes, though at the cost of significant computational complexity.
A similar approach is observed in the works of [Ram+09] and [SY16], where minor adjust-
ments to training and application are made while adhering to the same pairwise classification
strategy. In this method, however, both the necessary training dataset and the number of
binary classifiers that constitute the decoder grow exponentially with the size of the code.
This results in an intractable decoder when applied to a code length that is larger than a few
bits. The largest implemented code has a length of n = 15 bits [SY16], and employs up to
100 noisy realizations of each valid codeword.

In this thesis, we introduce a novel bitwise SVM-based decoding framework that greatly
reduces the number of binary classifiers to generate from 2k to k for a channel code of pa-
rameters (n, k). Additionally, the maximum margin property is exploited in order to reduce
the training dataset size to only one noiseless sample per valid codeword, as opposed to pre-
vious contributions which employed several noisy realizations of every possible codeword. We
conclude by proving mathematically the equivalence between the proposed SVM decoder and
the ML decoder in an Additive White Gaussian Noise (AWGN) channel. Hence, even if the
complexity is greatly reduced with respect to previous SVM-based channel decoders, the curse
of dimensionality pertaining to the size of the codeword space remains, which led us to the
exploration of deep learning-based solutions.

2) Number of valid codewords: message-oriented model-free decoder

The SVM-based decoding framework, as we have approached it, is not able to learn properly
without employing at least one sample of each class, i.e., of each possible codeword. This
constitutes the second element of the curse of dimensionality, where the number of possible
codewords increases exponentially with the code dimension (see Section 1.1). Hence, our
motivation is to explore solutions that learn a decoding function without the need to explore
the entire codeword space.

DNNs are well-known universal approximators [HSW89], which means that, when properly
constructed, they are able to approximate any continuous function. Additionally, through
optimization algorithms such as Stochastic Gradient Descent (SGD) [Ros58], this function can
be obtained solely through input and output data of the desired function, i.e., the training
dataset. This is why previous works have implemented this type of network as potential
decoders but have faced the scalability problem [Gru+17; WW96]. Thus far, there are two
main approaches present in the literature that undertake this problem and produce neural-
based decoders with reasonable performances while only being trained on a subset of the valid
codewords. These systems will be henceforth referred to as scalable neural decoders.

The first scalable neural decoder is a model-based approach, introduced by Nachmani et
al. in 2016 [NBB16], which proposes a neural extension of the well-known Belief Propagation
(BP) decoding algorithm [RL09]. It consists in, first, assigning weights to the edges of the
Tanner graph on which the BP algorithm iterates through, and then training the resulting
neural network to minimize the error rate using a stochastic gradient descent algorithm. Due

Introduction 5

to the iterative nature of the BP algorithm, [NBB16] resorts to a deep unfolding procedure,
where the Tanner graph is unfolded into a DNN with twice as many layers as iterations em-
ployed, and the links between the layers abide by the structure of the code’s bipartite graph.
The main advantage of this technique is that it preserves the message passing symmetry
conditions of the original BP, and as a consequence, the error rate is independent of the
transmitted codeword. Therefore, it suffices to train the network with noisy observations of
a single codeword, instead of the entire codeword space. This technique has been shown to
partially reduce the negative effect related to the presence of short cycles in the Tanner graph,
and systematically improve performances of the BP algorithm in dense codes. This work led
to further advances in this approach that target lower complexity and better performances,
including the implementation of Recurrent Neural Networks (RNN) [Nac+17; Nac+18], au-
toregressive architectures [NW21], advanced loss and multi-loss functions [LG18; Nac+18],
Graph Neural Networks (GNN) [SW20], alternative labeling schemes [Che+23], and even the
extension to other structures like factor graphs in Polar coding [Ari09; Xu+17].

Nachmani’s model-based approach was proposed as an improved BP decoding for short-
to-medium length BCH codes, which are high-density parity-check codes and thus prone to
short cycles in their Tanner graph. Indeed, in that scenario, weighted BP produces better
decoding performances than the classical BP algorithm. However, BP decoding is well-suited
for very large and sparse codes —such as Gallager’s Low-Density Parity-Check (LDPC) codes
[Gal63]— due to the absence of short cycles in the bipartite graph induced by the parity-check
matrix of the code. This minimizes the message correlation in the iterative algorithm, which
in turn enables close-to-optimal decoding performances. In contrast, when applied to short
or medium-length and dense codes —namely, BCH codes—, BP performs poorly compared
to maximum likelihood decoding. Even if neural BP can partially alleviate the performance
deterioration caused by the presence of short cycles in the Tanner graph, its impact remains
moderate. Thus far, and to the best of our knowledge, no model-based implementations have
been proposed that display close-to-optimal performances for the aforementioned types of
codes.

The second technique consists of a model-free approach, introduced by Bennatan et al.
in 2018 [BCK18a] and is tailored for transmissions over a Binary Input-AWGN (BI-AWGN)
channel. In this scenario, the proposed decoder seeks to estimate the positions of the Binary
Phase-Shift Keying (BPSK) symbols in the modulated codeword that have suffered a change
in their sign, or analogously, in the binary domain, a bitflip. A preprocessing stage is added
before the decoder, where the received signal y is divided into its absolute value |y| (also
called reliabilities) and its syndrome s, defined as:

s = Hyb = H(c⊕ eb) = Heb, (2)

where H denotes the parity-check matrix of the code, yb represents the hard decision associ-
ated with the received signal y, c indicates the transmitted binary codeword and eb is a binary
vector containing ones in the flipped positions and zeros everywhere else —also referred to
as the bitflip pattern. Authors in [BCK18a] proved that these two elements (Hyb, |y|) are
sufficient statistics for the optimal estimation of the bitflip pattern eb and are, by definition,

6 Introduction

independent of the transmitted codeword. This implies that (i) optimal decoding can be
achieved with this framework; and (ii) training can be carried out using noisy observations of
a single codeword, equivalently to the model-based approach. The original work by Bennatan
et al. employed MLP and RNN as estimators for the bitflip positions, while further works have
also used transformer-based architectures [CW22b; Par+23] and other iterative approaches
[CW23; KP20]. Thus far, the contributions in the model-free approach have been focused on
employing new NN-based architectures to obtain better results with lower complexities.

The model-free approach, though harder to interpret than the model-based, has shown
competitive performances when applied to Polar and BCH codes, and approaching optimal
error rates in some circumstances. However, the work in [BCK18a] presented some limitations
that could be enhanced to further reduce the error rates: (i) the decoder estimates the entire
codeword, assigning equal importance to every bit, regardless of whether it is an information
bit or a parity bit; (ii) the application of the decoder to non-systematic codes implies further
linear operations on the estimated codeword that leads to a penalty in performance; and (iii)
the impact of the choice of the parity-check matrix is not discussed nor evaluated, despite the
fact that its shape and structure has a very profound impact on the decoder’s performance.

In this thesis, we present a novel message-oriented version of the model-free approach
(as opposed to the codeword-oriented decoder in the literature [BCK18a; CW22a; KP20;
Par+23]), which makes use of a pseudoinverse function to target only the information bits in
the codeword at the expense of the parity bits. This results in a significant improvement in
decoding performance, both due to the message-focused approach and the elimination of non-
valid-codeword decoding outputs. Moreover, the proposed system can be straightforwardly
applied to non-systematic codes, such as Polar codes in their original form [Ari09]. Finally,
we study the influence of the parity-check matrix on the decoder’s training and performance
employing metrics from information theory [Sha48], and propose a simple algorithm to build
a more suitable parity-check matrix according to these metrics.

3) Size of the neural network: r-ECCT

The third manifestation of the curse of dimensionality pertains to the number of weights (i.e.,
trainable parameters) in the neural network, which tends to increase drastically with the
code size, and impacts particularly the model-free approach, as we will see in Chapter 3. The
original work that proposed the model-free approach employed MLP and RNN [BCK18a],
which involves a number of parameters that reaches 20 million for a channel chode of length
n = 127 bits. In 2022, Choukroun et al. introduced a transformer-based architecture [CW22a]
—therein referred to as Error Correction Code Transformer (ECCT)—, inspired by the work
of Vaswani et al. in 2017 [Vas+17], that reduces the weight count to 2 million for the same
code, while maintaining similar performances when applied to dense codes. Other works have
not proposed any new deep learning-based architecture that further reduces the size of the
neural network [KP20; Par+23].

In this thesis, we introduce a novel recurrent version of the ECCT, which we call r-ECCT,

Introduction 7

that tackles the space/memory constraint of model-free decoders by reducing the number
of parameters to only a fraction of the parameters of the ECCT. A complexity analysis is
carried out that compares the total size of each considered network as a function of the code
size and other hyperparameters to be selected.

4) Extension to higher-order modulations

A final important element concerning the model-free decoding approach is that it relies heavily
on the symmetry properties of the BPSK modulation scheme, where the inputs of the decoder
—i.e., the syndrome and reliabilities— are independent of the transmitted codeword. This
enables the single-codeword training property, which is key in the scaling capabilities of
the model-free decoder. However, in order to render it applicable in realistic scenarios, the
decoder must be adapted to support higher-order modulations, such as Phase-Shift Keying
(PSK) and Quadrature Amplitude Modulation (QAM). As far as we can assert, no study
has been carried out to analyze the application of the model-free approach to higher-order
modulations, including an optimality analysis and simulation results.

In this thesis, we propose a model-free decoder that extends our previous system to the
case of higher-order modulations. For this purpose, we investigate first a Bit-Interleaved
Coded Modulations (BICM) scenario, which maintains the necessary symmetry properties to
prove the proposed decoder’s optimality. We characterize the equivalent channel between the
transmitted codewords and the received Log-Likelihood Ratios (LLR) (which will serve as
inputs to the decoder) using results from the literature [Alv08; CTB98]. Once the decoder’s
optimality is proved and the training set design is discussed, we evaluate the performance
of the proposed decoder employing the main architectures from the literature (i.e., RNN
and ECCT) along with the previously proposed r-ECCT. We then discuss the extension of
the proposed decoder to generic Coded Modulations (CM) and illustrate our results with
numerical simulations.

Organization of the work

This thesis has four chapters. Chapters 2, 3, and 4 contain our contributions and results.

Chapter 1 provides the reader with a brief overview of channel coding and linear mod-
ulations, focusing on the aspects that are necessary to understand this work. The optimal
decoding rule —the so-called Maximum A Posteriori (MAP) decoder— is mathematically
detailed and compared to the ML decoder. Finally, a few elements regarding classical de-
coders are presented and discussed, such as the Ordered Statistics Decoder (OSD) and the
ML bound.

Chapter 2 offers an end-to-end study on SVMs and their application to channel decoding.
A first theoretical deduction of maximum margin classifiers is given, followed by a state-of-
the-art study on previous attempts to implement SVM-based decoders. Subsequently, a novel

8 Introduction

framework is proposed that significantly reduces the number of SVM functions to produce
but also minimizes the size of the dataset needed for training. Finally, a study on complexity
is carried out, the limitations of our system, and possible perspectives for future works.

Chapter 3 starts by introducing the model-free approach, its decoding framework, and
its main limitations. Then, the most relevant neural-based architectures are outlined. We
continue by proposing a novel message-oriented decoding system that significantly improves
performance and is directly applicable to non-systematic codes. Additionally, a recurrent
version of the transformer-based architecture is proposed, and a full complexity analysis is
carried out between all the considered neural networks in terms of the total number of weights.
Finally, we perform a study on the influence of the parity-check matrix on the training and
performance of the decoder, proposing an algorithm to select a more convenient matrix. All
studies and analyses are accompanied by their respective Bit Error Rate (BER) studies,
employing several Polar and BCH codes of different sizes and rates.

Chapter 4 builds on the system proposed in Chapter 3, and extends it to higher-order
modulations. For this purpose, we start by characterizing the equivalent channel between
the transmitted codewords and the received LLRs in a BICM setting. Then, we prove the
decoder’s optimality, and discuss the difference pertaining to the training dataset compared
to the BPSK-specific scenario. Finally, the decoding performance of the proposed decoder is
evaluated through several short-to-medium length Polar and BCH codes.

List of publications

The work carried out throughout the thesis gave place to the following national and interna-
tional publications:

International Conferences

[DB23] Gastón De Boni Rovella and Meryem Benammar. “Improved Syndrome-based
Neural Decoder for Linear Block Codes.” In: GLOBECOM 2023 - 2023 IEEE
Global Communications Conference. IEEE, Dec. 2023 (cit. on pp. 47, 54).

[DeB+24a] Gastón De Boni Rovella et al. “On the Optimality of Support Vector Machines
for Channel Decoding.” In: 2024 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit). IEEE, June 2024 (cit.
on pp. 28, 35).

[DeB+24c] Gastón De Boni Rovella et al. “Scalable Syndrome-based Neural Decoders for
Bit-Interleaved Coded Modulations.” In: 2024 IEEE International Conference
on Machine Learning for Communication and Networking (ICMLCN). IEEE,
May 2024, pp. 341–346 (cit. on p. 74).

Introduction 9

National Conferences

[DeB+23] Gastón De Boni Rovella et al. “SVM pour la démodulation et le décodage con-
joints.” In: GRETSI (Aug. 2023) (cit. on p. 28).

Journal Articles

[DeB+24b] Gastón De Boni Rovella et al. “Optimizing the Parity-Check Matrix for
Syndrome-Based Neural Decoders (submitted).” In: IEEE Communications
Letters (2024) (cit. on p. 54).

[DeB+24d] Gastón De Boni Rovella et al. “Syndrome-Based Neural Decoding for Higher-
Order Modulations (submitted).” In: IEEE Transactions on Communications
(2024) (cit. on pp. 47, 74).

[DeB+25] Gastón De Boni Rovella et al. “Bitwise Approach for Optimal SVM-based De-
coding (submitted).” In: EURASIP Journal on Wireless Communications and
Networking (2025) (cit. on p. 28).

Chapter 1

Preliminaries on coding theory and
linear modulations

Contents
1.1 Introduction to binary linear block codes 12

1.1.1 Binary codes . 12

1.1.2 Basic concepts . 12

1.1.3 Generator and parity-check matrices . 13

1.1.4 Matrix manipulations . 15

1.1.5 Polar and BCH codes . 15

1.2 Linear modulations and log-likelihood ratios 17

1.3 System model . 19

1.3.1 The decoding problem: MAP and bit-MAP 19

1.3.2 MAP vs. ML . 20

1.4 Classical decoders . 21

1.4.1 Ordered Statistics Decoder . 21

1.4.2 Successive Cancellation decoder . 24

1.4.3 Maximum Likelihood bound . 24

This chapter will provide the reader with a brief introduction to coding theory, based on
the work of Blaum [Bla19], along with an overview of linear modulations to be employed in
this work. Then, the basic system model is presented, outlining the nomenclature employed
in each stage of the communication chain. Subsequently, the Maximum Likelihood (ML)
and Maximum A Posteriori (MAP) decoding rules are derived and compared. Finally, a few
important classical decoders are introduced, and a procedure for computing an ML bound is
described.

11

12 Chapter 1. Preliminaries on coding theory and linear modulations

1.1 Introduction to binary linear block codes

1.1.1 Binary codes

Let us set the layout for the transmission of a binary frame u ∈ {0, 1}k —henceforth referred to
as message— through a noisy channel. Due to several potential impairments (e.g., additive
noise, fading, multipath, frequency or time selectivity, etc.), if we decided to transmit the
desired message directly, we would very often encounter errors in reception. For this reason,
channel coding is employed, where the message of length k is mapped into a longer binary
frame c ∈ {0, 1}n —i.e., the codeword—, where n > k. These extra bits act as redundancy
that allows us to retrieve the original message in case of errors inserted by the channel, or
at least detect the presence of errors in the received codeword. Such a code is said to have
k information bits and n − k parity (or redundant) bits, and is also called a Forward Error
Correction (FEC) code.

Binary
code Channel

errors

Decoder

message
u

[0, 1, 0, 1]

codeword
c

[1, 1, 0, 0, 1, 0]

noisy
codeword

[1, 1, 0, 1, 1, 0]

estimated
message
û

[0, 1, 0, 1]

Figure 1.1: Simplified schematic of binary channel coding. An imperfect channel (e.g. a
binary symmetric channel) adds errors to the transmitted codeword. The decoder seeks to
correct these errors.

Definition 1.1 (Binary linear block code). A binary linear block code of size (n, k) is given
by a k-dimensional subspace of the n-dimensional vector space given by:

Vn = {[c1, c2, ..., cn] : ci ∈ GF(2), ∀i ∈ [1 : n]}, (1.1)

where n is also referred to as the code length and k the code dimension, and GF(2) denotes
the Galois Field of order 2.

Observe that, throughout this thesis, we work exclusively with binary linear block codes.
Hence, all matrix operations, unless stated otherwise, are performed in GF(2). For an in-
depth introduction to fields and group theory applied to linear codes, see [Moo05, Chapters
3 and 5].

1.1.2 Basic concepts

We have stated that a binary linear block code of length n is comprised of a set of binary
sequences of length n. Consider now the following definitions regarding binary codes and
their properties.

1.1. Introduction to binary linear block codes 13

Definition 1.2 (Hamming weight). Given a binary codeword c of length n where each
ci ∈ {0, 1} ∀i ∈ [1 : n], the Hamming weight wH(c) is defined as:

wH(c) ,
n∑
i=1

ci. (1.2)

In other words, the Hamming weight wH(c) denotes the number of ones in the codeword c.

Definition 1.3 (Hamming distance). For two binary codewords c and c∗ of length n, the
Hamming distance is defined as follows:

dH(c, c∗) ,
n∑
i=1
1(ci 6= c∗i) =

n∑
i=1

(ci ⊕ c∗i), (1.3)

where ⊕ denotes the XOR operation.

Definition 1.4 (Minimum Hamming distance). Given a binary code C, its minimum Ham-
ming distance dH(C) is given by the shortest Hamming distance between any two codewords.
That is:

dH(C) , min
c,c∗∈C

dH(c, c∗). (1.4)

Definition 1.5 (Equivalent codes). Two linear block codes over GF(2) —i.e. binary codes—
are equivalent if one can be obtained from the other by applying permutations of the indices
within the codewords.

Example 1.1 (Equivalent codes). Suppose we have the following linear code of length 3:

C : {[0, 0, 0], [1, 1, 0], [1, 0, 1]}. (1.5)

Then, we can easily verify that is minimum Hamming distance is 2 and that the code C∗ given
by:

C∗ : {[0, 0, 0], [0, 1, 1], [1, 0, 1]} (1.6)

is equivalent to C, where the first and third bits have been permuted with respect to C.

Observe that a larger minimum Hamming distance leads to a code where its codewords
are further away from each other, thus increasing the error-correcting capabilities of the code.
Observe also that equivalent codes possess the same minimum Hamming distance.

1.1.3 Generator and parity-check matrices

A binary linear block code C can be characterized by a binary matrix of size k×n, called the
generator matrix. For a (7, 4) Hamming code [RL09] —i.e., n = 7 and k = 4—, a possible

14 Chapter 1. Preliminaries on coding theory and linear modulations

generator matrix is expressed as follows:

G =

1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

 , (1.7)

and given a message u ∈ {0, 1}k, its corresponding codeword c ∈ {0, 1}n can be obtained by
applying the product in GF(2):

c = GTu, (1.8)

where both c and u are column vectors. A codeword obtained following this procedure is called
a valid codeword, and all together, they constitute the code C, composed of 2k codewords of
length n (one for each possible message u ∈ {0, 1}k). Observe that a code consists of the
entire space generated by the rows of the generator matrix in GF(2). Conversely, a code is
also defined by its parity-check matrix. A matrix H of size (n−k)×n is a parity-check matrix
of the code C if it satisfies, ∀ c ∈ {0, 1}n:

Hc = 0n−k ⇔ c ∈ C, (1.9)

where 0n−k denotes the all-zero vector of length n−k. Analogously, a binary frame c̃ ∈ {0, 1}n
such that H c̃ 6= 0n−k is denominated a non-valid codeword, and is often the result of a
transmission over a noisy channel. For the previous Hamming code, a possible parity-check
matrix is given by:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (1.10)

Finally, observe that a pair of matrices G (of size k×n) and H (of size (n−k)×n) of full row
rank constitute a valid pair of generator and parity-check matrices if and only if they verify:

GHT = 0k,n−k, (1.11)

where 0k,n−k is the all-zero matrix of size k × (n− k).

Consider now the following theorem from [Hil90, Chapter 5], applied particularly to binary
linear block codes.

Theorem 1.1 (Generator matrices of equivalent codes). Two k×n matrices generate equiva-
lent codes over GF(2) if one matrix can be obtained from the other by a sequence of operations
of the following types:

(i) Permutation of the rows.

(ii) Addition of one row to another.

(iii) Permutation of the columns.

1.1. Introduction to binary linear block codes 15

Proof. The proof can be found in [Hil90, Chapter 5].

1.1.4 Matrix manipulations

Given a generator matrix G of a linear code C, it can be easily verified that any matrix G̃ of
full row rank obtained by applying permutations and combinations of the rows of G is also
a generator matrix for the code C. The same is valid for the parity-check matrix H. Given
this observation, let us introduce the following definition.

Definition 1.6 (Systematic and standard matrices). A matrix A of size k × n is said to be
in systematic form if and only if it can be expressed as:

As = [Ik |P], (1.12)

by only applying column permutations, where Ik is the identity matrix of size k, P designates
a k × (n− k) matrix and As is the permuted version of A. If no permutations are needed to
obtain the form in (1.12), then the matrix is said to be in its standard form.

When we have access to the generator matrix in its standard form Gs = [Ik |P], the
parity-check matrix can be easily computed as:

Hs = [P T | In−k], (1.13)

and similarly from a standard parity-check matrix to its corresponding generator matrix.
A simple method for standardizing a generator matrix can be found in [Hil90, Chapter 5].
For the previous (7, 4) Hamming code, the standard generator matrix and its corresponding
parity-check matrix are expressed as follows:

Gs =

1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 , Hs =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 . (1.14)

1.1.5 Polar and BCH codes

In this thesis, the two main codes that will be used are the denominated Polar codes [Ari09]
and Bose–Chaudhuri– Hocquenghem (BCH) codes [BR60; Hoc59]. Let us begin with a brief
introduction to Polar codes. BCH codes will not be discussed in depth but references are
provided in the end for interested readers.

Let Pn = F⊗log2n, where n is a power of 2, F⊗i represents the ith Kronecker power of F ,
and F denotes Arikan’s kernel, given by:

F ,

[
1 0
1 1

]
. (1.15)

16 Chapter 1. Preliminaries on coding theory and linear modulations

Observe that Pn is not defined if n is not a power of 2. A generator matrix for a Polar code
of size (n, k) is given by concatenating k rows of the matrix Pn. How to choose these k rows
is a research field in and of itself and will not be covered in this short introduction, but for
more information, the reader is referred to [Pfi17; TV13]. Observe that, as per the definition
of Pn, n must be a power of 2.

Lemma 1.1 (Parity-check matrix of a Polar code). Let G denote a generator matrix for a
Polar code of size (n, k), composed of k rows of the matrix Pn, and let A ⊂ {1, 2, ..., n} denote
the indices of these rows. Then, the matrix H of size (n − k) × n consisting of the columns
of Pn with indices in the complement set of A, i.e., Ac, is a valid parity-check matrix for the
code defined by G.

Proof. The lemma can be easily proven by considering that the matrix product GHT consists
of dot products between a row and a column of Pn with different indices, which is always 0
because Pn is, by construction, an involutory matrix (i.e., PnPn = In).

Example 1.2 (Polar code of size (8, 4)). Consider a case where we wish to construct a Polar
code with k = 4 information bits and n = 8 total bits. Then, the base matrix is given by:

P8 = F⊗3 =

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

. (1.16)

There are several methods to select the rows from P8, such as the Bhattacharyya construction
(as it is based on Bhattacharyya bounds for computing the error probability) proposed by
Arikan in his original work [Ari09] or the improved degrading-merge algorithm from [TV13]
by Tal and Vardy. Using the Bhattacharyya construction, the resulting generator matrix is
the following:

G =

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

 . (1.17)

Finally, using Lemma 1.1, we obtain the following parity-check matrix:

H =

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

 . (1.18)

This encoding procedure is traditionally displayed as in Figure 1.2, where the channels

1.2. Linear modulations and log-likelihood ratios 17

used to transmit the information bits are (u4, u6, u7, u8), and the remaining channels are
called frozen bits and are commonly set to 0. This diagram is also called a factor graph.

u1 + + + c1

u2 + + c2

u3 + + c3

u4 + c4

u5 + + c5

u6 + c6

u7 + c7

u8 c8

Figure 1.2: Polar encoder diagram (or factor graph) of Example 1.2.

BCH codes, on the other hand, are a class of error-correction codes mainly used in satellite
communications and data storage devices, and their major advantage lies in the precise control
over the number of codeword errors that can be corrected by the code. The code length is
given by n = 2m − 1, where m is the degree of the finite field used. In this scenario, a BCH
code can correct up to t errors, where:

n− k ≥ mt. (1.19)

This allows us to select the number of parity bits necessary to achieve the desired error
correction capability. In their construction, BCH codes are characterized by the roots in the
so-called generator polynomials. For an in-depth tutorial on their construction and properties,
the reader is referred to [RL09, Section 3.3].

1.2 Linear modulations and log-likelihood ratios

Once the channel code to be employed is selected, the binary codeword has to be converted
into a complex symbol before being transmitted through the channel. This process is known
as modulation, and given an order m, assigns every possible combination of m bits to a point
in the complex plane. In this work, we will use the Binary Phase-Shift Keying (BSPK)
modulation of order m = 1, defined as follows:

xBPSK =

−1 if u = 1
+1 if u = 0,

(1.20)

18 Chapter 1. Preliminaries on coding theory and linear modulations

along with other higher-order modulations displayed in Figure 1.3 —the Quadradature Ampli-
tude Modulation of order m (2m−QAM) and the Phase-Shift Keying of order m (2m−PSK).
Observe that Gray labeling is employed so that adjacent symbols differ in, at most, one bit.

<

=

0001

11 10

(a) QPSK/4-QAM

<

=

001011

010

110

111 101

100

000

(b) 8-PSK

<

=

0000

0001
001100100110

0111

0101

0100

1100

1101
1111 1110 1010

1011

1001

1000

(c) 16-PSK

<

=

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

0010 0110 1110 1010

(d) 16-QAM

Figure 1.3: Constellation diagrams.

On the receiving side, the demodulator computes the so-called Log-Likelihood Ratio (LLR)
for each transmitted bit, defined for every bit position i ∈ [1 : n] as:

li , log
(
PY |Ci(y|1)

)
− log

(
PY |Ci(y|0)

)
, (1.21)

where Ci and Y denote respectively the random variables of the ith bit of the codeword
c ∈ {0, 1}n and its resulting noisy symbol y ∈ C in reception (corresponding to ci and m− 1
other bits), and PY |Ci denotes their associated conditional probability density function (pdf).

Example 1.3 (BPSK and AWGN). Consider the following simple case: a uniform source
of independent and identically distributed (iid) bits generates frames u ∈ {0, 1}k. Then, a
linear encoder maps this message into a codeword c ∈ {0, 1}n, and after a BPSK modulation,
we obtain the signal to be transmitted x ∈ {−1,+1}n. The channel inserts a real Additive

1.3. System model 19

White Gaussian Noise (AWGN) of power σ2, described by the following pdf:

fAWGN(w) = 1
σ
√

2π
e−

w2
2σ2 . (1.22)

In this case, the LLR boils down to the following expression:

li = log e
− (y+1)2

2σ2

e−
(y−1)2

2σ2

= −2y
σ2 . (1.23)

Intuitively, a positive value of li indicates a higher probability for the ith bit to be equal
to 0, whereas a negative value corresponds to a higher likelihood of a 1. Observe that li close
to 0 implies the largest possible uncertainty on the bit’s actual value.

1.3 System model

Let us introduce the base system model we will use throughout this work. Consider the
communication layout of Figure 1.4. The binary frame u ∈ {0, 1}k is encoded through a
linear FEC code C defined by its generator matrix G, such that c = GTu. This codeword is
then modulated using a linear modulation technique of order m —such as QAM or PSK—,
which produces the complex signal to be transmitted x ∈ Cn′ , where n′ = n/m. The channel
adds a complex and circular AWGN w ∼ CN (0, In′σ2), such that y = x+w. On reception,
the demodulator computes the LLR vector l as in (1.21), and finally, the decoder g(·) outputs
an estimate û of the originally transmitted message:

û = g(l). (1.24)

FEC
Encoder Mod. +

w

Demod. Decoder
g(·)

u

{0, 1}k

c

{0, 1}n

x

Cn′

y

Cn′

l

Rn

û

{0, 1}k

Figure 1.4: System model of a simplified communication chain. For clarity, the domain of the
signal in each stage of the system is added below.

1.3.1 The decoding problem: MAP and bit-MAP

The so-called decoding problem consists in producing a function g(·) that minimizes the prob-
ability of error at the receiver. Observe that the input signal to the function g(·) can be

20 Chapter 1. Preliminaries on coding theory and linear modulations

the LLR vector l (in the case separate demodulation and decoding) or the channel output y
(in the case of joint demodulation and decoding). In what follows, let us assume the latter
scenario.

The error probability can be measured in two ways: (i) comparing the transmitted and
decoded frames as a whole, considering a frame error if at least one bit in the frame is decoded
incorrectly, and (ii) comparing each transmitted bit with its corresponding decoded bit. If
the probability of error is measured framewise, that is:

Pe = P{u 6= û}, (1.25)

where Pe denotes the Frame Error Probability (FEP), then the optimal decoder is known as
the MAP decoder and can be expressed as:

g(y) , argmax
u∈{0,1}k

PU |Y (u|y). (1.26)

Conversely, if the error probability is measured bitwise, i.e.:

Pe = 1
k

k∑
i=1
P{ui 6= ûi}, (1.27)

where Pe denotes the Bit Error Probability (BEP), then the optimal decoder is known as the
bit-MAP decoder, and is defined for every i ∈ [1 : k] as:

g(i)(y) , argmax
u∈{0,1}

PUi|Y (u|y). (1.28)

1.3.2 MAP vs. ML

In this work, we will often use uniform binary sources, where every binary frame is equiprob-
able. In this case, we can rewrite the MAP probability expression using Bayes’ formula:

argmax
u∈{0,1}k

PU |Y (u|y) = argmax
u∈{0,1}k

PY |U (y|u)PU (u)
PY (y) (1.29)

= argmax
u∈{0,1}k

PY |U (y|u)
PY (y)2k (1.30)

= argmax
u∈{0,1}k

PY |U (y|u), (1.31)

where we have used that PU (u) = 1/2k, along with the fact that PY (y) is independent from
u and thus PY (y) can be removed from the argmax expression. The expression in (1.31)
is known as the ML criterion. In summary, when all the messages are equiprobable, the
ML criterion coincides with the MAP. By applying similar reasoning, we can derive the

1.4. Classical decoders 21

corresponding result for bitwise decoding for i ∈ [1 : k]:

g(i)(y) , argmax
u∈{0,1}

PUi|Y (u|y) (1.32)

= argmax
u∈{0,1}

∑
u∈{0,1}k
/ui=u

PU |Y (u|y) (1.33)

= argmax
u∈{0,1}

∑
u∈{0,1}k
/ui=u

PY |U (y|u)PU (u)
PY (y) (1.34)

= argmax
u∈{0,1}

2−k

PY (y)
∑

u∈{0,1}k
/ui=u

PY |U (y|u) (1.35)

= 1

{ ∑
u∈{0,1}k
/ui=1

PY |U (y|u)>
∑

u∈{0,1}k
/ui=0

PY |U (y|u)
}
, (1.36)

where we have used that the source is uniform, i.e., PU (u) = 2−k for all u ∈ {0, 1}k, and we
have discarded from the argmax the factors that do not depend on the optimizing variable u.

Observation 1.1. As previously stated, when considering separate demodulation and decod-
ing, the input to the decoder is the LLR vector l. In this scenario, we can derive the expression
that maximizes the probabilities PU |L(u|l) (MAP decoding) and PUi|L(u|l) ∀i ∈ [1 : n] (bit-
MAP decoding), which do not necessarily coincide with the optimal decoders that take y
as their input. As we shall see later on, Chapters 2 and 3 employ joint demodulation and
decoding, while Chapter 4 implements them separately.

1.4 Classical decoders

Throughout this thesis, classical decoding algorithms are employed for two main purposes:
(i) to estimate a pseudo-optimal decoder in cases where the MAP decoder is too complex
to be implemented and (ii) to compare our proposed solutions and those in the literature to
those used in realistic industrial applications. For the former reason, a very useful algorithm
is the Ordered Statistics Decoder (OSD), introduced by Fossorier and Lin in 1995 [FL95]. A
short description of the decoding procedure is given below.

1.4.1 Ordered Statistics Decoder

Let us suppose a transmission scenario as the one described in Section 1.3 and Figure 1.4,
where an (n, k) binary linear code C is employed, and is described by a generator matrix G.
On reception, the demodulator computes the LLR vector l = (l1, l2, ..., ln). The OSD consists
of two stages: the ordered statistics preprocessing and the reprocessing stages.

22 Chapter 1. Preliminaries on coding theory and linear modulations

Ordered statistics preprocessing

This stage begins by ordering the vector of log-likelihood ratios l in decreasing order of
reliability value, i.e.:

l′ = (l′1, l′2, ..., l′n), (1.37)

such that |l′1| > |l′2| > ... > |l′n|. If we denote this permutation λ1, we can apply λ1 to G to
obtain a generator matrix G′ which defines a code C′ equivalent to C as per definition 1.5.
That is:

G′ = λ1[G]. (1.38)

Starting from the leftmost column of this new generator matrix G′, we find the first k linearly
independent columns, associated with the largest possible reliabilities. The bits corresponding
to these positions are denoted as the Most Reliable Independent (MRI) positions. This
constitutes a second permutation λ2, which in turn defines a third generator matrix:

G′′ = λ2[G′] = λ2[λ1[G]]. (1.39)

The same permutation is applied to l′ to obtain the MRI bits grouped to the left of the
codeword:

l′′ = λ2[l′] = λ2[λ1[l]] = (l′′1 , l′′2 , ..., l′′n). (1.40)

Next, row-wise elementary operations are applied on G′′ in order to obtain a left-diagonal
matrix, which is possible since, as a result of the second permutation λ2, the k leftmost
columns are linearly independent. This results in a matrix Gd such that:

Gd = [Ik |P], (1.41)

where Ik is the identity matrix of size k and P is a k× (n− k) parity matrix. Once we reach
this stage, the first k elements of the vector l′′ are kept, and the remaining n − k elements
are discarded. Let us call this vector z̄, which is then used to generate a codeword z from
the diagonal generator matrix Gd, i.e.,

z = GTd z̄. (1.42)

Once we have computed z, which belongs to the code C′′, we can return to the original code
C by applying the inverse permutations as before:

ĉ = λ−1
1 [λ−1

2 [z]], (1.43)

where ĉ is an estimate of the original codeword c that relies on the MRI positions of the
received LLR vector l.

1.4. Classical decoders 23

Reprocessing

The next stage of the algorithm consists essentially in testing a certain number of changes in
the MRI bits and verifying which resulting codeword has a higher probability.

The order-0 reprocessing stage is the algorithm explained above, as no bit in z̄ is flipped.
To begin the order-1 reprocessing stage, we change the decision of the first MRI bit —i.e.,
z̄1— and use the modified binary frame to compute z, which in turn is used to obtain a new
estimate ĉ∗. Next, we have to compare the probability of having transmitted ĉ and ĉ∗. If we
are dealing with BPSK signals, then the demodulator would not be necessary, and we can
just take the absolute value of the received signal y as measure for the reliabilities. On a
generic case, we must compute the Euclidean distance between the received signal y and the
estimated codewords ĉ and ĉ∗ modulated into the appropriate complex signal and select the
one that has the smallest distance:

P (ĉ|y) > P (ĉ∗|y) ⇐⇒ ||mod(ĉ)− y||2 < ||mod(ĉ∗)− y||2, (1.44)

where mod(·) is a function that maps the codewords ĉ and ĉ∗ into their respective modulated
signals. In our work, to simplify the handling of higher-order modulations, this probability is
computed using the LLR-based distance from [BBB15], defined as follows:

d(l, ĉ) ,
n∑
i=1

log(1 + e−(1−2ĉi)li), (1.45)

where l and ĉ denote the LLR vector on reception and the estimated codeword, respectively.
Using this distance metric, we decide between the two estimated codewords ĉ and ĉ∗ and
keep the most probable one. We continue this reasoning for the other k− 1 bits in z̄ to finish
the order-1 OSD.

Higher orders are implemented in the same manner, flipping as many bits as the current
order of reprocessing. When employing an OSD, we begin by selecting its order, which
indicates how many stages of reprocessing will be employed. For an order-p OSD, the total
number of computations is given by:

p∑
i=0

(
k

i

)
. (1.46)

The OSD will be mainly used for decoding BCH codes since the ML decoder is intractable
for the code lengths we employ. As proved in [FL95, Section V.E], the OSD converges
asymptotically to the ML decoder provided that the order l satisfies the following inequality:

p ≥ min{ddH/4− 1e, k}, (1.47)

where dH denotes the code’s minimum Hamming distance. In our experimental scenarios, an
order of 2 or 3 will be enough to offer performances very close to the optimal ML decoder.

24 Chapter 1. Preliminaries on coding theory and linear modulations

1.4.2 Successive Cancellation decoder

The Successive Cancellation (SC) decoder was proposed by Arikan in his original work on
Polar codes, along with its associated performance bounds. In this work, we will provide a
short description of the algorithm. For further details, the reader is referred to [Ari09; Pfi17].

The procedure detailed in Section 1.1.5, defines a method for constructing codes by chan-
nel polarization —hence its name—, which transforms n independent copies of a binary-input
discrete memoryless channel into n bit channels with varying reliabilities. The channels with
the highest reliabilities are employed to transmit the information bits. The SC decoding al-
gorithm decodes each bit of the received vector sequentially, using previously decoded bits to
assist in the decision-making process for subsequent bits. SC decoding employs a recursive
approach to handle the polarization structure of the code. The algorithm can be described
in terms of a binary tree, where each node represents a combination or split operation corre-
sponding to the matrix, as defined by Arikan’s kernel F given in (1.15):

(i) The decoding starts with the received vector l, which consists of the LLRs from the
channel, which are assigned to the right side of Figure 1.2.

(ii) Applying the appropriate mathematical formulas, the likelihoods are combined and
transmitted through the factor graph, until they reach the first bit u1, where the value
is either known or unknown.

(iii) If it is unknown (unfrozen bit), then a decision on the value of û1 is made. Otherwise,
the knowledge of the value of the frozen bit u1 = 0 is used to update the likelihoods.

(iv) This likelihood transmission continues until it reaches the second bit u2, and the same
reasoning is applied.

(v) This procedure is followed sequentially, exploiting for each bit ui the LLRs updated
with the hard decisions on the bits u1, ..., ui−1, until all the bits have been decoded.

In this work, we will also make use of the Successive Cancellation List (SCL) decoding,
proposed by Tal and Vardy in 2011 [TV11], which involves storing the L most likely outcomes
—or paths— and deciding between them according to their final probability. This technique
is much more complex, and its algorithm is not included in this work. However, it is the base
decoder for Polar codes (e.g., in the control channel of the 5G New Radio protocol of the
3GPP [3GP20; BCL21]), and thus will be employed as a benchmark in this work.

Table 1.1 summarizes the computational and memory complexity of the three classical
decoders previously presented.

1.4.3 Maximum Likelihood bound

The following Maximum Likelihood Bound (MLB), described in [TV11], is a very useful tool
that will be extensively employed throughout this work. This bound allows us to evaluate

1.4. Classical decoders 25

Decoding method Computational complexity Memory complexity

SC O(n log(n)) O(n)

SCL O(Ln log(n)) O(Ln)

OSD O(2pn2) O(n2)

Table 1.1: Complexity of the classical decoding algorithms, where n denotes the code length,
L the list size of the SCL and p the order of the OSD.

if the simulated solutions approach the decoding performance of the optimal ML decoder.
Additionally, when an implemented decoder (e.g., an OSD of order 2) matches the MLB,
then we can say with certainty that the decoder attains ML performance.

Figure 1.5 shows a flowgraph that details the MLB procedure. Consider the communica-
tion scenario of Section 1.3, but with a decoder that outputs ĉ, an estimate of the codeword
c (observe that if the decoding algorithm produces uniquely an estimate û, we can easily
compute ĉ = GT û). Then, we must be in one of two situations: (i) our decoder estimated
correctly (i.e., ĉ = c), in which case we will consider that the ML decoder would have also
decoded correctly; or (ii) our decoder incurred an error (i.e., ĉ 6= c). In the latter case, we
compute the likelihood PL|C(l|ĉ) of the estimated codeword ĉ, and if it is larger than the
likelihood of c, then a true ML decoder would have decoded incorrectly as well. This is the
only case we will consider a decoding error for the MLB.

Estimated
ĉ

ĉ = c ?

ĉmlb = c

P (l|c) > P (l|ĉ) ?

ĉmlb = c

ĉmlb = ĉ 6= c

yes

no
yes

no

Figure 1.5: Maximum likelihood bound flowchart. ĉmlb denotes the MLB-estimated codeword.

Observation 1.2. It is easy to see that the better the base decoder used to compute the
bound is, the tighter the bound will be. For this reason, we will often make use of a high-
order OSD to produce the MLB curve. Moreover, when the FER of an implemented decoder
coincides with its corresponding MLB, we are certain that our decoder achieves the optimal
ML performance.

Observation 1.3. This bound is well-suited for a frame-wise approach, since when a decoding
error is detected, we can only say with certainty that the estimated codeword ĉ has a higher
probability than c, but we cannot know if it constitutes the most probable codeword. However,
it is very unlikely that the decoder estimated a codeword that has a higher probability than
the transmitted one when there exists a third one with an even higher probability. For this
reason, we will make use of this bound for the BER along with the FER.

Chapter 2

Support Vector Machines for joint
demodulation and decoding

Contents
2.1 Introduction to SVMs . 28

2.1.1 System model and preprocessing . 29
2.1.2 Linearly separable data . 29
2.1.3 Linearly non-separable data . 32

2.2 Previous works on SVM-based decoding 33
2.2.1 One vs. rest . 34
2.2.2 One vs. one . 34

2.3 Contributions: proposed system and training framework 35
2.3.1 Bit-wise SVM . 35
2.3.2 Proposed training: noiseless optimization 36
2.3.3 Proposed optimization problem . 37
2.3.4 Optimality analysis and interpretation . 38

2.4 Numerical results and analysis . 39
2.4.1 BER and effect of the hyperparameter γ 40
2.4.2 Complexity analysis . 41

2.5 Conclusion and perspectives . 43

As stated in the Introduction, the curse of dimensionality we tackle in this work manifests
itself in different ways. One of them pertains to the number of noise realizations: for each
possible output, a generic deep learning-based decoder must explore several input patterns
that yield that same output. That is, for each valid codeword, a neural network must see
different noisy realizations of that codeword to learn to decode it under a random noise. This
calls for another machine learning algorithm that achieves successful learning with a reduced
dataset.

Support Vector Machines (SVM) constitute a supervised learning method that, from a
labeled dataset with two classes, produces a classifying decision rule that is at an equal and
maximum distance from both classes. For this reason, it is known as a maximum margin
classifier and is well-known for its robustness and interpretability. This optimal decision rule

27

28 Chapter 2. Support Vector Machines for joint demodulation and decoding

is generated using the so-called support vectors, which usually constitute a small subset of
training samples. Inspired by this notion, we study SVMs as a potential decoding algorithm
that reduces the minimum size of the training dataset and is robust to mismatches in training
and testing conditions.

Previous works have already tackled the problem of SVM for channel coding [DH10;
KB08; SY16]. The work in [DH10] employs SVMs for online adaptive modulation and coding,
displaying favorable results with reduced complexity compared to previous algorithms. The
authors in [KB08] proposed a novel pairwise SVM-based decoder that achieves competitive
performances on convolutional codes, albeit at a very high complexity. The same analysis
applies to the works in [Ram+09] and [SY16], which propose small modifications in training
and application scenarios but keep the pairwise classification approach. For a channel code
of length n and dimension k, this approach has two main limitations:

(i) The dataset, which is composed of several noisy realizations of every valid codeword,
grows exponentially with k (as the codeword space expands) and with n (as the number
of correctable noise patterns increases);

(ii) The decoder contains a number of binary classifiers that also increases exponentially
with k (due to the nature of the pairwise approach).

These two aspects result in an intractable decoder when applied to a code that is longer than
a few bits, usually a Hamming code of size (7, 4). The largest implemented code is a BCH of
size (15, 7) in [SY16], and employs up to 100 noisy realizations of each valid codeword.

This Chapter describes in detail how SVMs can be used for channel decoding, and is
organized as follows. We start by providing the reader with a brief introduction to SVMs,
inspired by [AML12], followed by a state-of-the-art study on previous SVM applications to
channel decoding. Subsequently, we propose a new system and training framework that re-
duces the number of SVMs to produce from 2k to only k, and reduces the training dataset
to its minimum. Finally, a mathematical analysis is provided to establish the equivalence be-
tween the proposed SVM decoder and the bit-ML decoder under AWGN conditions, followed
by a complexity study and a few perspectives on the subject.

The integrality of this work was published in a national conference [DeB+23] and an
international conference [DeB+24a]. Additionally, a journal article is currently under review
[DeB+25].

2.1 Introduction to SVMs

SVMs were introduced over thirty years ago by Vapnik, Boser, Cortes, and Guyon [BGV92;
CV95; Vap97]. The main idea consists in using a set of labeled data —each element belonging
to one of two possible classes— to produce a separating hyperplane that divides the data into
the two corresponding classes whilst maximizing the margin between the hyperplane and the

2.1. Introduction to SVMs 29

two classes. For this reason, it is known as a maximum margin classifier. In the following,
a brief introduction to SVMs is given, along with the necessary elements to understand our
proposed SVM-based receiver —i.e., the kernel method and the multiclass SVM.

2.1.1 System model and preprocessing

SVMs are, by nature, maximum margin binary classifiers. Given a fully labeled dataset with
two disjoint classes (i.e., no element belongs to both classes), the SVM classifier is given by the
hyperplane that separates the two classes, and that has the largest possible margin between
them and the hyperplane. This section will employ SVMs for joint channel demodulation and
decoding. As such, and because SVMs work on real numbers, the received complex signal y
is preprocessed before being inputted to the SVM decoder (see Figure 2.1):

ỹ = [R(y), I(y)]. (2.1)

This vector ỹ will be the input to the SVM-based receiver, and the output will be an estimation
of the message, û. Also, observe that demodulation and decoding is performed jointly by the
SVM decoder, which receives directly the channel output without previous demodulation. As
such, this Chapter will not deal with LLRs. The remaining elements of the communication
layout are exactly the same as in Section 1.3.

Encoder Mod. +

w

[· , ·]

Re(·)

Im(·)

SVM
Decoder

u c x y ỹ û

Figure 2.1: System model of a simplified communication chain, including the concatenation
of the real and imaginary parts for the SVM processing.

2.1.2 Linearly separable data

Let us consider a labeled dataset {ỹi, li}1≤i≤N which consists of N vectors ỹi ∈ R2n′ with
their respective labels li ∈ {−1,+1}1. Let the class C0 be the set of vectors ỹi for which
li = −1, and C1 the vectors for which li = +1. The dataset is said to be linearly separable if
there exists ξ ∈ R2n′ and ν ∈ R that define a hyperplane P ∈ R2n′ that satisfies the following:

1The following derivation of the SVM classifier is generic, but notations are kept as similar as possible to
the decoding problem, with the exception of li which denotes the binary label of the i-th element of the dataset
and not the LLR as before.

30 Chapter 2. Support Vector Machines for joint demodulation and decoding

P : {ỹ ∈ R2n′ | f(ỹ) = ξT ỹ + ν = 0} (2.2)

such that: f(ỹ) < 0 for all ỹ ∈ C0

f(ỹ) ≥ 0 for all ỹ ∈ C1.
(2.3)

The SVM principle consists in producing a hyperplane P∗ that satisfies the maximum margin
property, i.e., being at an equal and maximum distance from the nearest points of each class
(the so-called support vectors). Let ỹ∗ denote the closest point to the hyperplane P∗ and
belonging to any of the two classes. Without loss of generality, we can normalize ξ and ν so
that:

|f(ỹ∗)| = |ξT ỹ∗ + ν| = 1. (2.4)

ỹ∗

ỹ′′

ỹ′
ỹ

ξ

ξ̂

Figure 2.2: Visual aid for the SVM deduction.

Let us compute the distance between ỹ∗ and the hyperplane (see Figure 2.2). Consider
two points on the plane, ỹ′ and ỹ′′. We have that:

ξT ỹ′ + ν = ξT ỹ′′ + ν = 0 ⇒ ξT (ỹ′ − ỹ′′) = 0, (2.5)

and thus ξ is orthogonal to the plane P. Consider a point ỹ on the plane, and the normalized
vector ξ̂ = ξ

||ξ|| . In this case, the distance between ỹ∗ and the plane can be computed as the
projection of ỹ∗ − ỹ on ξ̂:

d(ỹ∗,P) = |ξ̂T (ỹ∗ − ỹ)| (2.6)

= 1
||ξ||
|ξT ỹ∗ − ξT ỹ| (2.7)

= 1
||ξ||
|ξT ỹ∗ + ν − (ξT ỹ + ν︸ ︷︷ ︸

=0

)| (2.8)

= 1
||ξ||
|ξT ỹ∗ + ν| (2.9)

= 1
||ξ||

, (2.10)

where we have used that ỹ ∈ P and |ξT ỹ∗ + ν| = 1. Hence, the optimization problem takes

2.1. Introduction to SVMs 31

the following expression:

argmax
ξ,ν

1
||ξ||

, ξ ∈ R2n′ , ν ∈ R

subject to min
i∈[1:N]

|ξT ỹi + ν| = 1,
(2.11)

or, equivalently:
argmin
ξ,ν

1
2ξ

T ξ, ξ ∈ R2n′

subject to li(ξT ỹi + ν) ≥ 1, ∀i ∈ [1 : N],
(2.12)

where we have used that |ξT ỹi+ν| = li(ξT ỹi+ν). We then employ the Lagrangian formulation
to include the constraint into the objective function:

argmax
ξ,ν,α

L(ξ, ν,α) = 1
2ξ

T ξ −
N∑
i=1

αi(li(ξT ỹi + ν)− 1), ξ,α ∈ R2n′ , ν ∈ R

subject to αi ≥ 0 ∀i ∈ [1 : N].
(2.13)

Next, we compute the gradient with respect to ξ and the derivative with respect to ν:
∇ξL = ξ −

N∑
i=1

αiliỹi = 0 ⇒ ξ =
N∑
i=1

αiliỹi

∂L
∂ν

= −
N∑
i=1

αili = 0.
(2.14)

Finally, substituting these expressions into (2.13), we get a formulation of the optimization
problem that only depends on α:

argmax
α

L(α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

liljαiαjỹ
T
i ỹj , α ∈ R2n′

subject to αi ≥ 0 ∀i ∈ [1 : N] and
N∑
i=1

αili = 0.
(2.15)

The problem (2.15) is solved using quadratic programming, yielding a solution α? =
(α1, α2, ..., αN). This vector is then used to compute the hyperplane:

ξ? =
N∑
i=1

α?i liỹi, (2.16)

and the Karush–Kuhn–Tucker (KKT) conditions are exploited to determine the value of ν:

α?i (li(ξ?T ỹi + ν?)− 1) = 0, ∀ i ∈ [1 : N]. (2.17)
For any j ∈ [1 : N] such that αj > 0 ⇒ li(ξ?T ỹj + ν?) = 1. (2.18)

32 Chapter 2. Support Vector Machines for joint demodulation and decoding

f(ỹ) = ξ?T ỹ + ν? = 0

Support vectors
|f(ỹ)| = 1

Decision
margin

Decision
hyperplane

Figure 2.3: Visual representation of an SVM classifier.

All the points that satisfy the condition (2.18) constitute the closest points to the hyper-
plane P, and are called support vectors. We may solve (2.18) using any one of such points.
Figure 2.3 shows a schematic representation of an SVM classifier. In sum, learning a classi-
fier from the labeled dataset amounts to learning a decision function f(·) such that for all
ỹ ∈ R2n′ , f(ỹ) > 0 =⇒ ỹ ∈ C1

f(ỹ) ≤ 0 =⇒ ỹ ∈ C0.
(2.19)

2.1.3 Linearly non-separable data

In many applications, and depending on the distribution of the dataset, we may be interested
in producing a non-linear classification function. In this scenario, we can resort to a technique
called the kernel method or kernel trick: the basic idea consists in transforming the data into
a high-dimensional space, where the data becomes linearly separable (see Figure 2.4). For
instance, considering a dataset of vectors {ỹi}i=1,...,N of dimension 2, we could apply the
following polynomial transformation:

φ(ỹ) = φ(ỹ1, ỹ2) = (1, ỹ1, ỹ2, ỹ1ỹ2, ỹ
2
1, ỹ

2
2), (2.20)

which would allow for a more complex —and thus powerful— separating function. However,
observe that in the final optimization problem (2.15), the objective function does not depend
explicitly on the data ỹi, but rather on the pairwise Euclidean inner product 〈ỹi, ỹj〉 = ỹTi ỹj ,
for i, j ∈ [1 : N]2. Following a similar mathematical deduction to that of Section 2.1.2, it

2.2. Previous works on SVM-based decoding 33

is easy to conclude that, if we project the data onto a high-dimensional space through a
non-linear function Φ(·), the optimization problem (2.15) can be expressed as follows:

argmax
α

L(α) =
N∑
i=1

αi −
1
2

N∑
i=1

N∑
j=1

liljαiαjK(ỹi, ỹj), α ∈ R2n′

subject to αi ≥ 0 ∀i ∈ [1 : N] and
N∑
i=1

αili = 0,
(2.21)

where K(ỹi, ỹj) = 〈Φ(ỹi),Φ(ỹj)〉 denotes the inner product in the image space defined by
{Φ(ỹ) : ỹ ∈ R2n′}. As a consequence of this, we do not need to explicitly transform the data
into the high-dimensional space, but only apply pairwise inner products. In this work, we
will employ the very well-known Radial Basis Function (RBF), defined as:

K(ỹ, ỹ′) , e−γ||ỹ−ỹ′||2 , γ ∈ R+, (2.22)

which corresponds to the inner product over the infinite-dimensional space of exponentials.

Φ

f(y) = 0

f(Φ(y)) = 0

Figure 2.4: Visual representation of the kernel method. In its original form, the data is
not linearly separable. However, through the transformation Φ, the space is now three-
dimensional and the data can be separated with a plane.

Finally, let us observe that the absolute value |f(ỹ)| acts as a reliability measure: while
|f(ỹ)| = 1 indicates a support vector, |f(ỹ)| > 1 indicates that the point is further away from
the separating hyperplane, and thus is more likely to belong to that class.

2.2 Previous works on SVM-based decoding

Regardless of whether the dataset is linearly separable or not, SVMs are, by nature, binary
classifiers. To build a decoding algorithm for an (n, k) linear block code, we need to resort to
multiclass classification. Previous solutions [APP20; KB08; SY16] for SVM joint demodula-
tion and decoding employ the so-called one vs. rest and one vs. one approaches [HL02]. We
will now describe both approaches, along with their limitations and complexity constraints.

In what follows, we will assume that the training dataset {ỹi, li}1≤i≤N contains several

34 Chapter 2. Support Vector Machines for joint demodulation and decoding

noisy realizations of every valid codeword, where:

• ỹi ∈ R2n′ denotes a received (originally complex) signal with its real and imaginary
parts concatenated, corresponding to a transmitted message ui as in Figure 2.1;

• li indicates the ground truth class to which ỹi belongs, i.e., the transmitted message
ui. A label li indicates belonging to the class Ci, i ∈ [1 : 2k], which corresponds to a
possible message (for instance, the conversion of the label li to binary frame of k bits).

2.2.1 One vs. rest

The one vs. rest method is based on producing 2k binary SVM decision functions f (j) for
j ∈ [1 : 2k], each one isolating one class (i.e., one codeword) against all the others [HL02].
This leaves a binary layout where the value f (j)(ỹ) indicates whether the element ỹ belongs
to the class Cj . We repeat this process for every class, and end up with 2k SVM classifiers,
each corresponding to a valid codeword. All the SVMs are then applied to the received signal
ỹ, and the selected class Cj? (codeword) is such that:

j? = argmax
j∈[1:2k]

f (j)(ỹ). (2.23)

This corresponds to the class that has the largest distance between the point ỹ and the
separating hyperplane. If no decision function f (j)(ỹ) gives a positive outcome, then the
nearest class is selected, i.e., f (j)(ỹ) with the negative value closest to 0.

Figure 2.5: Visual representation of the one vs. rest approach. Each class is put against all
others to produce a binary classifier. The procedure is repeated 2k times, once for each valid
codeword.

2.2.2 One vs. one

The one vs. one approach is employed in [KB08; Ram+09; SY16], and it consists in pro-
ducing pairwise SVM classifiers for all possible combinations of valid codewords, yielding a
set of functions f (j,j′) ∀ (j, j′) ∈ [1 : 2k]2. The total number of SVM functions can be easily

2.3. Contributions: proposed system and training framework 35

computed: (
2k

2

)
= 2k!

2!(2k − 2)! = 2k(2k − 1)�����(2k − 2)!
2�����(2k − 2)! = 2k−1(2k − 1). (2.24)

Once we have produced the 2k−1(2k − 1) SVM binary classifiers, every function is applied to
the received signal ỹ, and the selected class is determined through a voting system, given by:

Cj? = argmax
j∈[1:2k]

2k∑
j′=1
j′ 6=j

1
{
f (j,j′)(ỹ) > 0

}
. (2.25)

Each decision function decides between two classes (codewords), and the class that gets the
most votes at the end is selected. Ties can be resolved either randomly or by considering the
mean of the votes’ reliabilities, i.e., the distance to the separating hyperplanes.

2.3 Contributions: proposed system and training framework

In the following, we describe our suggested solution, which combines a bit-wise approach to
the SVM decoder with a noiseless optimization procedure [DeB+24a]. Finally, a theoretical
analysis is given that studies the relationship between our proposed solution and the bit-ML
decoder.

2.3.1 Bit-wise SVM

Figure 2.6: Visual representation of the proposed bit-wise approach.

The previous approaches present the main constraint of a complexity that increases expo-
nentially with the message length, with at least 2k SVMs for a code of size (n, k) —and even
more for the one vs. one approach. To alleviate this constraint, we suggest a novel bit-wise
approach that resorts to only k SVM classifiers for an (n, k) linear block code. This method
transforms the multiclass problem generating one SVM per valid codeword, into a series of k
binary classifications necessitating one SVM per bit position, as shown in Figure 2.6. To this
end, for all j ∈ [1 : k], we divide the dataset {ỹ1, ..., ỹN} into two non-intersecting classes:

36 Chapter 2. Support Vector Machines for joint demodulation and decoding

• C(j)
1 corresponding to the vectors for which the transmitted message u = (u1, ..., uk)

satisfies uj = 1;

• C(j)
0 corresponding to the vectors for which uj = 0.

For each j ∈ [1 : k], an SVM classifier f (j) is produced such that if f (j)(ỹ) > 0 then ûj = 1,
and ûj = 0 otherwise. Consequently, each decision function f (j), for j ∈ [1 : k], will decide
whether the jth bit of the estimated message û is a 0 or a 1. Algorithm 1 outlines the
decoding iterative process. The suggested bit-wise SVM not only reduces the number of
SVMs necessary from 2k to k, but can be implemented in parallel in order to reduce latency.

Algorithm 1 bit-wise SVM decoder
Input: y a noisy codeword of size n
Output: û an estimated binary message of size k
Initialization: f (j) SVM bit classifier for j ∈ [1 : k]
1: ỹ = [R(y), I(y)]
2: û = ~0k
3: for j = [1 : k] do
4: if f (j)(ỹ) ≥ 0 then
5: ûj = 1
6: else
7: ûj = 0
8: end if
9: end for

10: return û

2.3.2 Proposed training: noiseless optimization

To further reduce the complexity with respect to the SVM-based solutions in [KB08; SY16]
we make use of a particularly appealing feature of SVMs, namely, their maximum margin
property, which yields separating hyperplanes that are equidistant from both dataset classes.
As such, when investigating symmetric channel models like the AWGN, this is equivalent to
a maximum margin classifier between only the original noiseless codewords (i.e. the classes’
centroids). Consequently, rather than the traditional training approach which considers a
dataset with randomly generated noisy codewords, it suffices to optimize —or train— the
suggested bit-wise SVM on only noiseless modulated codewords as shown in Figure 2.7.

Observation 2.1. This noiseless training is possible due to the specific maximum margin
property of SVM, and would not be possible in regular deep learning-based solutions, which
would likely overfit to the noiseless codewords and perform poorly on noisy realizations.

The suggested noiseless optimization not only drastically reduces the size of the training
dataset but also allows to be robust to possible mismatches between the training and ac-
tual channel conditions (e.g., different training and testing SNR). The new training dataset

2.3. Contributions: proposed system and training framework 37

Figure 2.7: Visual demonstration of noiseless optimization: noisy scenario (left) and noiseless
scenario (right).

contains only one sample per class, i.e., 2k elements, which correspond to the noiseless mod-
ulated codewords {x̃1, ..., x̃2k}, where the same processing of (2.1) is applied to every valid
modulated codeword.

2.3.3 Proposed optimization problem

Combining the two suggested elements (bit-wise SVM and noiseless optimization), the training
dataset will be composed of the 2k valid modulated codewords {x̃1, ..., x̃2k} with 2n′ elements
each —where the same preprocessing (2.1) has been applied to x—, and k binary classifiers
will be produced following the bit-wise approach of Section 2.3.1. Because we are working
with linearly non-separable data, the kernel method is employed, where the RBF is selected
as the kernel function:

K(ỹ, ỹ′) , e−γ||ỹ−ỹ′||2 , γ ∈ R+. (2.26)

The classification of an unlabeled vector ỹ consists of k classifiers f (j)(ỹ), each determining
the value of the jth bit of the estimated message û, and given by:

f (j)(ỹ) =
2k∑
i=1

l
(j)
i α

(j)
i K(x̃i, ỹ) + ν(j), (2.27)

where l(j)i = +1 if the jth information bit of the modulated codeword xi is 1, and l(j)i = −1
otherwise. Lastly, α(j) constitutes the solution to the following optimization problem:

argmin
α

1
2

2k∑
i,m=1

αiαml
(j)
i l(j)m K(x̃i, x̃m)−

2k∑
i=1

αi

subject to: αi > 0 and
∑2k
i=1 l

(j)
i αi = 0.

(2.28)

38 Chapter 2. Support Vector Machines for joint demodulation and decoding

Each of the k bit-wise SVM optimization problems given in (2.28) can be written as a
quadratic programming problem with linear constraints given by:

argmin
α

1
2α

TQ(j)α− 1Tα

subject to: α ≥ 0 and αT l(j) = 0,
(2.29)

where Q(j) is a matrix such that Q(j)
i,m = l

(j)
i l

(j)
m K(x̃i, x̃m). Since all Q(j) are definite positive

matrices, these optimization problems are all convex.

2.3.4 Optimality analysis and interpretation

Although obtaining closed-form solutions of (2.28) for generic choices of the (n, k) linear block
code, the constellation, and the parameter γ might be challenging, we show that under certain
assumptions, the resulting SVM decision rule can be obtained in closed-form and related to
the bit-ML decision rule.

Theorem 2.1 (Optimal solution and equivalence to bit-ML).

(i) For γ � 1, the optimal solution to (2.28) for all j ∈ [1 : k] is given by α∗ = (1, 1, ..., 1),
and ν∗ = 0 .

(ii) Furthermore, if γ = 1/σ2, this solution yields decision functions f (j)(ỹ) equal to the
bit-ML decision rule g(j)(ỹ) of (1.36) (equivalent to the bit-MAP with uniform and iid
bits).

Proof. In order to prove (i), let us notice that if γ � 1, then one can show that for all
i 6= m, K(x̃i, x̃m) ≈ 0. Hence, the objective function (2.29) can be expressed, for all j ∈ [1 : k],
as

1
2

2k∑
i=1

α2
i −

2k∑
i=1

αi = 1
2

2k∑
i=1

(α2
i − 1)2 − 2k−1. (2.30)

One can then easily show that the solution α∗ = (1, 1, ..., 1) yields a lower bound to the
objective function, since

∑2k
i=1(α2

i − 1)2 ≥ 0, and verifies the inequality constraints αi ≥
0 ∀i ∈ [1 : 2k]. The equality constraint is also verified, since for all j ∈ [1 : k], each of the two
classes C(j)

1 and C(j)
0 consist in 2k−1 sequences x̃i and hence,

2k∑
i=1

l
(j)
i = |C(j)

0 | − |C
(j)
1 | = 0 ∀j ∈ [1 : k]. (2.31)

Thus, for all j ∈ [1 : k], α∗ = (1, 1, ..., 1) is the solution to the optimization problem in (2.28).
As for ν(j), note that by evaluating (2.27) for any x̃m using γ � 1, we obtain

f (j)(x̃m) =
2k∑
i=1

l
(j)
i e−γ||x̃i−x̃m||

2 + ν(j) = l(j)m + ν(j), (2.32)

2.4. Numerical results and analysis 39

which yields ν(j) = 0.

To prove (ii), let us observe that replacing the proposed solution {α∗ = (1, 1, ..., 1), ν∗ = 0}
in (2.27) yields

f (j)(ỹ) =
2k∑
i=1

l
(j)
i e−γ||x̃i−ỹ||

2
, (2.33)

where l(j)i denotes the label of the point x̃i for the jth classification problem (related to the
value of its jth bit). Let us divide the summation argument into the two classes C(j)

1 and C(j)
0 .

Hence, we can rewrite the decision function as

f (j)(ỹ) =
∑

x̃i∈C
(j)
1

e−γ||x̃i−ỹ||
2 −

∑
x̃i∈C

(j)
0

e−γ||x̃i−ỹ||
2
. (2.34)

From (2.34), it is easy to deduce the value of the jth bit as

g(j)(ỹ) = 1

{ ∑
x̃i∈C

(j)
1

e−γ||x̃i−ỹ||
2
>

∑
x̃i∈C

(j)
0

e−γ||x̃i−ỹ||
2
}
. (2.35)

Selecting γ = 1/σ2 in (2.35) yields the bit-ML rule in (1.36) for an AWGN channel with noise
power σ2 by noticing that

PY |X(y|x(u)) = 1
(πσ2)n′ e

−
||x(u)− y||2

σ2 . (2.36)

In the following, we will show that the assumption of γ � 1 in Theorem 2.1, is valid
even for moderate SNR values. Besides, we will analyze the effect of relaxing the constraint
γ = 1/σ2 on the obtained results with respect to the bit-ML.

2.4 Numerical results and analysis

This section will present the simulation results obtained using the proposed approach, com-
bining the bit-wise decoding framework and the noiseless optimization. The system model of
Section 2.1.1 was employed along with a Monte Carlo simulation to compute the Bit Error
Rate (BER), with a stopping criterion of 1000 frame errors for each considered Eb/N0. Opti-
mization problems are solved using the CVX modeling system for convex optimization [GB08;
GB14]. The parity-check matrices were taken from the channel code database in [Hel+19].

40 Chapter 2. Support Vector Machines for joint demodulation and decoding

0 1 2 3 4 5 6 7 8

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R uncoded

Polar, γ = γ0

Polar, γ = 1/σ2

Polar - MAP decoder
BCH, γ = γ0

BCH, γ = 1/σ2

BCH - MAP decoder

Figure 2.8: BER of the suggested decoder for both a BCH and a polar code of size (32, 11),
with a 16-QAM modulation and under an AWGN channel.

2.4.1 BER and effect of the hyperparameter γ

The suggested bit-wise SVM was implemented for both an extended (32, 11) BCH code and
a (32, 11) Polar code, each under a 16-QAM modulation scheme and an AWGN channel with
an Eb/N0 = n

k.m
1
σ2 , where m = 4 denotes the order of the modulation2. Let us define γs the

value of the exponential’s slope:
γs = 1/σ2

s , (2.37)

where σ2
s is the noise power such that Eb/N0 = s dB. This is what is referred to as a value

of γ adapted to a normalized signal-to-noise ratio of Eb/N0 = s dB. In the following, we will
distinguish two training scenarios. In the first scenario, the choice of γ in the RBF kernel is
adapted to each Eb/N0, i.e., γ = 1/σ2, where σ2 is the noise power corresponding to each
Eb/N0 ratio. In the second scenario, s is set to 0, i.e., γ = γ0, for all values of Eb/N0. The
BER curves of both the suggested solution (bit-wise SVM) and the optimal solution (bit-ML)
are given in Figure 2.8.

We observe that, for the first scenario, by adapting the value of γ to the corresponding
Eb/N0, the SVM decoder is matched to the bit-ML decision rule, and so their performances
coincide as per Theorem 2.1. However, for the second scenario in which γ = γ0, the resulting
SVM curve degrades in the high Eb/N0 (low-noise) regime. This is because the RBF kernel
is fixed with γ = γ0, and does not perfectly adapt to higher values of Eb/N0.

To assess the effect of the choice of the parameter γ in the second scenario, Figure 2.9
shows the Eb/N0 corresponding to a BER of 10−3 as a function of s ∈ [−2 : 15] for both the

2Observe that the one vs. rest and one vs. one approaches described in Section 2.2 were not implemented
due to their very high complexity, even for the code size considered. For results on shorter codes, the reader
is referred to [KB08; SY16].

2.4. Numerical results and analysis 41

−2 0 2 4 6 8 10 12 14

5,5

6

6,5

7

7,5

s (dB)

E
b
/N

0
(d
B
)

Polar
Polar - MAP decoder
BCH
BCH - MAP decoder

Figure 2.9: Eb/N0 corresponding to a BER of 10−3 as a function of s.

(32, 11) BCH code and the (32, 11) polar code. One can observe that very low values of s
—and thus their corresponding values of γs—, display poorer performances in terms of BER.
However, above a threshold value of around 2dB, the SVM achieves the objective BER of 10−3

at essentially the same Eb/N0 as the ML decoding solution. This phenomenon suggests that
training with large values of γ relaxes the need to adapt γ to the current Eb/N0, generalizing
in this way the result of Theorem 2.1, (ii).

Moreover, as previously discussed, the result of Theorem 2.1, (i) is valid for γ correspond-
ing to even moderate values of Eb/N0. Figure 2.10 shows the solution to the optimization
problem (2.28) as a function of s ∈ [−2 : 15]. We observe that, indeed, the optimal solution to
(2.28) is given by α∗ = (1, 1, ..., 1) and ν∗ = 0 for all s > 2dB, which corresponds to relatively
moderate values of Eb/N0.

2.4.2 Complexity analysis

Table 2.1 summarizes the decoding complexity of our method and those in the literature.
As we can observe, the bit-wise approach is the first to enable a linearly growing number of
SVMs, which is more easily scalable than exponentially growing methods. The same goes for
the dataset: for the SVM to learn a decision rule between two classes, it has to see at least
one element of each class. With our noiseless optimization, the dataset size has been reduced
to its minimum N = 2k.

Nevertheless, complexity is not only based on the number of SVM classifiers but also on
the number of operations required to perform each one of these classifications. Even with
our method with reduced complexity, the size of the dataset is 2k, with one element per valid
codeword. This implies exponential growth, as the size of the dataset determines the number
of terms in (2.27).

42 Chapter 2. Support Vector Machines for joint demodulation and decoding

−2 0 2 4 6 8 10 12 14

0

0,2

0,4

0,6

0,8

1

1,2

α

ν

s (dB)

E
b
/N

0
(d
B
)

Polar
BCH

Figure 2.10: Optimal values of α and ν —i.e. solutions to the optimization problem (2.28)—
as a function of s.

Bit-wise One vs. rest One vs. one

of SVM classifiers k 2k 2k−1(2k − 1)

of terms in (2.27) N N ≈ N
2k−1

of terms in (2.27) with noiseless opt. 2k 2k 2

Table 2.1: Complexity comparison between methods.

2.5. Conclusion and perspectives 43

2.5 Conclusion and perspectives

In this Chapter, we have discussed the application of SVMs to the problem of channel decod-
ing. After providing the reader with an introduction to SVMs and a state-of-the-art study on
their applications to channel decoding, we have presented our proposed solution and train-
ing framework. This novel decoding system improves performance and reduces complexity
compared to the previous SVM-based methods:

(i) The number of decision functions is reduced from (at least) 2k to k.

(ii) The number of elements in the dataset is reduced to a minimum of one element per
possible codeword, i.e., 2k.

(iii) In symmetric channels, robustness to the dataset’s distribution is improved by only
training on the noiseless codewords.

However, for the AWGN channel, our system is proven to be exactly equivalent to the ML
decoder, which implies an exponentially growing complexity. This closes a door on the SVM
decoder for AWGN debate, but also raises several questions:

(i) Could there be a way of training the SVM on a subset of the code instead of on the
entire codeword space?

(ii) Is there a channel model (e.g., frequency or time selective, fading, unknown, etc.) where
the ML decoding rule is unavailable in closed-form, but where the SVM is able to find
an optimal or pseudo-optimal decoder in a data-driven manner?

(iii) Could we make a small sacrifice in performance (e.g., using a different kernel method
and/or dataset) to reduce the number of support vectors and, thus, the overall com-
plexity of the decoder?

These and many other questions may be addressed in future works, potentially combining
other machine learning-based techniques to, for instance, learn smarter feature representations
for the codeword space that reduce the complexity of the final SVM decision function.

Chapter 3

Syndrome-based neural decoding
for BPSK

Contents
3.1 Model-free decoding approach . 47

3.1.1 System model . 47
3.1.2 Noise model . 48
3.1.3 Decoding framework . 49
3.1.4 Optimality analysis . 49
3.1.5 Neural network architectures for the noise estimator 50

3.2 Contributions to the model-free decoder 52
3.2.1 Proposed message-oriented framework . 54
3.2.2 Recurrent transformer-based architecture 57
3.2.3 Complexity analysis . 57
3.2.4 Influence of the parity-check matrix . 59

3.3 Experiments . 63
3.3.1 Training and hyperparameters . 64
3.3.2 Simulation results . 65

Recall that one of the primary challenges hindering the application of machine learning-
based solutions to channel decoding is scalability, referring to the capacity of a neural network
to learn an effective decoding rule within the boundaries of limited training, computing and
storage capacity. One aspect of this, regarding the multiplicity of noise realizations needed for
learning, was discussed in Chapter 2 and an SVM-based decoder was proposed that is trained
over noiseless codewords. The other two key features that configure the scalability problem
pertain to the codeword space —which grows exponentially with the code dimension— and
the network’s size —which tends to increase dramatically to be able to adapt to larger codes.
These are the aspects that are addressed in the current Chapter.

Regarding the codeword space, a successful decoding technique is the so-called model-free
approach, proposed by Bennatan et al. in [BCK18a], which makes use of a multiplicative noise
model previously depicted in [RU01]. This approach, which relies on the symmetry of the
BPSK modulation scheme, renders the training procedure independent from the transmitted

45

46 Chapter 3. Syndrome-based neural decoding for BPSK

codeword. This enables the single-codeword training property, which completely removes the
need to train over all valid codewords by relying uniquely on one codeword throughout the
entire training process. The authors in [BCK18a] employ Multi-Layer Perceptrons (MLP)
and Recurrent Neural Networks (RNN) for the neural estimator, and display very promis-
ing performances for short and medium-length codes (up to 127 bits). Subsequently, the
model-free approach was adopted by several authors: a study in 2022 by Choukroun et al.
introduced a transformer-based architecture [CW22a], therein referred to as Error Correction
Code Transformer (ECCT), that reduces the number of parameters and improves decoding
performances in some cases. The ECCT was revisited by Park et al. in 2023 where two
distinct parity-check matrices are used to diversify the information extracted by the neural
network [Par+23]. Other works have also explored iterative approaches, e.g., employing the
original decoder several times in a sequential manner [KP20], or applying denoising diffusion
models [CW23]. However, these decoders present shortcomings in their construction: (i) they
work on a codeword level, assigning the same importance to information bits and parity bits
during the estimation; (ii) because of this, when applied to non-systematic codes (e.g. Polar
codes in their original form), they require further calculations to obtain the message; (iii) the
parity-check matrix construction is not discussed, despite the fact that its structure has signif-
icant impact on the decoder’s training and performance. These elements constitute potential
sources of inefficiency or suboptimal performance that will be addressed in this Chapter.

With respect to the network’s size, the original work in [BCK18a] uses an RNN as the
high-performance solution but its size increases exponentially with the code length, employing
up to 20 million weights for a BCH code of size (127, 64). The transformer-based architecture
addresses this by proposing a solution with a more constant number of weights, employing
around 2 million weights for the same BCH code (and around 1.5 million for shorter codes).
In this Chapter, we also attempt to further reduce the network’s complexity to take another
step toward realistic implementations, whilst minimizing performance penalties.

In light of the two elements previously described, the contributions presented in this
Chapter can be classified as follows:

(i) Message-oriented decoder : building from the model-free approach, we introduce a novel
decoding framework that displays significant improvements by considering only the
information bits instead of the whole codeword. We define a pseudo-inverse operation
on the codewords that allows the network to directly estimate the errors in the message,
thus improving decoding performances and rendering the decoder directly applicable to
non-systematic codes.

(ii) Parity-check matrix: we employ information theory-based metrics to assess the influence
of the parity-check matrix on the decoder’s training and performance, and propose a
simple algorithm to build a more suitable parity-check matrix according to these metrics.

(iii) Recurrent ECCT : with respect to the network’s size, we introduce a recurrent version of
the transformer-based architecture proposed in [CW22a], which reduces the total num-
ber of parameters in the NN to only a fraction of the ones used in previous architectures,
while maintaining competitive decoding performances.

3.1. Model-free decoding approach 47

The work in this Chapter is organized as follows. We start by offering an overview of the
system layout and the model-free (also referred to as syndrome-based) decoding approach.
For this purpose, we start by presenting the multiplicative noise model of [RU01, Lemma 1],
followed by the model-free approach introduced by Bennatan et al. in [BCK18a]. This brief
state-of-the-art study is completed with an overview of the main deep-learning architectures
found in the literature. Subsequently, we present the main limitations associated with the
previous decoder and propose a novel message-oriented decoding framework that displays
significant improvements, especially when employing the low-complexity architectures. We
continue by proposing the new recurrent transformer-based network, followed by a complexity
analysis carried out among the considered architectures regarding the total number of param-
eters that configure each network. Finally, we study the influence of the parity-check matrix
on the decoder and propose an algorithm to modify it accordingly. All of these contributions
are thoroughly evaluated —separately and jointly— by applying them to Polar and BCH
codes of different sizes and code rates.

Most of the work carried out in this Chapter can be found in [DB23] and [DeB+24d].

3.1 Model-free decoding approach

As stated in the Introduction, the purpose of this work is to employ machine learning-based
solutions to produce channel decoders that offer competitive performances while maintaining
relatively low complexity and latency. This Section will describe the model-free technique
introduced in 2018 by Bennatan et al. [BCK18a], along with the necessary tools to implement
it under a BPSK modulation scheme.

3.1.1 System model

Let us start by briefly introducing the framework. A simplified schematic is given in Figure
3.1. Let u ∈ {0, 1}k denote the k-bit message to be transmitted, and c ∈ {0, 1}n its associated
n-bit codeword through a linear FEC code C. This codeword is mapped into a BPSK vector
x = 1 − 2c, which is transmitted through a symmetric binary-input AWGN channel. The
received signal y is used as input to the decoder to give an estimate û of the message u.

FEC
Encoder BPSK AWGN FEC

Decoder

u c x y û

Figure 3.1: General system model for model-free BPSK decoding.

Notation. In the following, for x ∈ R, xs denotes its sign (i.e., xs = +1 if x > 0, and xs = −1
otherwise), and xb represents its binary hard decision (i.e., xb = 0 if x > 0, and xb = 1
otherwise). The same reasoning is applied element-wise for a vector x ∈ Rn.

48 Chapter 3. Syndrome-based neural decoding for BPSK

3.1.2 Noise model

Let us now present the multiplicative noise model from [RU01, Lemma 1]. In the traditional
AWGN channel model, the received random signal is expressed as follows:

y = x+w, (3.1)

where x is a random vector of size n that represents the BPSK modulated codeword and
w = (w1, w2, ..., wn), such that {wi}1≤i≤n are independent and identically distributed (iid)
random variables distributed asN (0, σ2). In this scenario, the following holds for all i ∈ [1 : n]:

P (Y s
i 6= Xi) = P (Y s

i = 1|Xi = −1)P (Xi = −1) + P (Y s
i = −1|Xi = 1)P (Xi = 1) (3.2)

= P (Wi > 1)1
2 + P (Wi < −1)1

2 (3.3)

= P (Wi > 1) = P (Wi < −1). (3.4)

In this work, in order to motivate the preprocessing of the decoder input y, we need to
introduce an equivalent multiplicative formulation of the AWGN channel, which we define
following [RU01, Lemma 1] by

y = x� z, (3.5)

where x and y designate the channel input and output vectors, � denotes the Hadamard
(element-wise) product, and z is a random noise that verifies, ∀i ∈ [1 : n]:

PZi(zi) = PYiXi(zi) (3.6)

=
∑

x=−1,1
PXi(x)PYiXi|Xi(zi|x) (3.7)

= 1
2PYi|Xi(zi|1) + 1

2P−Yi|Xi(zi| − 1) (3.8)

= 1
2PYi|Xi(zi|1) + 1

2PYi|Xi(−zi| − 1) (3.9)

= 1
2PYi|Xi(zi|1) + 1

2PYi|Xi(zi|1) (3.10)

= PYi|Xi(zi|1) (3.11)
= PYi|Xi(yi|1). (3.12)

Therefore, Zi ∼ N (1, σ2) for all i ∈ [1 : n]. As a direct consequence of this multiplicative
model for the noise, the probability of error simplifies to:

P (Y s
i 6= Xi) = P (Zi < 0). (3.13)

It is easy to observe that the probability of a 0-centered white Gaussian noise being greater
than 1 is the same as a 1-centered white Gaussian noise of the same power being smaller than
0, i.e., (3.4) and (3.13) are equal for a same given variance σ2.

3.1. Model-free decoding approach 49

3.1.3 Decoding framework

In [BCK18a], the authors proposed to use the noise model from Section 3.1.2 and the decoding
framework depicted in Figure 3.2. Instead of using the channel output directly to estimate
the transmitted codeword —and thus encountering the dimensionality problem—, we use this
decoding approach that transforms the channel output y into two vectors: the absolute value
|y| and the syndrome Hyb, where H denotes a parity check matrix for the code C.

sign

abs

bin H
Noise

estimator
F

× bin
(sign)

y

yb Hyb

|y|
ê

ys

ĉ

(x̂)

Figure 3.2: Decoder framework proposed in [BCK18a].

Using this approach, a noise estimator (that will later be implemented using deep neural
networks) outputs a vector ê, which estimates the so-called bitflip vector1. This vector indi-
cates the positions of the received signal y that have suffered bitflips, i.e., the indices where
yb 6= c, or equivalently, z < 0. In [BCK18a], the authors used negative values for positions
where a bitflip occurred (so that the product with ys would correct them), and positive values
elsewhere. For our contribution, we will choose a slightly different representation. The final
estimate of the transmitted codeword c is given by:

ĉ = bin(ysê), (3.14)

or equivalently, the estimate of the transmitted BPSK signal x is given by:

x̂ = sign(ysê). (3.15)

3.1.4 Optimality analysis

The main result from Bennatan et al. is proving that the decoding framework from Section
3.1.3 does not incur any loss of optimality, i.e., the inputs |y| and Hyb are sufficients statistics
for optimal decoding. This is outlined in the following theorem.

Theorem 3.1 (Sufficient statistics). Consider the decoding framework from Section 3.1.3,
where the transmitted codeword c is estimated (or equivalently, the BPSK signal x). In this
scenario, the following equation holds, for all i ∈ [1 : n]:

PXi|Y (x|y) = PZsi | |Z|,HZ
b(xysi | |y|, Hyb), (3.16)

1To enhance clarity, we have opted for a different notation than the one employed in the original work by
Bennatan et al.

50 Chapter 3. Syndrome-based neural decoding for BPSK

where Zi ∼ N (1, σ2) ∀ i ∈ [1 : n] is defined as in Section 3.1.2.

Proof. The proof can be found in [BCK18b].

The result in (3.16) provides independency from the transmitted symbol sequence x, as
the pdf expression given by PZsi | |Z|,HZb only depends on the noise vector Z. As a result, the
decoding system can be trained on noisy realizations of any given codeword (for instance, the
all-zero codeword).

3.1.5 Neural network architectures for the noise estimator

As seen in Section 3.1.3, the noise estimator will take two inputs —|y| and Hyb— and give an
estimate ê of the bitflip positions. This section presents a few Deep Neural Network (DNN)
architectures implemented in the literature. The input to every DNN is a vector consisting
of the concatenation of the two considered variables from Theorem 3.2, i.e., (|y|, Hyb).

Observation 3.1. The authors in [BCK18a] call the estimator Noise Estimation and the
output is denoted ẑ, as if it was an estimate of the noise z. This is not the case, as the
network does not seek to estimate the actual value of the noise but rather only the positions
where a bitflip occurred. This is why we have defined an extra notation vector e called the
bitflip vector, and the network outputs its estimate ê, which should indicate the positions
where z < 0.

3.1.5.1 Multi-layer Perceptron

The MLP is the classical feed-forward and dense DNN, and was Bennatan’s first implemented
architecture (where it is called Vanilla Multi-Layer), with the only difference that the input
is fed to each layer, in addition to the output of the previous layer, in order to mimic the
behavior of the BP algorithm. The network consists of dl fully connected layers with a
Rectified Linear Unit (ReLU) activation function. Each hidden layer contains αn neurons,
where (n, k) are the code parameters and α ∈ N+ is a scaling factor to be selected. A final
output layer contains n neurons, and the hyperbolic tangent activation function is employed
to output values in the range [−1,+1]. The architecture is displayed in Figure 3.3.

3.1.5.2 Recurrent Neural Networks

The authors in [BCK18a] also proposed an RNN architecture as a more memory-efficient
alternative. The network consists in stacking recurrent cells on top of each other. The
number of cells to be stacked will define the depth of the neural network. Observe that RNNs
are usually employed for sequential data. In our case, the input vector is fed repeatedly
throughout all the time steps.

3.1. Model-free decoding approach 51

D
e
n
s
e

D
e
n
s
e

· · ·
D
e
n
s
e

D
e
n
s
e

αn αn αn

n

[|y|, Hyb]
ê

Figure 3.3: MLP-based architecture for the noise estimator. The number of neurons (i.e.,
the output size) is indicated below each layer, where α ∈ N+, and n denotes the code’s block
length.

The basic architecture is depicted in Figure 3.4, where dl recurrent layers are stacked
on top of each other and perform T time steps before producing an output ê. Each cell
gi, ∀i ∈ [1 : dl] is composed of several Gated Recurrent Units (GRU) [Cho+14], which is a
more lightweight variant to Long Short-Term Memory (LSTM) cells [HS97] due to their lack
of a reset gate. hi,t designates the state vector of the ith GRU cell at time t. Each GRU cell
is again composed of αn GRU units, and the final dense layer has n neurons and employs
also a hyperbolic tangent activation function. Differently from [BCK18a], a final dense layer
with n units is added at the end of the RNN to obtain an output with the correct size2.

g1

g2

...

gdl

g1

g2

...

gdl

. . .

. . .

. . .

g1

g2

...

gdl

D
e
n
s
e

[|y|, Hyb]

h1,0

h2,0

hD,0

h1,1

h2,1

hdl,1

h1,2

h2,2

hdl,2

h1,T−1

h2,T−1

hdl,T−1
ê

Figure 3.4: RNN-based architecture for the noise estimator. The architecture is slightly
changed with respect to [BCK18a], adding a final dense layer to obtain the correct output
dimension.

2It is not clear how the authors of [BCK18a] obtain an output of length n without this dense layer. In any
case, the performances obtained match the expected ones.

52 Chapter 3. Syndrome-based neural decoding for BPSK

3.1.5.3 Transformer

In a subsequent study, Choukroun et al. proposed a novel transformer-based architecture
for the bitflip estimator [CW22a] —therein referred to as ECCT— inspired by the work of
Vaswani et al. [Vas+17] and depicted in Figure 3.6. This network consists of three main
stages: (i) an embedding stage, where each component of the input vector is projected into a
high-dimensional space of size de; (ii) an encoding stage, repeated N times, where a masked
Multi-Head Self-Attention (MH-SA) block alternates with two dense Feed-Forward Neural
Networks (FFNN) —an expanding and a contracting one— with normalization layers added
before according to Figure 3.6; and (iii) a decoder stage, which consists in a normalization
layer, a dense layer to squeeze the embedding dimension to 1 and a final dense layer that
outputs the estimate ê. The mask is a symmetric binary matrix of size (2n − k) × (2n − k)
that contains a one in the position (i, j) if the ith and jth elements of the input vector
[|y|, Hyb] are connected. To achieve this, we start with an identity matrix I2n−k, since every
element is connected to itself. Then, for each row i ∈ [1 : n − k] of the parity-check matrix,
for every pair (j, j′) ∈ [1 : n] × [1 : n] such that Hi,j = Hi,j′ = 1, we unmask the positions
(j, j′) and (n+ i, j), along with their symmetric elements. The resulting matrix can be seen
as an extended adjacency matrix of the Tanner graph, in order to account for all the 2n− k
input elements. For further details, the reader is referred to [CW22a].

1
2
3

1 2 3 4 5 6 7

(a) Parity-check matrix.

1
2
3
4
5
6
7
8
9
10

1 2 3 4 5 6 7 8 9 10
(b) Mask.

Figure 3.5: Example of a parity-check matrix of a Hamming code of size (7, 4) and its corre-
sponding mask for the MH-SA block. Black squares correspond to ones and white squares to
zeros.

3.2 Contributions to the model-free decoder

As previously stated, one shortcoming of the decoder from Section 3.1.3 is that the entire
codeword c is estimated, and thus the same importance is given to both information and
parity bits. Besides, when employing non-systematic codes, an additional series of linear
operations has to be applied to the codeword, which may cause a performance penalty. Finally,

3.2. Contributions to the model-free decoder 53

Embedding
• Embedding

de

Encoder

Layer Normalization

Multi-head masked
self-attention

mask(H)

+

Layer Normalization

Dense layer

Dense layer

+

×N

Decoder

Layer Normalization

Dense layer

Dense layer

[|y|, Hyb]

(2n− k, 1)

(2n− k, de)

(4(2n− k), de)

(2n− k, de)

(2n− k, 1)

ê

(k, 1)

Figure 3.6: Transformer-based architecture for the noise estimator, as proposed by [CW22a].

54 Chapter 3. Syndrome-based neural decoding for BPSK

the learning and complexity aspects of the neural component of the decoder are not well
contemplated or studied. This section presents various contributions from our work in [DB23]
and [DeB+24b]:

(i) We introduce a Syndrome-Based Neural Decoder (SBND) framework that extends the
work of Bennatan et al. [BCK18a] to a full decoder of the message u, which is directly
applicable to systematic and non-systematic codes.

(ii) We present a novel recurrent version of the transformer architecture to further reduce
the number of weights.

(iii) We study the influence of the parity-check matrix employing information theory-related
metrics.

(iv) We offer a thorough complexity analysis that compares the considered architectures.

3.2.1 Proposed message-oriented framework

For the first contribution, let us define a new measure of error that assesses messages instead of
codewords. Let pinv(·) define a pseudo-inverse function dependent on the linear block code,
defined as an operation that transforms every valid codeword c ∈ C to its corresponding
message u. That is, if c = GTu, then:

u = pinv(c). (3.17)

Observe that, given a pseudo-inverse pinv(·), its application to a non-valid codeword may
yield an unpredictable result. Observe also that, for the case of systematic codes, a simple
pseudo-inverse consists in the extraction of its systematic bits, i.e., pinv(c) = Ac where:

A =
[
Ik |0k,n−k

]
. (3.18)

Now, let ũ denote an artificial variable —also referred to as noisy message— defined by:

ũ , pinv(yb), (3.19)

where yb represents the hard decisions of the received BPSK signal y, which may have suffered
bitflips during transmissions (i.e., changes in its sign). Let ebu denote the error vector between
the original message u and ũ, i.e., the bitflip pattern:

ebu , ũ⊕ u. (3.20)

Observe that the so-called noisy message is not actually a signal we receive, but rather the
output of a hard-decision decoder that thresholds the vector y to obtain yb and then inverts
it through the function pinv(·) (recall that eb = c⊕ yb).

The proposed decoding framework is outlined in Figure 3.7. In brief, the estimator uses
the same inputs as [BCK18a], but outputs a vector that indicates the positions of bitflips

3.2. Contributions to the model-free decoder 55

in the artificial vector ũ, which will be corrected in the final stage to obtain the estimate
û. This reduces the output size from n to k —which can be around half in a typical case—
and allows the training algorithm to focus only on information bits, potentially sacrificing
performance on the parity bits. Additionally, because the decoder will be extended to higher-
order modulations in Chapter 4, we remove the sign operations from the system and work
either with real numbers (y, |y| and êu) or binary (the remaining vectors of Figure 3.7). To
this purpose, we replace the last layer’s activation function from a hyperbolic tangent to a
linear activation.

bin

abs

H
Message
bitflip

estimator
bin +

pinv

y

yb Hyb

|y|
êu êbu

û

ũ

Figure 3.7: Proposed message-oriented SBND.

Consider now the following theorem.

Theorem 3.2. Considering the previous decoder structure for estimating the message u, the
following equation holds:

PU |Y (u|y) = PEbu| |Z|,HZb(u⊕ ũ | |y|, Hy
b), (3.21)

where Z denotes the multiplicative noise from Section 3.1.2, and ebu = u⊕ ũ = u⊕ pinv(yb).
Hence, it follows for all i ∈ [1 : n]:

PUi|Y (u|y) = PEbu,i| |Z|,HZ
b(ui ⊕ ũi | |y|, Hyb). (3.22)

Proof. See Appendix A.1.

This indicates that knowing y and computing the probability distribution of u is equivalent
to knowing Hyb and |y| and computing the probability distribution of the random variable
ebu, which after the final bitflip estimation is used to yield an estimate of u by applying an
exclusive OR operation with the artificial variable ũ:

û = ũ⊕ êbu. (3.23)

This extends the previous results [BCK18a; CW22a; CW23] to a full decoder architecture,
where the output is the estimate of the original message u, and is independent of the generator
matrix —and particularly, whether it is systematic or not. Observe also that Theorem 3.2
implies that the posterior distribution PU |Y (u|y) depends only on the multiplicative noise
z and is invariant with respect to the transmitted codeword. This enables single-codeword
training, as long as the noise remains random throughout the learning process.

56 Chapter 3. Syndrome-based neural decoding for BPSK

We have taken this analysis one step further by explicitly computing the expression for
the argument that maximizes the posterior distribution PU |Y (u|y). Consider the following
lemma.

Lemma 3.1. Considering the previous decoder structure for estimating the message u, the
following equation holds:

PU |Y (u|y) = argmin
ebu

n∑
i=1

yi(1− 2[GTpinv(yb)]i)[GTebu]i, (3.24)

where the notation [·]i indicates the i-th element of the vector between the square brackets.

Proof. See Appendix A.2.

This result, containing an explicit expression of the posterior distribution PU |Y (u|y),
illustrates more clearly the dependencies and complexity of the decoding process. The optimal
estimate of êbu is the one that minimizes the sum of reliabilities associated with the positions
of estimated bitflips, with negative values in positions where the received signal y and the
encoded and modulated pseudo-inverse (1 − 2GTpinv(yb)) have different signs and positive
values otherwise. A similar procedure can be found in other decoding algorithms, such as the
OSD (see Section 1.4.1) and the Chase algorithm [Cha72]. In our case, instead of computing
this minimum with an iterative trial-and-testing procedure (which is costly and has high
latency), we employ neural networks.

3.2.1.1 MAP denoising and MAP decoding

Let us observe that the proposed system is based on a denoising approach, where the estimator
does not output the estimated message û directly, but rather an estimate of the artificial
quantity ebu, which is subsequently used to correct the noisy message ũ. The quantity ebu can
be thought of as message noise, much like the codeword noise eb in Section 3.1.3. Nonetheless,
this approach is equivalent to estimating the message u, as shown in the following result:

argmax
u∈{0,1}k

PU |Y (u|y) = argmax
ebu∈{0,1}k

PŨ⊕Ebu|Y (ũ⊕ ebu|y) (3.25)

= argmax
ebu∈{0,1}k

PEbu|Y (ebu|y), (3.26)

where we have use that u = ũ⊕ ebu, along with the fact that ũ is a deterministic function of
y as per (3.17). Similarly, one can write that

argmax
ui∈{0,1}

PUi|Y (ui|y) = argmax
ebu,i∈{0,1}

PEbu,i|Y
(ebu,i|y), (3.27)

which allows the transformation of the MAP decoding criterion in (1.36) to a MAP denoising
criterion.

3.2. Contributions to the model-free decoder 57

3.2.2 Recurrent transformer-based architecture

It has been stated that a central obstacle in contemporary NN-based channel decoding is
the problem of scalability. This concept encompasses two key dimensions: (i) the network’s
capacity to decode larger codes and (ii) its ability to achieve this without resorting to an
ever-increasing number of model parameters. The work in [CW22b] tackled this problem,
achieving slightly better performances than [BCK18a] for a BCH code of size (127, 64) with
only a tenth of the number of weights.

As we will see in Section 3.2.3, the total number of weights in the ECCT increases predom-
inantly as Nd2

e, where N indicates the number of encoders and de the embedding diemension.
The embedding provides the system with the freedom to represent the input vector in a high-
dimensional space and thereby learn the output accordingly. For this reason, we decided to
address the issue of the number of encoders N . In this section, we propose a recurrent version
of the ECCT —henceforth referred to as r-ECCT— that takes a step in the scalability direc-
tion. As evidenced in Section 3.2.3, the transformer solution has roughly a linear dependency
on the number of concatenated attention blocks (i.e., encoders). We propose removing this
dependency by adopting a recurrent strategy, where the same attention block is employed
iteratively for N cycles. The basic architecture is outlined in Figure 3.8: after the embedding
phase, the data is fed to the encoder block that iterates on itself N times. The resulting
encoded vector of size (2n− k, de) is fed to the decoder to estimate the bitflip vector.

Embedding

Enc(1) Enc(2) . . . Enc(N)

Decoder

[|y|, Hyb]

(2n− k, 1)

(2n− k, de)

(2n− k, de)

êu

(k, 1)

Figure 3.8: r-ECCT solution proposed for the bitflip estimator.

3.2.3 Complexity analysis

This section presents the complexity involved in the four considered NN architectures regard-
ing the number of parameters that configure the network as a function of certain hyperpa-
rameters to be selected in each case. Observe that the message-oriented approach of Section

58 Chapter 3. Syndrome-based neural decoding for BPSK

3.2.1 is adopted, but with the exception of the output layer, the complexity analysis is also
applicable to the decoding framework of Section 3.1.3.

3.2.3.1 Multi-Layer Perceptron (Feed-Forward Dense Network)

For a dense layer with ni inputs and no outputs (i.e., no neurons), the number of weights is
given by nino+no, which includes the multiplicative weights and the biases. Let r denote the
length of the input vector [|y|, Hyb], i.e., r , (2n−k), and α ∈ N+ a scaling hyperparameter
so that each layer contains α(n − k) units. Then, for an MLP consisting of dl hidden layers
—plus the output layer—, the number of weights is given by:

WMLP = αr2 + αr︸ ︷︷ ︸
first layer

+ dl((r + αr)αr + αr)︸ ︷︷ ︸
dl − 1 hidden layers

+ (r + αr)k + k︸ ︷︷ ︸
output layer

= (dlα+ dl + 1)αr2 + (dl + 1)αr + (r + αr)k + k, (3.28)

which, for a fixed depth dl and scaling parameter α, implies a network size that increases
roughly as O(r2).

3.2.3.2 Recurrent Neural Networks

The RNN implemented in our work and in [BCK18a] is based on GRU cells. If ni and no
represent the dimensions of the input and the output, respectively, we have that the total
number of weights for a GRU equals 3(n2

o + nino + no) [DS17]. Moreover, the number of
parameters for the final dense layer is given by nino + no. Recalling that each GRU cell
consists of α(2n − k) GRUs, and that the network contains dl GRU cells stacked on top of
each other, we have that the total number of weights for the RNN is given by:

WRNN = 3(α2r2 + αr2 + αr)︸ ︷︷ ︸
input GRU layer

+ (dl − 1)3(α2r2 + α2r2 + αr)︸ ︷︷ ︸
dl−1 hidden GRU layers

+ αrk + k︸ ︷︷ ︸
dense layer

, (3.29)

where r , 2n − k is the size of the network’s input and (n, k) represents the parameters of
the channel code. Collecting the terms, the following result is obtained:

WRNN = 3
(
(2dl − 1)α2 + α

)
r2 + (3dl + k)αr + k. (3.30)

It is worth observing that, for a fixed depth dl and a scaling parameter α, this result implies
a network that increases in size as O(r2).

3.2.3.3 Error Correction Code Transformer

The transformer-based architecture is composed of three stages: (i) the embedding, which
involves rde weights, with de the embedding dimension; (ii) the N encoders, each composed

3.2. Contributions to the model-free decoder 59

of two normalization layers, an MH-SA, and two dense layers; and (iii) the decoder, consisting
of a normalization layer and two dense layers. Hence, the number of weights can be expressed
as follows:

WECCT =N
(

4de︸︷︷︸
norm.

+ 4de(de + 1)︸ ︷︷ ︸
MH-SA

+ 4d2
e + 4de + 4d2

e + de︸ ︷︷ ︸
encoder dense layers

)
+ 2de︸︷︷︸

norm.

+ d+ 1 + rk + k︸ ︷︷ ︸
decoder dense layers

+ rde︸︷︷︸
embedding

. (3.31)

Once again, collecting the terms, we get the following expression for the total number of
weights in the ECCT:

WECCT = 12Nd2
e + (13N + r + 3)de + (r + 1)k + 1, (3.32)

where, for a fixed number of encoders and embedding dimension, the value of WECCT is
almost independent of the code parameters (n, k). Its main dependence is on the number of
encoders N (linear) and the dimension of the embedding de (quadratic), and the total number
of parameters increases roughly as O(Nd2

e).

3.2.3.4 Recurrent ECCT

The proposed solution is rooted in the ECCT architecture, with a novel adaptation involving
the recurrent utilization of the encoder for the N iterations. Hence, the number of parameters
can be easily obtained by replacing N = 1 in (3.32):

Wr-ECCT = 12d2
e + (16 + r)de + (r + 1)k + 1. (3.33)

The proposed NN is virtually only dependent on the embedding dimension, which is consid-
ered fixed in this work. Observe that, in practice, larger codes will probably require larger
embedding dimensions to maintain competitive decoding performances.

3.2.4 Influence of the parity-check matrix

Set aside the hyperparameters of the NN, the performance of the overall decoder turns out to
be very dependent on the parity check matrix H. In the following, we study the influence of
this matrix H on the proposed decoder. We propose an information theory-based metric that
evaluates the information shared between the syndrome input Hyb and the bitflip vector eb
as a function of the employed parity-check matrix. We then suggest an algorithm to sparsify
the parity-check matrix, which in turn increases the proposed metric. Finally, we evaluate
the impact of this new matrix by simulating the decoder with different parity check matrices
and displaying the resulting BER. For simplicity, the analysis is carried out employing the
codeword bitflip vector eb.

60 Chapter 3. Syndrome-based neural decoding for BPSK

3.2.4.1 Sparsifying the parity-check matrix

In the model-free approach, one of the inputs to the noise estimator is the syndrome s , Hyb.
The learning capabilities of the neural estimator may vary according to the choice of the
parity-check matrix, e.g., its shape, structure, or density. This section presents a way to
measure the impact of the parity-check matrix on the learning capabilities of the network and
proposes a method to construct a matrix that improves performance when needed. First, let
us recall the following definition from [Sha48].

Definition 3.1 (Mutual Information). Let X and Y denote two discrete random variables
with joint probability mass function PX,Y . Then the Mutual Information (MI) between X

and Y is defined by:

I(X;Y) ,
∑
x∈X

∑
y∈Y

PX,Y (x, y)log2

(
PX,Y (x, y)
PX(x)PY (y)

)
, (3.34)

where PX and PY denote the marginal probability mass functions of X and Y associated with
PX,Y .

Consider now the following theorem.

Theorem 3.3 (MI and parity-check matrix). Let C be a code defined by a generator matrix
G and Eb a binary random variable that represents the bitflip pattern induced by the channel.
Let H and H̃ denote any two valid parity-check matrices for the code C. Then:

I(Eb;S) = I(Eb; S̃), (3.35)

where S , HEb and S̃ , H̃Eb represent the syndromes induced by each parity-check matrix.

Proof. See Appendix B.1

This result implies that changing the parity-check matrix H induces no intrinsic loss in the
shared information between the overall syndrome S and the overall bitflip vectorEb. However,
when taking into account the architecture of the NN and the formulation of the training loss
function, it appears more intuitive to analyze the impact on each of the components Ebi
separately. In this work, we choose to investigate a surrogate information measure defined in
the following lemma.

3.2. Contributions to the model-free decoder 61

Lemma 3.2 (Pairwise MI). In the same framework as in Lemma 3.3, if PEbi (1) = p for
all i ∈ [1 : n], then the MI between the ith component of the bitflip vector Eb and the jth
component of the syndrome S is given by:

I(Ebi ;Sj) = [Hb(E(Nj))−Hb(E(Nj − 1))]1(Hij = 1), (3.36)

where:

• Hb(a) , −alog2 a− (1− a)log2(1− a) is the binary entropy function;

• Nj denotes the Hamming weight of the jth row of the parity-check matrix H;

• and E(Nj) denotes the probability of obtaining an even number of positive outcomes
after Nj Bernoulli realizations with probability p. That is:

E(Nj) , P{even # of ones} = 1
2 + 1

2(1− 2p)Nj . (3.37)

Proof. See Appendix B.2.

2 4 6 8 10 12 14 160

0,1

0,2

0,3

0,4

Nj

I
(E

b i
,S
j
)

p = 0.1
p = 0.05
p = 0.02

Figure 3.9: Mutual information between Ebi and Sj as a function of the weight of the jth row
Nj , for different bitflip probabilities p ∈ {0.02, 0.05, 0.1}.

The quantity I(Ebi ;Sj) is represented as a function of Nj in Figure 3.9. The shared infor-
mation between Ebi and Sj decreases with the weight of the jth row, and reaches its maximum
when Nj = 1. This indicates that, even though the quantity I(Eb;S) is independent of the
choice of the parity-check matrix, the pairwise mutual information I(Ebi ;Sj) depends inversely
on the weight of the corresponding row.

62 Chapter 3. Syndrome-based neural decoding for BPSK

Algorithm 2 2nd-order parity-check matrix sparsifying
Input: parity-check matrix H
Output: sparsified parity-check matrix Hr
1: Hr ← H
2: FoundBetter ← True
3: C = {{i} : 1 ≤ i ≤ n} ∪ {{i, j} : 1 ≤ i < j ≤ n}
4: while FoundBetter do
5: ωmin ← n

6: FoundBetter ← False
7: for i ∈ [1, 2, ..., n− k] do
8: ωi ← weight(H[i])
9: for comb ∈ C / i /∈ comb do

10: ωnew ← weight(
⊕

(Hr[i], Hr[comb]))
11: if ωnew < min(ωmin, ωi) then
12: ωmin ← ωnew
13: (ibest, combbest)← (i, comb)
14: FoundBetter ← True
15: end if
16: end for
17: end for
18: if FoundBetter then
19: Hr[i] ←

⊕
(Hr[ibest], Hr[combbest])

20: end if
21: end while
22: return Hr

In order to increase the pairwise mutual information I(Ebi ;Sj), Algorithm 2 outlines a
simple procedure to sparsify a matrix without changing its kernel space, i.e., applying exclu-
sively linear operations among its rows. The algorithm exhaustively searches all the pairs and
triples of rows, assessing which addition of rows leads to the largest reduction in the matrix’s
overall weight. This process is repeated until no combination of two or three rows reduces
the weight of the parity-check matrix.

We can now define the Mean Pairwise Mutual Information (MPMI) as follows:

MPMI(Ebi ,S) = 1
n− k

n−k∑
j=1

I(Ebi ;Sj). (3.38)

If this quantity is larger, then on average, more information is shared between each Ebi and Sj .
For a systematic BCH code with n = 127 and k = 64, where the first k positions correspond
to the information bits, let us consider four different possible parity-check matrices depicted
in Figure 3.10:

1. The original parity-check matrix, taken from that channel code database of [Hel+19];

3.3. Experiments 63

2. its standardized version, as per (1.12);

3. a randomized parity-check matrix, computed by applying several random linear combi-
nations over the original matrix’s rows and;

4. a sparsified matrix, obtained by applying Algorithm 2 to the standardized matrix.

0 50 100

0

25

50

Original (sparsity = 73.23%)

0 50 100

0

25

50

Standard (sparsity = 75.13%)

0 50 100

0

25

50

Random (sparsity = 50.23%)

0 50 100

0

25

50

Sparsified (sparsity = 81.95%)

Figure 3.10: Possible parity-check matrices for a BCH code of size (127, 64). Ones are repre-
sented in black and zeros in white. Their sparsity (percentage of zeros in the matrix) is also
displayed.

Figure 3.11 shows the MPMI between the syndrome S and each bitflip variable Ebi . Among
the four considered parity-check matrices, the sparsified matrix stands out for two main
reasons: (i) its MPMI is on average the highest for most bitflip positions and (ii) because
systematic codes are employed, the indices for which the MPMI is lower correspond to the
redundancy bits that the decoder will not estimate. Intuitively, the sparsified matrix is the
one that has the highest average information shared between the syndrome (i.e., the decoder’s
input that depends on the parity-check matrix) and the systematic bitflip components (i.e.,
the decoder’s output in the message-oriented approach).

3.3 Experiments

This section presents the decoding performance of our proposed decoder from Section 3.2.1
over different codes, namely BCH and Polar codes of different sizes and code rates. To
recapitulate, our contributions can be divided as follows:

64 Chapter 3. Syndrome-based neural decoding for BPSK

0 20 40 60 80 100 12010−5

10−4

10−3

i

M
P
M
I(
E
b i
,S

)

Original Standard
Sparsified Random

Figure 3.11: MPMI between the syndrome S and each bitflip component Ebi .

(i) The proposed decoding framework from Section 3.2.1 —denoted message-oriented—
that puts its focus on information bits (i.e., the message u);

(ii) the recurrent transformer architecture that removes the dependency on the number of
encoders, thus reducing the number of parameters by a factor of N ;

(iii) and the parity-check matrix analysis, with its subsequent sparsified version that im-
proves training and performance metrics.

To demonstrate the interest of all of these elements, they are implemented sequentially. The
model-free decoders from [BCK18a] and [CW22a] provide the best performances found in
the state-of-the-art. Hence, we start by implementing these decoders and comparing them
to the same architectures but using our framework from Section 3.2.1. Once our framework
has been justified, it is retained and used for the remaining simulations. Subsequently, the
r-ECCT from Section 3.2.2 is compared to the previous architectures, displaying competitive
performances while using only a fraction of the previous networks’ number of parameters.
Finally, the parity-check matrix is considered, selecting the sparsified matrix as per Section
3.2.4. A final simulation is provided to aggregate all of the contributions and compare the
resulting decoder against the systems in [BCK18a; CW22a].

3.3.1 Training and hyperparameters

To test the decoders and our different contributions, the system from Section 3.1.1 is simu-
lated, employing the decoders from Sections 3.1.3 and 3.2.1 and the classical decoders OSD
(for the BCH codes) and SCL (for the Polar codes). We implemented all the NN-based de-
coder architectures using Google’s TensorFlow library [Mar+15] along with the Keras API
[Cho+15]. Binary data is generated on the fly and grouped into batches of varying size,
depending on the architecture and training limitations. The binary cross-entropy function
is employed as the loss function during training, defined for two vectors a = {ai}1≤i≤k and

3.3. Experiments 65

â = {âi}1≤i≤k as follows:

LBCE(a, â) =
k∑
i=1

(
ailog(âi) + (1− ai)log(1− âi)

)
, (3.39)

where a is conventionally the true value (or ground truth) and â denotes the NN-estimated
value. The last dense layer of every architecture was selected to be linear, as to mimic LLR
values. As such, a sigmoid function is applied to the estimators’ outputs before computing
the binary cross-entropy loss. Another possibility would be to select the sigmoid as the final
activation function and use a 1/2-threshold to convert to the binary domain. To estimate the
BER for a given Eb/N0, a Monte Carlo simulation is carried out, with a stopping criterion
of 500 frame errors and with a minimum of 104 frames sent. The BER is computed message-
wise, meaning that the comparison is carried out between the transmitted message u and the
estimated one û.

Observation 3.2. When employing the codeword-oriented decoder —which gives an estimate
of the transmitted codeword c—, an inverse is applied to obtain an estimation of the message
u. In the case of BCH codes, we employ their systematic version and thus the inverse is easily
obtained by an extraction of the information bits. For Polar codes, we make use of Lemma
1.1.

Details about each simulation scenario are provided gradually as new elements are added
to the system. For reproducibility, the architecture and training hyperparameters employed
are summarized in Table 3.1, and the total number of weights in each architecture is displayed
in Table 3.2. All the simulated codes are obtained from the channel code database of [Hel+19].
To maintain a variety in the code size and rate without incurring an overload of figures and
information, different codes will be employed for each contribution. Nevertheless, tendencies
are very similar regardless of which of the considered codes is selected for each section.

3.3.2 Simulation results

3.3.2.1 Previous architectures

Because we implemented the decoders ourselves, let us start by benchmarking the three NN-
based architectures employed in the literature: MLP, RNN, and ECCT. For this, we selected
two BCH codes of size (63, 45) and (127, 64) as they are implemented in both [BCK18a] and
[CW22a], and because they represent very different outcome scenarios.

Figure 3.12a shows the BER performance of the three architectures, along with the ML
curve computed using an OSD of order 3. We can observe that, while the RNN (4.5M
weights) reaches pseudo-optimal performance, the ECCT (2M weights) and MLP (3.7M
weights) present a gap of approximately 1dB. Figure 3.12b exhibits a very different behavior,
where even the RNN (20M weights) is unable to beat even the OSD of order 1, even if the
gap begins to close in higher SNR. However, in this case, the ECCT shows its interest, where

66 Chapter 3. Syndrome-based neural decoding for BPSK

Code Rate Training Eb/N0 MLP RNN ECCT r-ECCT

BCH (63, 57) 0.90
4dB

α = 5
dl = 5

b.s. = 212

α = 7
dl = 10

b.s. = 212

de = 128
N = 10
b.s. = 28

de = 128
N = 10
b.s. = 29

BCH (63, 51) 0.81

BCH (63, 45) 0.71
3dB

BCH (63, 39) 0.62

BCH (127, 64) 0.50 4dB

Polar (64, 48) 0.75
3dB

α = 7
dl = 10

b.s. = 212

α = 5
dl = 5

b.s. = 212

de = 128
N = 10
b.s. = 28

de = 128
N = 10
b.s. = 29

Polar (64, 32) 0.50

Polar (64, 22) 0.34

Polar (128, 96) 0.75
4dBPolar (128, 64) 0.50

Table 3.1: Summary of the hyperparameters used in each simulated scenario, for each NN
architecture.

Code WMLP WRNN WECCT Wr-ECCT

BCH (63, 57) 2.7M 2.6M

2M 200k
BCH (63, 51) 3.2M 3.1M

BCH (63, 45) 3.8M 3.6M

BCH (63, 39) 4.3M 4.1M

BCH (127, 64) 20.5M 19.5M

Polar(64, 48) 3.7M 3.5M

2M 200k
Polar (64, 32) 5.3M 5M

Polar (64, 22) 6.4M 6.1M

Polar (128, 96) 14.6 13.9M

Polar (128, 64) 21M 20M

Table 3.2: Summary of the approximate number of weights that configure each NN architec-
ture.

3.3. Experiments 67

with only 2M parameters, it greatly outperforms the MLP decoder (which has 20.5Mweights).
Lastly, it is worth observing that all the performances are as expected from [BCK18a] and
[CW22a], with the exception of the RNN-based decoder for the BCH(127, 64), for which our
simulations displayed slightly better results than those shown in [BCK18a].

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R

ECCT
MLP
RNN
OSD 0,1,2
ML bound

(a) BCH (63,45).

0 2 4 6 810−6

10−5

10−4

10−3

10−2

10−1

OSD-0

OSD-1

OSD-2

O
SD

-3

Eb/N0 (dB)

(b) BCH (127,64).

Figure 3.12: Bit error rate comparison for two BCH code of sizes (63, 45) and (127, 64) under
a BPSK modulation scheme, employing the three considered architectures from the state-of-
the-art. The MLB curve was computed using an OSD of order 3.

3.3.2.2 Message-oriented vs. codeword-oriented decoders

In the following, our proposed message-oriented approach is compared to the previous de-
coder of Section 3.1.3, which we have denominated, in opposition, codeword-oriented. Recall
that the interest of our proposed decoder lies mainly in two aspects: (i) its focus on infor-
mation bits rather than parity bits, seeking to minimize the information BER rather than
the overall codeword BER; (ii) its one-shot decoding approach that directly estimates the
message, without passing through the estimated codeword and thus avoiding extra computa-
tions when non-systematic codes are employed. To assess numerically the performance gain
of this approach, two codes are implemented: a BCH code of size (127, 64) and a Polar code
of size (64, 32). The three architectures (RNN, ECCT, and MLP) are implemented for both
approaches, but only two were kept: the RNN, as a high-performance and highly complex
solution, and the ECCT, as the lighter but still competitive alternative —in occasions sur-
passing the RNN. The MLP has a moderately high complexity (close to the RNN), but with
a performance that rarely surpasses that of the ECCT, and hence is left out of the following
sections.

68 Chapter 3. Syndrome-based neural decoding for BPSK

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1
POLAR (64, 32)

Eb/N0 (dB)

B
E
R

codeword dec.
message dec.
SCL L = {1, 8}
ML bound

Figure 3.13: Bit error rate comparison for a Polar code of size (64, 32) under a BPSK modu-
lation scheme. Both neural decoders are implemented using RNNs.

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R ECCT cw-dec

ECCT m-dec
RNN cw-dec
RNN m-dec
OSD 0,1,2
ML bound

(a) BCH (63,45).

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

ECCT cw-dec
ECCT m-dec
RNN cw-dec
RNN m-dec
OSD 0,1,2
ML bound

(b) BCH (63,39).

Figure 3.14: Bit error rate comparison for two BCH codes of size n = 63 and k = {45, 39},
under a BPSK modulation scheme, employing the codeword-oriented approach (cw-dec) and
message-oriented (m-dec).

3.3. Experiments 69

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1 POLAR (128, 64)

Eb/N0 (dB)

B
E
R

codeword dec.
message dec.
SCL L = {1, 8, 32}
ML bound

Figure 3.15: Bit error rate comparison for a Polar code of size (128, 64) under a BPSK
modulation scheme. Both neural decoders are implemented using the ECCT.

3.3.2.3 Recurrent ECCT architecture

Let us now recall and evaluate the interest of the proposed r-ECCT architecture with respect
to the RNN and ECCT. We have seen in Section 3.2.3 that the RNN is, by far, the most
complex architecture in terms of the number of parameters needed to build the network.
Additionally, this number grows exponentially with the size of the code. This motivated the
application of the Transformer architecture of [Vas+17] to the model-free error correction
problem, giving rise to the ECCT in the work by Choukroun et al. in 2022 [CW22a]. A fixed
embedding dimension de = 128 and a number of encoders N = 10 —which are the values
used in the original work for the largest codes— yields a network composed of approximately
2 million parameters. For this reason, we proposed in Section 3.2.2 to take advantage of
the recurrent nature of the transformer-based architecture, using the same attention block
throughout the N iterations. We then saw in the complexity analysis that this reduces the
number of parameters by a factor equal to N , which is equal to 10 in our simulations. Hence,
the resulting network has approximately 200k parameters. In Figures 3.16 and 3.17, we can
see its interest, where the r-ECCT performs very similarly to the ECCT architecture with
only a tenth the number of parameters.

3.3.2.4 Sparsified parity-check matrix

For the final contribution on SBND for BPSK, we employed information theory-based metrics
to justify the interest of sparser versions of the parity-check matrix for the model-free decoding
approach. To better showcase the performance gains of this contribution, we selected a BCH
code of size (127, 64) for two main reasons: (i) it is large and difficult enough so that the
simulated decoders do not reach optimal performance (leaving room for improvement); and (ii)
its parity-check matrix is dense enough so that the sparsifying algorithm reduces significantly

70 Chapter 3. Syndrome-based neural decoding for BPSK

0 1 2 3 4 5 6 710−7

10−6

10−5

10−4

10−3

10−2

10−1

(63, 57)

(63, 51)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

(a) BCH (63,57) and BCH (63,51).

0 1 2 3 4 5 610−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

RNN
ECCT
r-ECCT
ML bound

(b) BCH (63,45).

Figure 3.16: Bit error rate comparison for three BCH codes of size n = 63 and k = {57, 51, 45},
under a BPSK modulation scheme.

0 1 2 3 4 5 6 710−6

10−5

10−4

10−3

10−2

10−1

(64, 48)(64, 22)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
SCL L = 8
ML bound

(a) Polar (64,48) and Polar (64,22).

0 1 2 3 4 5 6 710−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

RNN
ECCT
r-ECCT
SCL L = {1, 8}
ML bound

(b) Polar (64,32).

Figure 3.17: Bit error rate comparison for three Polar codes of size n = 64 and k = {48, 32, 22},
under a BPSK modulation scheme.

3.3. Experiments 71

its weight. Let us now recall the four parity-check matrices considered in Section 3.2.4:

1. The original parity-check matrix, taken from that channel code database of [Hel+19];

2. its standardized version, as per (1.12);

3. a randomized parity-check matrix, computed by applying several random linear combi-
nations over the original matrix’s rows and;

4. a sparsified matrix, obtained by applying Algorithm 2 to the standardized matrix.

The MPMI of each matrix is shown in Figure 3.11, where we can see that our proposed
sparsified matrix has the highest MPMI in essentially every position. We train the decoders
using the r-ECCT architecture and the message-oriented approach, for each of the considered
parity-check matrices. Results are shown in Figure 3.18, where we can observe that the
sparsified parity-check matrix shows significantly better results than the other considered
matrices.

3 4 5 6 7 810−6

10−5

10−4

10−3

10−2

10−1

BCH (127, 64)

Eb/N0 (dB)

B
E
R

Random - 50.23%
Original - 73.23%
Standard - 75.13%
Sparsified - 81.95%

Figure 3.18: Bit error rate comparison for a BCH code of size (127, 64) under a BPSK
modulation scheme, employing the r-ECCT architecture and the four considered matrices.
The sparsity of each matrix is also added in the legend.

Finally, Figure 3.19 shows a final comparison between previous solutions and our proposed
solution, which aggregates the message-oriented approach, the r-ECCT, and the sparsified
parity-check matrix. With these three elements, we are able to outperform the model-free
solutions of [BCK18a] and [CW22a] —that do not employ the message-oriented approach nor
optimize the parity-check matrix— while using only a small fraction of the total number of
network parameters3. Additionally, the BER of the model-based solution from [Nac+18] is
added for comparison (see Introduction), which includes a version using the regular parity-
check matrix from [Hel+19], and another decoder that employs the cycle-reduced parity-check
matrix based on [HC06].

3Better performances can be obtained if we are willing to increase the network’s size.

72 Chapter 3. Syndrome-based neural decoding for BPSK

3 4 5 6 7 810−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R

[Nac+18]
[Nac+18] + cycle-reduced
[BCK18a] - 20M weights
[CW22a] - 2M weights
Ours - 200k weights

Figure 3.19: Performance comparison between our proposed solution (with all considered
elements) and the previous solutions from [BCK18a; CW22a; Nac+18] for a BCH code of size
(127, 64) and a BPSK modulation.

Chapter 4

Application of SBND to
higher-order modulations

Contents
4.1 Preliminaries and problem statement 75

4.1.1 System model with BICM . 75
4.1.2 BICM equivalent channel model . 75

4.2 Model-free decoding for BICM . 77
4.2.1 Model-free decoding for BPSK and QPSK 77
4.2.2 Model-free decoding for higher-order BICM 78
4.2.3 Comparison with related works . 79

4.3 On the optimality of SBND for BICM 80
4.3.1 LLR expressions for 8-PSK and 16-QAM 80
4.3.2 Optimality for BICM scenario . 81
4.3.3 Training set design . 83

4.4 Experiments . 84
4.5 Discussion: SBND for a generic CM scenario 89

Thus far, we have discussed scalability as the main obstacle pertaining to neural-based de-
coders for realistic applications. In response, the model-free approach —which we denoted as
Syndrome-Based Neural Decoding (SBND)— was presented in detail in Chapter 3. Therein,
we revisited the decoding framework from a previous work [BCK18a] and proposed a series
of contributions that aim to increase performance while reducing the overall decoder’s com-
plexity. The main idea behind the SBND is to produce a symmetric decoder that does not
depend on the codeword and can thus be trained with a unique codeword, without having
to explore the entirety of a codeword space of size 2k for a k-dimensional code. Although
this provides us with a very promising framework, this system relies extensively, hitherto, on
the properties of BPSK, and can be easily extended to QPSK. However, in order to allow
for practical implementations, SBND has to be extended to higher-order modulations such as
M -QAM andM -PSK for arbitraryM . In this Chapter, we propose an extension of the SBND
that can be directly applied to such linear modulation techniques. More particularly, we focus
on Bit-Interleaved Coded Modulations (BICM) [Alv08; CTB98] which, unlike classical coded

73

74 Chapter 4. Application of SBND to higher-order modulations

modulation schemes, present the advantages of allowing the usage of any FEC code designed
for memoryless channels, and of being more robust to burst errors.

In contrast to the proposed decoder of Chapter 3, which exploited the real and symmetric
nature of the BPSK modulation, when employing higher-order modulations, the statistical
properties of the received signal (e.g., the probability of a bitflip) vary depending on the
transmitted symbol, which may be more prone to certain errors in certain positions. For this
reason, BICM are adopted in order to regain the necessary symmetry properties to be able to
prove the model-free decoder’s optimality. We propose a decoding framework that uses the
bit Log-Likelihood Ratios (bit-LLR) as input and a bit-interleaver to break the asymmetries
between positions in the symbols.

The contributions in this Chapter can be classified as follows:

(i) We propose an SBND that extends the system from Chapter 3 to the case of higher-
order BICM, maintaining the message-oriented approach therein presented. For this,
we first characterize the equivalent channel between the transmitted codewords c and
the received LLRs l under a BICM scenario, using results from the literature [Alv08;
CTB98].

(ii) We prove the optimality of the proposed system, highlighting the differences and lim-
itations with respect to the BPSK-specific decoder of Chapter 3, namely the training
set design and the loss of the single-codeword training property.

(iii) We evaluate the performance of the proposed decoder employing the main architectures
from the literature (i.e., RNN and ECCT), along with our proposed architecture from
Chapter 3 (i.e., the r-ECCT).

(iv) Finally, we include a discussion on generic Coded Modulations (CM), their difference
pertaining to the model-free approach, and the limitations they impose.

The main difference between higher-order modulations and BPSK/QPSK is that the de-
coder is not directly fed with the channel output, but rather with bit-LLRs produced by
the soft demodulator as per (1.21). Hence, in order to design an SBND for the BICM set-
ting, we first start by introducing the BICM system layout and characterizing the channel
induced by the bit-LLRs for two common modulation schemes. Next, we propose an SBND
that extends the system from Chapter 3 to the case of higher-order BICM, maintaining the
message-oriented approach therein presented. Finally, we analyze the performance of the main
considered architectures for the neural-based decoders, namely, RNN, ECCT, and r-ECCT.

The work in this Chapter can be found in [DeB+24c] and [DeB+24d].

4.1. Preliminaries and problem statement 75

4.1 Preliminaries and problem statement

In this section, we offer an overview of the system model, along with an equivalent model
for BICM and the resulting posterior distribution, which will be employed in the following
sections.

4.1.1 System model with BICM

Let us start by introducing the BICM framework depicted in Figure 4.1. As before, a random
source generates binary data in frames of length k —referred to as message and noted by
u—, assumed independent and uniformly distributed. This message is then mapped to an
n-bit codeword c through a linear FEC code defined by a generator matrix G of size k × n,
such that c = GTu. Then, a perfectly random interleaver Π, assumed to be known to the
receiver as well, shuffles the bits of c into an n-bit sequence c̃. The bit-interleaved codeword
is finally mapped through a linear modulation scheme of order m, such as PSK or QAM, that
yields a modulated codeword x ∈ Cn′ of length n′ = n/m. The channel introduces an AWGN
w ∼ CN (0, σ2In′), such that the received signal is expressed as follows:

y = x+w. (4.1)

On reception, a demodulator first computes a real-valued vector containing the n LLRs of
the transmitted codeword c̃ defined by:

l̃i(ydi/me) = log

PYdi/me|C̃i(ydi/me|0)
PYdi/me|C̃i(ydi/me|1)

 , (4.2)

where y = (y1, ..., yn′) is the complex-valued received signal. The resulting bit-LLRs are then
de-interleaved back to the original bit order. This yields the vector l = (l1, l2, . . . , ln) that
is then fed to the decoder to return an estimation û = g(l) of the originally transmitted
message. As stated in Section 1.3.1, the decoding problem consists in designing a decoder
g(·) to minimize the BEP defined as in (1.27). The computation of the optimal decoding rule
(see Section 1.3.1) requires the computation of the k posterior distributions PUi|L ∀ i ∈ [1 :
k], entailing each one a marginalization over 2k−1 sequences (u1, ..., ui−1, ui+1, ..., uk). This
engenders exponential complexity and renders the bit-MAP decoder too complex for real-time
implementation even for short codes, and simply intractable for larger codes. In this Chapter,
we undertake the design of quasi-optimal and low complexity decoding rules g(·) which are
based on deep learning techniques.

4.1.2 BICM equivalent channel model

In order to derive optimal decoders for the BICM scenario under investigation, let us char-
acterize the effective channel relating each of the transmitted codewords c to the received

76 Chapter 4. Application of SBND to higher-order modulations

Encoder Π Mod.
order m + Demod. Π−1 Decoder

g(·)
u c c̃ x

w

y l̃ l û

Figure 4.1: General system model for BICM.

LLR l, namely the BICM equivalent channel model. Using results from the literature [Alv08;
CTB98], the BICM channel depicted in Figure 4.2 can be characterized as a memoryless
channel experienced equally by all of the coded bits. It consists of a mixture of the channels
seen by each bit-position s ∈ [1 : m] in the labeling of the constellation. More formally, the
equivalent BICM channel is given in the following lemma.

Classical BICM

c

P 1
Y |C f1(·)

PmY |C fm(·)

... ...

PS

y

y

l

s s

Figure 4.2: BICM channel model extended to bit-LLRs.

Lemma 4.1 (BICM channel model [Alv08; CTB98]). An equivalent channel distribution of
a BICM scenario writes for y ∈ Cn′, l ∈ Rn, and c ∈ {0, 1}n as:

PL|C(l|c) =
n∏
i=1

PL|C(li|ci), (4.3)

where the distribution PL|C is given by:

PL|C(l|c) = 1
m|X sc |

m∑
s=1

∑
x∈X sc

PLs|X(l|x), (4.4)

and X sc is the set of symbols for which their s-th bit equals c (0 or 1). The distribution PLs|X
can be obtained from PY |X , Ls being a deterministic function of Y .

Proof. The proofs can be found in [Alv08, Section 3.4] and follow from the fact that the
equivalent channel relating c to y is memoryless, i.e.,

PY |C(y|c) =
n∏
i=1

PY |C(ybi/mc|ci), (4.5)

4.2. Model-free decoding for BICM 77

where
PY |C(y|c) = 1

m|X sc |

m∑
s=1

∑
x∈X sc

PY |X(y|x), (4.6)

and PY |X is the noisy channel probability distribution.

In this work, we will not seek a closed-form expression of the BICM equivalent channel
distribution PL|C . However, the equivalent channel model will prove useful to analyze the
optimality of our proposed decoder in Section 4.3.

4.2 Model-free decoding for BICM

In the following, we propose a model-free decoder for higher-order modulations under a BICM
scenario. To this end, we start by recalling the principle of model-free decoding, then present
the structure of the proposed decoder and compare it to the existing state of the art.

4.2.1 Model-free decoding for BPSK and QPSK

The model-free decoder introduced in [BCK18a] consists of two main ideas, namely estimating
bitflips in the received noisy codewords and identifying sufficient statistics to do so.

To this end, a pre-processing stage is added before the decoder, where the received BPSK
signal y is divided into its absolute value |y| and its syndrome s, defined as:

s = Hyb, (4.7)

where H denotes the parity-check matrix of the code, yb represents the hard decision associ-
ated with the received signal y. Observe that yb = c⊕ eb where c indicates the transmitted
binary codeword and eb is a vector containing ones in the flipped positions and zeros every-
where else —also referred to as the bitflip pattern. Authors in [BCK18a] proved that the two
elements (Hyb, |y|) are sufficient statistics for the optimal estimation of the bitflip pattern eb
and are, by definition, independent of the transmitted codeword c when employing a BPSK
modulation. A schematic representation of this decoding paradigm is shown in Figure 4.3.
This implies that (i) optimal decoding can be achieved with this framework, and (ii) training
can be carried out using noisy observations of a single codeword.

Traditional
Decoder ≈ Model-free

Decoder
y û

Hyb

|y|
êb

Figure 4.3: Equivalence between traditional decoding (left) and the model-free approach
(right) as presented in [BCK18a] for a BPSK modulation scheme. The estimated bitflip
pattern êb is used to correct the hard-decision vector yb.

78 Chapter 4. Application of SBND to higher-order modulations

Although originally designed for a BPSK modulation, the extension of the results of
[BCK18a] to a QPSK scenario can be done readily by decomposing y into its real and imag-
inary parts (Re(y), Im(y)), and then extracting the absolute value and syndrome associated
with the serial concatenation of both the real and imaginary components.

4.2.2 Model-free decoding for higher-order BICM

In this section, we present our proposed model-free decoder for higher-order modulations,
which is an extension of the decoding framework of Chapter 3. To this end, we suggest
using the decoding architecture of Figure 4.4. Let C be an (n, k) linear block code defined
by its generator and parity-check matrices G and H, respectively, and let lb denote the hard
decisions associated with the deinterleaved LLR vector l. The proposed decoder maps each
received LLR sequence l into an estimate of the original message û as follows:

(i) The deinterleaved LLR sequence l delivered by the demodulator undergoes a pre-
processing stage that extracts the syndrome of its associated hard decisions (i.e., Hlb),
and the absolute value of each component (i.e., |l|), also referred to as reliabilities.

(ii) A primary estimate of the message ũ is then obtained through the pseudo-inverse of
the LLR hard decisions lb as follows:

ũ , pinv(lb), (4.8)

where pinv(·) corresponds to a pseudo-inverse of the code C such that, for every valid
codeword c = GTu, it holds that pinv(c) = u. Observe that if a realization of the LLR
vector has suffered a sign change, i.e., lb 6= c, then the auxiliary message sequence ũ
might also contain errors. Observe also that, in the special case of a systematic code
where the first k bits in the codeword correspond to the information bits, a simple
pseudo-inverse corresponds to extracting the systematic bits, i.e., pinv(c) = Ac where:

A =
[
Ik |0k,n−k

]
. (4.9)

(iii) The two inputs (|l|, Hlb) are fed to the message bitflip estimator, which outputs a vector
êu with positive values in positions where a bitflip occurred in ũ and negative values
otherwise. The bin(·) operation converts the real values into binary as follows:

êbu = bin(êu) , 1
(
êu,i > 0

)
1≤i≤k. (4.10)

(iv) Finally, êbu is used to correct ũ of (4.8) and obtain the estimated message û = ũ⊕ êbu.

This decoding layout is also referred to as SBND, as in Chapter 3. This is because even if
bit-interleaving is added to regain the necessary symmetry properties, the decoder’s structure
remains essentially the same as before, and this version can be straightforwardly applied to

4.2. Model-free decoding for BICM 79

the BPSK scenario. It is worth mentioning that the design and training of the message bitflip
estimator will be tackled in the upcoming sections.

bin

abs

H Message
bitflip

estimator
bin +

pinv

l

lb Hlb

|l|

êu êbu
ĉ

ũ

Figure 4.4: Proposed architecture for the channel decoder in a BICM scenario. No assumption
has been made so far regarding the implementation of the bitflip estimator.

4.2.3 Comparison with related works

The hereinbefore proposed decoder, which extends the framework proposed in Chapter 3
to admit higher-order modulations, improves on that in previous works [BCK18a; CW22a;
CW23; KP20; Par+23] in three different aspects.

First, it exploits the previous improvement suggested in Chapter 3 seeking to estimate
the bitflips induced by the channel on the message bits u instead of on the whole codeword c.
The improvements entailed by this feature are two-fold. On the one side, since the objective
function to be optimized is the BEP defined as per (1.27), restricting the loss function to
the message u instead of the whole codeword c allows to disregard error events on the n− k
parity bits and reduces the decision space dimension from n to k. On the other side, the
present decoder structure discards error events in which the obtained denoised codeword is
not a valid codeword, i.e., does not belong to the code.

Second, as in Chapter 3, the proposed decoder is directly applicable to non-systematic
codes, without the need to apply a linear transformation to obtain the estimated message û
from the estimated codeword ĉ. The pseudo-inverse introduced in the proposed decoder is
such that the neural network estimates the bitflips present in an artificial variable that has
already addressed the codeword-to-message operation.

Third, the proposed decoder generalizes the structures of previous works [BCK18a;
CW22a; CW23; KP20; Par+23] and Chapter 3 from a BPSK-specific decoding system to
a decoder suited for arbitrary higher-order modulations by considering the LLR vector l in-
stead of the received noisy symbols y. This is the aspect studied in this Chapter. As we show
in Section 4.3, the proposed decoder can achieve optimal decoding for the BICM scenario in
the sense that it can approximate the MAP decoder. However, the theoretical analysis of the
proposed decoder is more involved than in the case of a BPSK modulation scheme.

80 Chapter 4. Application of SBND to higher-order modulations

4.3 On the optimality of SBND for BICM

In the following, we prove that the suggested decoder can allow us to approximate the MAP
criterion for the specific case of BICM. Besides, we discuss the design of the training dataset
and derive a training strategy for the message bitflip estimator of the decoder. It is worth
mentioning that, for space limitations, we perform the analysis only for the 8-PSK and 16-
QAM constellations depicted in Figure 4.5. However, the analysis can be carried out similarly
for arbitrary M -PSK and M -QAM with Gray-labelling.

<

=

001011

010

110

111 101

100

000
x0

x1x2
x3

x4
x5 x6

x7
<

=

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

0010 0110 1110 1010

x0 x4 x8 x12

x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

Figure 4.5: Constellations for 8-PSK (left) and 16-QAM (right) modulation schemes.

4.3.1 LLR expressions for 8-PSK and 16-QAM

Since the proposed decoder is based on the received LLR, let us start by giving approximate
closed-form expressions of the received LLRs as a function of the received signal y, for every
bit position of the constellation. The closed-form expressions hereafter are based on the
approximate LLRs that are obtained as follows. Let s ∈ [1 : m] be the index of a bit position
in the constellation labeling and let y be a received noisy symbol. We can write that

ls(y) = log
(∑
x∈X s0

PY |X(y|x)
)
− log

(∑
x∈X s1

PY |X(y|x))
)

(4.11)

≈ log
(

max
x∈X s0

PY |X(y|x)
)
− log

(
max
x∈X s1

PY |X(y|x)
)

(4.12)

= 1
σ2
(

min
x∈X s1

||y − x||2 − min
x∈X s0

||y − x||2
)

(4.13)

= γ
(

min
x∈X s1

||y − x||2 − min
x∈X s0

||y − x||2
)
, (4.14)

where X s0 (resp. X s1) is the set of symbols of the constellation for which the s-th bit is equal
to 0 (resp. to 1), and where γ , 1/σ2. Note that these approximate LLR expressions are tight
for moderate to high SNRs.

4.3. On the optimality of SBND for BICM 81

Lemma 4.2 (LLRs of an 8-PSK with Gray labeling). Under the Gray mapping of Figure
4.5, the approximate LLRs for each of the three bit-positions of an 8-PSK are given by:

l1(y) =

4γαIm(y) if |Im(y)| ≤ |Re(y)|
2
√

2γ sign(Im(y)) (β|Im(y)| − α|Re(y)|) else,

l2(y) =

4γαRe(y) if |Re(y)| ≤ |Im(y)|
2
√

2γ sign(Re(y)) (β|Re(y)| − α|Im(y)|) else,

l3(y) = 2γ(β − α)(|Im(y)| − |Re(y)|),

where α , sin(π/8) and β , cos(π/8).

Proof. The proof is given in Appendix C.1.1.

Lemma 4.3 (LLRs of a 16-QAM with Gray labeling). As for the 16-QAM, under the Gray
labeling of Figure 4.5, the approximate LLRs for each of the four bit-positions are given by:

l1(y) =

−2γdRe(y) if |Re(y)| ≤ d
−2γd sign(Re(y)) (2|Re(y)| − d) else,

(4.15)

l3(y) =

2γdIm(y) if |Im(y)| ≤ d
2γd sign(Im(y)) (2|Im(y)| − d) else,

(4.16)

l2(y) = 2γd(|Re(y)| − d), (4.17)
l4(y) = 2γd(|Im(y)| − d), (4.18)

where d is the minimum distance of the constellation and is given by d =
√

2/5.

Proof. The proof is given in Appendix C.1.2.

The expressions herebefore stated will allow us to characterize each of the channels relating
the reliabilities |l| and hard LLRs lb to the transmitted codewords c, which is crucial to analyze
the optimality of the decoder and justify the design of the training set of codewords.

4.3.2 Optimality for BICM scenario

In the following, we seek to show that for the BICM scenario, provided that the message bitflip
estimator of Figure 4.4 is properly designed, the proposed decoder can achieve performances
that are close to the MAP decoder.

In order to prove that the proposed decoder is optimal for the BICM scenario, we need
to characterize the channel distribution PLb|C . To this end, let us consider the 16-QAM and
8-PSK constellations with Gray labeling shown in Figure 4.5. The following result allows us
to characterize the channel PLb|C .

82 Chapter 4. Application of SBND to higher-order modulations

Theorem 4.1 (Bit-LLRs binary channel model). For all lb, c ∈ {0, 1}n, the following holds:

PLb|C(lb|c) =
n∏
i=1

PLb|C(lbi |ci). (4.19)

Besides, for the 8-PSK and 16-QAM under Gray labeling, the channel PLb|C can be approxi-
mated by:

Lb = C ⊕Eb s.t. Eb i.i.d∼ Bern(q), (4.20)

where Eb is independent of C and q , 1
m

m∑
s=1

PLbs|C(1|0).

Proof. The detailed proof is relegated to Appendix C.2, yet, an outline of the proof is given
below. First, by Lemma 4.1, the channel PL|C is memoryless, hence, the channel PLb|C is
also memoryless. Next, given the LLR expressions in Lemmas 4.2 and 4.3, then PLb|C(1|0) =
PLb|C(0|1) (for all SNR for the 8-PSK, and for intermediate to high SNR for 16-QAM). This
allows us to state that the binary channel relating C to Lb can be approximated with a Binary
Symmetric Channel (BSC) and, therefore, admits an equivalent additive binary noise model
as in (4.20).

Note that, unlike the involved proof needed for higher-order modulations, this Lemma
can be proved easily for BPSK and extended to QPSK modulations recovering the results of
Chapter 3.

Having characterized the binary channel relating C to Lb as a memoryless BSC, we state
the main result that proves the optimality of the proposed decoder for the BICM case.

Theorem 4.2 (Sufficient statistics). Considering the BICM scenario, and the result of The-
orem 4.1, then for all ebu ∈ {0, 1}k and l ∈ Rn, we have that:

PEbu|L(ebu|l) = PEbu| |L|,HLb(e
b
u| |l|, Hlb). (4.21)

Hence, it follows that:

PEbu,i|L
(ebu,i|l) = PEbu,i| |L|,HL

b(ebu,i| |l|, Hlb). (4.22)

Proof. The proof is relegated to Appendix C.3.

This result allows us to state that, in the case of BICM, the posterior distribution of the
message bitflips ebu given the received LLR l is indeed equal to the posterior distribution of
the bitflips ebu given only the reliabilities and syndrome (|l|, Hlb). As such, the quantities
(|l|, Hlb) offer sufficient statistics for estimating ebu. Thus, provided that the message bitflip
estimator yields a good approximation of the posterior distribution PEbu| |L|,HLb , the proposed
decoder will be close to the optimal.

4.3. On the optimality of SBND for BICM 83

4.3.3 Training set design

The performance of the proposed decoder depends on the capacity of the message bitflip
estimator in Figure 4.4 to yield a good approximation of the posterior distribution PEbu| |L|,HLb ,
or rather the argmax of said posterior. In this work, we choose to implement the message
bitflip estimator using neural networks since they are well-known and powerful universal
approximators [HSW89]. The training loss is set to be the binary cross-entropy which will
further ensure that the soft output of the neural network converges to the desired posterior
distribution, provided that the training dataset is properly designed to prevent overfitting.

Let us now analyze the design of the training dataset. A key implication of the result of
Theorem 4.2 when applied to the case of low-order constellations, namely BPSK and QPSK,
is that the quantities |l| and Hlb are invariant to the transmitted codewords c, reducing
thus the training set to only one codeword c (for instance the all-zero codeword) as shown
in Chapter 3. This feature is key to the scaling capability of syndrome-based decoders for
BPSK and QPSK since it alleviates the necessity to train over the whole set of all 2k possible
codewords c.

For higher-order modulations such as the 8-PSK and 16-QAM, while the syndrome Hlb
is independent of the transmitted codeword c in a BICM scenario, the reliabilities |l| are not
—they depend on the transmitted symbols x. However, some invariances can be identified,
which will allow for the reduction of the training dataset to fewer codewords than the whole
codebook. The following result describes the invariances of these reliabilities.

Lemma 4.4 (Invariances of the reliabilities |l|). Let y ∈ C be a noisy received symbol such that
y = x+w where x is the transmitted symbol in a given constellation and w is a realization of
a CN (0, σ2I2) AWGN. Given the LLR formulae in Lemmas 4.2 and 4.3, the following holds.

1) For the 8-PSK of Figure 4.5 and all s ∈ [1 : m], there exists a realization of the AWGN
w′ such that PW (w) = PW (w′) and

|ls(y)| = |ls(x0 + w′)| or |ls(y)| = |ls(x1 + w′)|, (4.23)

where x0 and x1 are as depicted in Figure 4.5.

2) Similarly, for the 16-QAM constellation of Figure 4.5 and all s ∈ [1 : m], there exists a
realization of the AWGN w′ such that PW (w) = PW (w′) and

|ls(y)| = |ls(x0 + w′)|
or |ls(y)| = |ls(x1 + w′)|
or |ls(y)| = |ls(x4 + w′)|, (4.24)

where x0, x1, x4 are as depicted in Figure 4.5.

Proof. The proof is relegated to Appendix C.4.

84 Chapter 4. Application of SBND to higher-order modulations

The main implication of this result is that, although the reliabilities |ls(y)| depend on the
transmitted symbol x, they have inherent symmetries that allow all possible values of |ls(y)|
to be readily observed from only a reduced set of representative symbols (for instance x0 and
x1 for the 8-PSK) with the same probability.

In the absence of the linear block code, i.e. k = n, the present result allows to reduce the
set of all possible training symbol sequences x from 8n′ to 2n′ for the 8-PSK, and from 16n′ to
3n′ for the 16-QAM, which reduces greatly the number of symbol sequences to be seen during
training. However, the gain in the case of a (n, k) linear block code is more challenging to
assess analytically due to the intricate dependence on the code structure as not all symbol
sequences x are possible.

Yet, in light of this result, we can readily infer that the choice of the all-zero codeword
training strategy would allow us to see only one statistic of the reliabilities |ls| throughout the
training (that of x0 for the 8-PSK for instance), which would lead eventually to overfitting.
A first improvement of this strategy would consist in selecting a unique training codeword
constrained to a Hamming weight as close as possible to n/2. This would allow us to see, at
each bit position i, more possible statistics of the reliabilities |ls|. In the following numerical
simulations, we will employ a randomly generated batch of codewords at each training epoch,
which ensures a maximum variety of reliability combinations for each bit position. Nonethe-
less, with respect to the code lengths we employ during the simulations (n ≥ 63), the number
of codewords transmitted during training is but a negligible fraction of the total number of
possible codewords.

4.4 Experiments

Code Rate Mod. Training Eb/N0 RNN ECCT r-ECCT

BCH (63, 57) 0.90

8-PSK

6dB
α = 5
dl = 5

b.s. = 212

de = 128
N = 10
b.s. = 28

de = 128
N = 10
b.s. = 29

BCH (63, 51) 0.81

BCH (63, 45) 0.71
5dB

BCH (63, 39) 0.62

Polar (64, 48) 0.75

16-QAM

6dB

α = 5
dl = 5

b.s. = 212

de = 128
N = 10
b.s. = 28

de = 128
N = 10
b.s. = 29

Polar (64, 32) 0.50
5dB

Polar (64, 22) 0.34

Polar (128, 96) 0.75 6dB

Polar (128, 64) 0.50 5dB

Table 4.1: Summary of the hyperparameters used in each simulated scenario, along with the
approximate number of weights that configure each NN architecture.

In this section, we present the decoding performance of our proposed decoder from Section

4.4. Experiments 85

4.2.2 with two different families of codes, namely BCH and Polar codes, each with different
sizes and code rates. To this end, we implement the three main architectures from Sections
3.1.5 and 3.2.2 of Chapter 3 (namely, RNN, ECCT and r-ECCT) using TensorFlow [Mar+15]
along with the Keras API [Cho+15]. We resort to the binary cross-entropy as a training loss
function defined for e = {ei}1≤i≤k and ê = {êi}1≤i≤k as follows:

LBCE(e, ê) =
k∑
i=1

(
eilog(êi) + (1− ei)log(1− êi)

)
, (4.25)

where e is conventionally the true value (or ground truth) and ê denotes the NN-estimated
value. As for the input vector of the NN, i.e., (|l|, Hlb), we normalize the reliabilities |l| by
multiplying them by a factor of σ2 to render the input range less dependent on the SNR.
We observed that this normalization operation yields a better generalization capability of the
message bitflip estimator for a wide range of SNRs, and does not carry any further knowledge
assumption as σ2 is already considered known to the demodulator. Regarding the output of
the NN, we fix the last dense layer of every architecture to be linear to mimic LLR values.
As such, a sigmoid function is applied to the estimators’ outputs before computing the binary
cross-entropy loss. Another possibility would be to select the sigmoid as the final activation
function and use a 1/2-threshold to convert to the binary domain. For reproducibility, the
architecture and training hyperparameters employed are summarized in Table 4.1, and a
complexity summary is presented in Table 4.2.

Figures 4.6 and 4.7 display the BER performances of several BCH codes using an 8-
PSK modulation scheme. The SBND approach of section 4.2 is implemented using the three
studied architectures. As a lower bound on the BER of the proposed decoder, the ML bound
of Section 1.4.3 is derived as in [TV11], using an OSD [FL95] of sufficiently high order (2 or 3,
depending on the code), through the following process. Whenever a decoding failure occurs
for the OSD, we assess whether the decoded codeword is more likely than the transmitted one.
Should this be the case, it implies that even an ML decoder would have produced a decoding
error. This algorithm yields a lower bound on the error probability, yet in our scenarios, it
closely aligns with the performance of the OSD when a sufficiently high order is selected.

For the BCH (63, 57) and (63, 51), all architectures displayed optimal and close-to-optimal
decoding performances, respectively. Across all cases, particularly for the most challenging
codes, such as BCH (63, 45) and (63, 39), the RNN-based architecture exhibited the best
decoding performance, closely approaching that of the ML decoder for the considered codes.
However, as discussed in Section 3.2.3, this architecture is also the most complex since its
number of parameters increases with the input size 2n−k. The hyperparameters of the ECCT
were fixed across all codes to maintain a constant number of weights, with a batch size set to
28. As for the proposed architecture, the r-ECCT outperformes the ECCT when applied to
lower rate codes, while employing only 10% of the total number of weights. This improvement
can be partially attributed to the smaller architecture, which allows for an increase in the
training batch size to 29, enabling a more precise gradient calculation.

Figure 4.8 shows the BER performances of each architecture for three Polar codes with

86 Chapter 4. Application of SBND to higher-order modulations

Code WRNN WECCT Wr-ECCT

BCH (63, 57) 3.3M

2M 200k
BCH (63, 51) 3.9M

BCH (63, 45) 4.5M

BCH (63, 39) 5.2M

Polar(64, 48) 4.4M

2M 200k
Polar (64, 32) 6.4M

Polar (64, 22) 7.8M

Polar (128, 96) 17.8M

Polar (128, 64) 25.5M

Table 4.2: Summary of the hyperparameters used in each simulated scenario, along with the
approximate number of weights that configure each NN architecture.

3 4 5 6 7 8 9 10 1110−7

10−6

10−5

10−4

10−3

10−2

10−1

(63, 57)

(63, 51)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

Figure 4.6: BER comparison for two BCH codes of sizes (63, 57) (dashed lines) and (63, 51)
(solid lines) and an 8-PSK modulation scheme using the SBND, employing the three consid-
ered architectures. The ML curve was computed using an OSD of order 2.

4.4. Experiments 87

3 4 5 6 7 8 9 1010−7

10−6

10−5

10−4

10−3

10−2

10−1

(63, 45)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

(a) BCH (63, 45).

3 4 5 6 7 8 9 10

(63, 39)

Eb/N0 (dB)

RNN
ECCT
r-ECCT
ML bound

(b) BCH (63, 39).

Figure 4.7: BER comparison for two BCH codes using an 8-PSK modulation scheme, em-
ploying the three considered architectures. The ML decoder curves were computed using an
OSD of order 3.

n = 64 and k = {48, 32, 22}, employing a 16-QAM modulation scheme. In this case, even
though the lower-rate codes are harder for the network to learn, the performances of the NN
decoders are considerably closer to those of the ML decoder than those of the BCH. Due to
its high-density nature, the latter code is usually considered harder for deep learning-based
solutions [BCK18a; CW22a; NBB16; NW21]. Hence, it can be observed that the SBND
approach applied to Polar codes displays error rates closer to the ML decoder. For this
reason, Figure 4.9 exhibits the BER performances of two larger Polar codes, of sizes (128, 96)
and (128, 64). As in the previous examples, for the same value of n, higher-rate codes are
more easily learnable by the SBND, with the three architectures producing very similar error
curves that approach the ML decoder for the Polar (128, 96). With k = 64, however, a larger
gap appears between the optimal decoder and the SBND.

Last but not least, we analyze in Figure 4.10 the effect of the training dataset design
—in the light of the analysis of Section 4.3.3— by comparing three training dataset design
strategies: (i) the common all-zero codeword training strategy of [BCK18a] and Chapter 3; (ii)
a codeword with Hamming weight equal to n/2 termed equilibrated codeword; and (iii) random
codeword generation for every sample. It can be seen that, as expected, the all-zero codeword
is detrimental to the learning capability of the NN, while the equilibrated codeword allows
it to achieve satisfactory performances. However, the better strategy remains the random
codeword generation, and as such, was adopted through the numerical analysis herebefore.

88 Chapter 4. Application of SBND to higher-order modulations

3 4 5 6 7 8 9 10 1110−7

10−6

10−5

10−4

10−3

10−2

10−1

(64, 48)(64, 32)

(64, 22)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

Figure 4.8: BER comparison for three Polar codes of sizes (64, 48) (dash-dotted lines), (64, 32)
(solid lines), and (64, 22) (dashed lines), and a 16-QAM modulation scheme, employing the
three considered architectures. The MLB curve was computed using an OSD of order 3.

3 4 5 6 7 8 910−6

10−5

10−4

10−3

10−2

10−1

(128, 96)(128, 64)

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

Figure 4.9: BER comparison for two Polar codes of sizes (128, 96) (dashed lines) and (128, 64)
(solid lines), and a 16-QAMmodulation scheme, employing the three considered architectures.
The MLB curve was computed using an OSD of sufficiently high order.

4.5. Discussion: SBND for a generic CM scenario 89

3 4 5 6 7 8 9 1010−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R

all-zero codeword
equilibrated codeword
random generation
ML bound

Figure 4.10: BER comparison for a Polar code of size (64, 32) using a 16-QAM modulation
and an RNN architecture. For training, the three considered types of codeword generation
were employed.

4.5 Discussion: SBND for a generic CM scenario

Throughout the present Chapter, the BICM scenario has been extensively investigated, both
analytically and numerically. However, under a generic CM scenario, the channel relating
the codeword c to the received LLRs l is no longer fully memoryless in that: (i) each of the
coded bits ci experiences a different channel statistic that depends on its position s ∈ [1 : m]
in the labeling of the constellation; and (ii) the channels experienced by each of the bits
ci , (cdi/me, · · · , cdi/me+m−1) corresponding to the same symbol xdi/me are no longer parallel
and independent as in Figure 4.2. As such, (4.3) writes as

PL|C(l|c) =
n′∏
i=1

PL1,...,Lm|C1,...,Cm(li|ci), (4.26)

where li , (ldi/me, · · · , ldi/me+m−1). Hence, the results of Theorems 4.1 and 4.2 do not hold
anymore, rendering the proposed decoder suboptimal with respect to the MAP rule in (1.36).
This feature, however, is frequent in other decoding algorithms that rely uniquely on the
reliabilities and syndrome of the received LLRs values to produce an estimate of the message
bits, such as the LLR-based OSD [FL95], or an estimate of the message bitflips such as
ORB-GRAND [DAM22].

Figure 4.11 shows the performance comparison of the proposed decoder for a BICM and
generic CM scenarios under an 8-PSK modulation scheme. Therein, we can observe that
final performances are practically equivalent between both settings. Although we cannot
prove analytically that the proposed decoder approaches the MAP decoder for a generic CM
scenario, as we were able to do with the mathematical model of BICM, it still allows for
competitive performances with existing decoders (e.g., OSD) that consider the same inputs

90 Chapter 4. Application of SBND to higher-order modulations

(reliabilities and syndrome).

3 4 5 6 7 8 9 1010−7

10−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 (dB)

B
E
R

RNN
ECCT
r-ECCT
ML bound

Figure 4.11: BER comparison for a BCH code of size (63, 45) and an 8-PSK modulation
scheme, employing the three considered architectures. Solid lines denote the BICM scenario,
whereas dashed lines represent the generic, non-interleaved CM layout.

Conclusion and future work

Synthesis of the work

In this Ph.D. thesis, we have explored machine learning-based solutions for channel decoding,
which constitutes a critical area in next-generation communication systems, such as Machine-
to-Machine (M2M) type communications. In this scenario, we seek ultra-reliable low-latency
communications (URLLC), which call for shorter block lengths than those used in other
applications. Classical decoding methods often rely on asymptotic behavior and fail to provide
optimal solutions for short block lengths, and optimal decoders are usually very complex. At
the same time, data-driven solutions rapidly meet the scalability problem, where codes with
block lengths larger than a few tens of bits involve intractably large neural-based architectures
and training. This work undertakes this problem, proposing solutions to take a step further
toward realistic implementations of low-complexity and competitive machine learning-based
decoders.

After providing the reader with a brief introduction to channel coding and linear modula-
tions in Chapter 1, we presented Support Vector Machines (SVM) in Chapter 2 and introduced
a novel bit-wise approach, which greatly reduces the decoder’s complexity compared to previ-
ous SVM-based solutions. We further developed our study to prove the equivalence between
the proposed decoder and the Maximum Likelihood (ML) decoder under an Additive White
Gaussian Noise (AWGN) channel. Simulations over short BCH and Polar codes verify our
findings and the importance of properly selecting the optimization hyperparameters.

In Chapter 3, we presented a novel message-oriented decoding framework that builds upon
previous works and employs Neural Networks (NN) to estimate the positions in the message
that suffered bitflips. This approach gained popularity in the past few years due to its scala-
bility properties, as the decoder can be fully trained on a single codeword (for example, the
all-zero codeword). Our approach’s novelty lies in its focus on the information bits rather
than the entire codeword, which translates into a significant performance improvement and
direct applicability to non-systematic codes. Next, we confronted the network size problem
by presenting a low-complexity version of an existing transformer-based architecture, which
maintains performances with only a fraction of the number of weights. Finally, we addressed
a previously unexplored area by conducting a study using information theory-based metrics
to analyze the impact of the parity-check matrix on the decoder’s training and performance.
We proposed an algorithm that adapts the parity-check matrix accordingly, which results in
significant performance improvement and smoother training, without employing any addi-
tional computational power in decoding. All the results are supported by specific simulations
addressing each contribution separately.

In Chapter 4, we adapted the decoding framework of the previous Chapter —which is
specific to Binary Phase-Shift Keying (BPSK)— to make it applicable to higher-order mod-

91

92 Conclusion

ulations, such as Phase-Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM).
For this purpose, we resorted to Bit-Interleaved Coded Modulations (BICM) to regain the
necessary symmetry properties to analytically prove the decoder’s optimality. The same con-
tributions from the previous Chapter were included in this study. Even though we lost the
single-codeword training property, a discussion on the training set is carried out, and the sim-
ulations, including various Polar and BCH codes, corroborate the decoder’s performance and
scalability properties.

Perspectives

Since the interest in machine learning applied to channel coding was renewed less than ten
years ago [BCK18a; Gru+17; NBB16], the related research has consistently pushed the bound-
aries of high-performance and low-complexity decoders. In this thesis, we have attempted to
do the same. Additionally, we identified the following research axes that were not included
in this thesis, and could be explored in subsequent studies.

SVM training set reduction. Even if our proposed solution has the lowest complexity
compared to those in previous works, the dataset size still carries an exponential growth,
as the SVM classifier needs at least one sample for every possible codeword to produce the
decision functions. SVMs have the property of only employing a small subset of the training
samples —the so-called support vectors— to decide whether a sample belongs to a class or
not. This property could be capitalized to reduce the training dataset to only the necessary
codewords. Future studies may consider exploiting the structure of the error correction code
in order to generate an SVM-based decoder that does not need a dataset composed of all the
different codewords, but rather a small subset that may vary for every bit position.

Model-free and model-base convergence. The main difference between the two
scalable neural-based approaches lies in the fact that the model-based network architecture
is specific to a code (given by its Tanner graph), while the model-free has an independent
structure. While this independence enables the use of more advanced deep learning-based
methods, future works may explore how to exploit the code’s structure in order to produce a
hybrid approach that can reduce the number of weights in the network (e.g., by eliminating
connections between independent nodes), while maintaining the learning potential of the
model-free approach. We have already seen a glimpse of this phenomenon in the attention
blocks of the ECCT and r-ECCT, which employ a mask that depends on the parity-check
matrix. This does not result in a lower NN complexity but nonetheless uses the code’s specific
properties —in this case, the parity-check matrix— to orient the network’s optimization
process.

Effect of the training SNR. In this thesis, many network and training hyperparameters
were selected ad hoc, e.g., the network size, activation functions, training SNR, learning rate,
batch size, etc. Most of these parameters have an understandable impact on the optimization
process and are shared with many other machine-learning applications: the network size
impacts the learning potential, the learning rate changes the training time but can cause the

Conclusion 93

optimization to diverge, the batch size influences the gradient computation and the training
time, etc. In particular, the SNR proved to have a massive impact on the decoder’s final
performance, and it was very hard to predict the value that would yield the lowest error
rates beforehand. Future works may study how to select the training SNR to simultaneously
optimize the decoder’s performance and generalization to all noise regimes, minimize training
time, and avoid the grid-search that presently configures the SNR value selection process.

Autoencoders for end-to-end optimization. Thus far, we have worked exclusively
with systems that decode already existing channel codes, such as Polar and BCH codes.
However, further studies could explore employing autoencoders in order to simultaneously
produce encoding and decoding functions that are optimal for the particular application.
Autoencoders —such as Variational Autoencoders (VAE)— work by contracting the input
space into a smaller representation that captures the main features of the input, followed by
an expanding decoder to recover the original message. This framework should be inverted in
order to resemble the channel encoding-decoding process.

Appendix A

Optimality of the SBND

In this Appendix, we prove the sufficient statistics theorem for the SBND framework, i.e.,
that using the absolute value |y| and the syndrome Hyb does not incur any loss of information
with respect to the actual signal y when computing the posterior probability. Intuitively, this
means that the value of u that maximizes the posterior probability PU |Y (u|y), is also the
value that maximizes PEbu| |Z|,HZb(u⊕ ũ | |y|, Hy

b).

A.1 Proof of Theorem 3.2

Let us start by recalling the two claims of Lemma 1 in [BCK18b], regarding the framework
of section 3.1.3. The proof is also added for self-containedness.

Lemma A.1. Considering the framework from Section 3.1.3, the following claims hold:

1. There exists a matrix A with dimensions k × n such that Ac = u for all possible
u ∈ {0, 1}k and its corresponding c through the code C, that is, f(c) = Ac is a pseudo-
inverse for C.

2. Given a matrix B = [HT , AT]T , then B has full column rank and is thus injective.

Proof. Part 1 of the lemma follows from the properties of linear codes: its generator matrix
G has full row rank and satisfies c = GTu. Therefore, we can define A to be the left-inverse
of GT , and thus Ac = (GT)−1

leftG
Tu = u.

For part 2, let us start by assuming, without loss of generality, that H has full row rank
(the linearly dependent rows are removed from the matrix). Then, the right-inverse of H
exists and is denoted H−1

right, of dimensions n× (n−k). Consider the following matrix product
of two n× n matrices:

B · [GT , H−1
right] =

H
A

 · [GT H−1
right

]
=

0n−k,k In−k

Ik AH−1
right

 , (A.1)

where HGT = 0 follows from the properties of generator and parity-check matrices, and
equalities HH−1

right = In−k and AGT = In follow from the definitions of said matrices. The

95

96 Appendix A. Optimality of the SBND

resulting matrix has rank n (due to the identity matrices) and thus B must have rank n as
well.

Now, we need to provide a second result. Consider the following Lemma.

Lemma A.2. For the random vectors Y , U and Ũ defined as in Section 3.2.1, the events
E1 = {U = U |Y = y} and E2 = {U ⊕ Ũ = u⊕ ũ|Y = y} are equivalent.

Proof. Considering that Y = y and that ũ is a deterministic function of y, it is trivial that
E1 implies E2. Additionally, since ũ⊕ ũ = 0, then U ⊕ Ũ ⊕ Ũ = U . Therefore, the event E2
allows to unequivocally restore U , and thus implying E1.

With these two results, we can proceed to prove Theorem 3.2.

PU |Y (u|y) (a)= PU⊕Ũ |Y (u⊕ ũ |y)
(b)= PEbu| |Z|,Y b(u⊕ ũ | |y|,y

b)
(c)= PEbu| |Z|,BY b(u⊕ ũ | |y|, By

b)
(d)= PEbu| |Z|,HY b,AY b(u⊕ ũ | |y|, Hy

b, Ayb)
(e)= PEbu| |Z|,HZb,AC⊕AZb(u⊕ ũ | |y|, Hy

b, Ayb)
(f)= PEbu| |Z|,HZb,U⊕AZb(u⊕ ũ | |y|, Hy

b, Ayb)
(g)= PEbu| |Z|,HZb(u⊕ ũ | |y|, Hy

b). (A.2)

To obtain (a), we used Lemma 2. In (b), we used the definition of Eb
u and decomposed the

variable Y into its module and binary hard-decision, where |Y | = |Z| by (3.5). In (c) and
(d), the second claim of Lemma 1 was employed. In (e), we expressed Y b as C ⊕ Zb, and
exploited the validity of the codeword C:

HY b = H(C ⊕Zb) = HZb. (A.3)

The pseudo-inverse AC = U was employed to obtain (f). Finally, (g) made use of the
following result:

Eb
u = U ⊕AY b

= U ⊕A(C ⊕Zb) (A.4)
= U ⊕U ⊕AZb (A.5)
= AZb ⊥ U ⊕AZb, (A.6)

where ⊥ indicates independence between two random variables and Ui ∼ Ber(1/2) ∀i =

A.2. Proof of Lemma 3.1 97

{1, ..., k}. Given that U ⊕AZb is independent of Eb
u, it can be removed from the conditional

probability expression. This concludes the proof of Theorem 3.2.

A.2 Proof of Lemma 3.1

In this section, we will prove Lemma 3.1, which is a continuation of Theorem 3.2, where we
specify the mathematical expression for the argmax of the posterior probability PU |Y (u|y).
Let us start by applying Bayes’ formula on the posterior probability:

PU |Y (u|y) =
PY |U (y|u)PU (u)

PY (y) . (A.7)

Now, recall that a uniform source is supposed, and thus PU (u) = 2−k, ∀u ∈ {0, 1}k. Addi-
tionally, u = ũ⊕ebu as per (3.20). Finally, consider that PY |U (y|u) = PY |X(U)(y|x(u)), where
x(u) is the BPSK-modulated codeword corresponding to the message u, i.e., x = 1−2u. All
these things considered, let us now rewrite the posterior probability:

PU |Y (u|y) (a)= 2−k

PY (y)(2πσ2)n/2 exp
(
− 1

2σ2 ||y − (1− 2GT (ũ⊕ ebu))||2
)

(b)= C

PY (y)exp
(
− 1

2σ2

n∑
i=1

(
y2
i − 2yi(1−2[GT (ũ⊕ ebu)]i) + (1−2[GT (ũ⊕ ebu)]i)2

))
(c)= C

PY (y)exp
(
− 1

2σ2

(
n+

n∑
i=1

y2
i − 2yi(1− 2[GT (ũ⊕ ebu)]i)

))
(d)= C

PY (y)exp
(
− 1

2σ2

(
n+

n∑
i=1

y2
i

))
exp

(
− 1
σ2

n∑
i=1

yi(1− 2[GT (ũ⊕ ebu)]i)
)
,

where for each step, the following elements are used:

(a) The pdf of the Gaussian channel is inserted: PY |U (y|u) = 1
(2πσ2)n/2 e

− ||y−x(u)||2

2σ2 .

(b) A constant C , 2−k
(2πσ2)n/2 is defined, and the norm is developed. The notation [GT (ũ⊕

ebu)]i denotes the ith element of the vector resulting from the operation GT (ũ⊕ ebu).

(c) The BPSK modulation is exploited, where (1 − 2[GT (ũ ⊕ ebu)]i)2 = (±1)2 = 1, and
hence

∑n
i=1 1 = n.

(d) The terms in the exponential are regrouped in order to separate the ones that depend
on u from the independent ones.

Next, we apply the argmax operation, which allows us to remove the multiplicative elements
that do not depend on the optimizing variable. Considering that C

PY (y)e
− 1

2σ2 (n+
∑n

i=1 y
2
i) > 0

98 Appendix A. Optimality of the SBND

is independent from u, and that ũ is a deterministic function of y, we have:

argmax
u

PU |Y (u|y) = argmax
ebu

n∑
i=1

yi(1− 2[GT (ũ⊕ ebu)]i)

= argmax
ebu

n∑
i=1

yi(1− 2[GT ũ⊕GTebu)]i)

= argmax
ebu

n∑
i=1

yi(1− 2[GT ũ]i)(1− 2[GTebu]i)

= argmax
ebu

n∑
i=1

yi(1− 2[GT ũ]i)− 2yi(1− 2[GT ũ]i)[GTebu]i

= argmax
ebu

n∑
i=1
−2yi(1− 2[GT ũ]i)[GTebu]i

= argmin
ebu

n∑
i=1

yi(1− 2[GT ũ]i)[GTebu]i

= argmin
ebu

n∑
i=1

yi(1− 2[GTpinv(yb)]i)[GTebu]i, (A.8)

where basic mathematical operations were employed, and the terms independent from ebu were
removed from the argmax, which was finally transformed into an argmin problem to resemble
the OSD decoding procedure (which seeks to minimize the sum of the absolute value of the
log-likelihoods of the bits that are flipped by the decoder). This yields the expression (A.8),
which is independent of u as proved in Theorem 3.2. This concludes the proof.

Observation A.1. (A.8) depends on the generator matrix G instead of on the parity-check
matrix H. This does not entail any problem, given that, as seen in Section 1.1.3, the generator
matrix can be computed using the parity-check matrix.

Appendix B

Parity-check matrix analysis

In this Appendix, we provide the mathematical proof for the two results needed for Section
3.2.4, where the influence of the parity-check matrix is studied.

B.1 Proof of Theorem 3.3

Let H denote a valid parity-check matrix of size n − k × n for the code C, i.e., c ∈ C if and
only if Hc = 0. The MI between the bitflip pattern and the syndrome can be expressed as
follows:

I(E;S) = H(S)−H(S|E)︸ ︷︷ ︸
=0

= H(S), (B.1)

where H denotes the entropy and where we have used the fact that knowledge of the noise
pattern provides full knowledge of its syndrome, and thus the conditional entropy H(S|E) is
null. The same is valid for S̃. Next, let e1 and e2 represent two different bitflip patterns that
belong to the same coset of H, i.e., He1 = He2 = s. We then have that:

H(e1 ⊕ e2) = s⊕ s = 0. (B.2)

Consider now a different parity-check matrix H̃. Because they are both valid parity-check
matrices for the code C, they must share a kernel space, i.e., ker(H) = ker(H̃). Hence, due
to the result in (B.2), we can deduce that:

H̃(e1 ⊕ e2) = H̃e1 ⊕ H̃e2 = s̃1 ⊕ s̃2 ≡ 0, (B.3)

and thus s̃1 = s̃2. This demonstrates that the coset distribution within a code remains
unchanged regardless of the parity-check matrix employed. Thus, it follows from the definition
of the entropy of a random variable that:

H(S) = H(S̃), (B.4)

and consequently I(E;S) = I(E; S̃) as per (B.1). The MI is thereby proven to be invariant
with respect to the choice of the parity-check matrix. This concludes the proof.

99

100 Appendix B. Parity-check matrix analysis

B.2 Proof of 3.2

For a bitflip vector E = (E1, E2, ..., En) and a syndrome S = (S1, S2, ..., Sn−k), we have for
i ∈ {1, ..., n} and j ∈ {1, ..., n− k}:

I(Ei;Sj) = H(Sj)−H(Sj |Ei). (B.5)

Observe that, if Hij = 0, then Sj and Ei are independent and thus H(Sj |Ei) = H(Sj), which
yields an MI equal to 0. In the following, we consider only the case where Hij = 1. Let
Nj denote the number of ones –or weight– of the jth row of the parity-check matrix H.
Additionally, if ∀i ∈ {1, ..., n}, Ei follows an independent Bernoulli distribution with bitflip
probability p, then P (Sj = 0) is equal to the probability of getting an even number of ones
over Nj realizations of a Bernoulli random variable with the same flip probability p. That is:

P (Sj = 0) = 1
2 + 1

2(1− 2p)Nj , E(Nj), (B.6)

where we have used that, after Nj Bernoulli realizations with probability p,
P{even # of ones} = 1

2 + 1
2(1− 2p)Nj . Therefore, the entropy of Sj boils down to:

H(Sj) = Hb(E(Nj)), (B.7)

where Hb(a) = −alog2 a− (1− a)log2(1− a) is the binary entropy function. Similarly:

H(Sj |Ei) =
∑

ei∈{0,1}
P (Ei = ei)H(Sj |Ei = ei)

= (1− p)Hb(E(Nj − 1)) + pHb(1− E(Nj − 1))
= Hb(E(Nj − 1)), (B.8)

where we have used that Hb(a) = Hb(1− a). Finally, from (B.7) and (B.8), we have:

I(Ei;Sj) = [Hb(E(Nj))−Hb(E(Nj − 1))]1(Hij = 1), (B.9)

where we have added the condition that the entry Hij is equal to 1. This concludes the proof.

Appendix C

Bit-Interleaved Coded Modulations

In this Appendix, we provide all the necessary proofs to apply the SBND approach in the
BICM communication setting of Chapter 4.

C.1 Proof of LLR expressions

C.1.1 Proof of Lemma 4.2

Before proceeding with the proof of the lemma, let us first simplify further the approximate
LLRs expression in the case of a PSK constellation. Let y ∈ C, we have that:

ls(y) , γ
(

min
x∈X s1

||y − x||2 − min
x∈X s0

||y − x||2
)

(C.1)

= 2γRe(y(xs0(y)− xs1(y))?) (C.2)
= 2γRe(y∆s(y)), (C.3)

where xs0(y) = argminx∈X s0 ||y − x||
2 and xs1(y) = argminx∈X s1 ||y − x||

2, and where for ease of
notations, we introduce ∆s(y) , (xs0(y)− xs1(y))?.

Next, to give analytical formulations of the LLRs of the different points y in the complex
plane, we need to derive the closest symbols xs0(y) and xs1(y) for each of the decision regions
of the constellation. Since the calculations are lengthy, yet easy to carry out, we will give the
detailed proof for the case s = 1, and give a summary of the proof for the other values of s.

Let us give a closed-form expression of the three ls(y), s ∈ [1 : 3]. Figure C.1a gives a set
of zones (labeled from 0 to 7) that differ in their associated hard decisions xs0(y) and xs1(y).
Table C.1 gives the hard decisions associated with each of the different zones, along with their
associated LLR expressions.

To end the proof for l1(y), note that zones 0, 3, 4, and 7 are defined by |Im(y)| ≤ |Re(y)|,
and that zones 1, 2, 5, and 6 are defined by |Im(y)| ≥ |Re(y)|. Also, observe that for zones 1,
2, 5, and 6 the expression of l1(y) can be factorized as follows

l1(y) = 2
√

2γ (βIm(y)− αsign(Im(y))|Re(y)|) (C.4)
= 2
√

2γsign(Im(y)) (β|Im(y)| − α|Re(y)|) , (C.5)

101

102 Appendix C. Bit-Interleaved Coded Modulations

<

=

0

12

3

4

5 6

7

(a) 8-PSK.

<

=

0 4 8 12

1 5 9 13

2 6 10 14

3 7 11 15

(b) 16-QAM.

Figure C.1: Zone partitioning for the two considered constellations

Zone x1
0(y) x1

1(y) ∆1(y) l1(y)

0 x0 x7 −2αj 4γαIm(y)

1 x1 x7
√

2e−j
5π
8 2

√
2γ(−αRe(y) + βIm(y))

2 x2 x4
√

2e−j
3π
8 2

√
2γ(αRe(y) + βIm(y))

3 x3 x4 −2αj 4γαIm(y)

4 x3 x4 −2αj 4γαIm(y)

5 x3 x5
√

2e−j
5π
8 2

√
2γ(−αRe(y) + βIm(y))

6 x0 x6
√

2e−j
3π
8 2

√
2γ(αRe(y) + βIm(y))

7 x0 x7 −2αj 4γαIm(y)

Table C.1: Hard decisions and l1(y) for the 8-PSK.

C.1. Proof of LLR expressions 103

which completes the proof for l1(y). The expression for l2(y) can be obtained easily by
swapping Re(y) and Im(y) in the expression of l1(y) given that the decision region X 2

0 is a
simple π/2-rotation of the decision region X 1

0 , and given the invariance of the constellation
to a π/2-rotation. As for the expression of l3(y), it can be obtained easily following similar
lines as l1(y) and is omitted here for conciseness. �

C.1.2 Proof of Lemma 4.3

In the case of a 16-QAM, one can show that the approximate LLRs are given by:

ls(y) = 2γRe(y(xs0(y)− xs1(y))?) + γ(|xs1(y)|2 − |xs0(y)|2) (C.6)
= 2γRe(y∆s(y)) + γds(y), (C.7)

where, for ease of notation, we further define ds(y) , |xs1(y)|2 − |xs0(y)|2, while xs1, xs0 and
∆s(y) are as defined in the proof of Lemma 4.2 for the 8-PSK case. Similarly to the 8-PSK
case, we can identify 16 decision zones that differ in their associated hard decisions as depicted
in Figure C.1b.

Similarly to the proof of Lemma 4.2, we will make a detailed proof for l1(y), and give only
the outline for the remaining expressions of l2(y), l3(y), and l4(y). Let us consider s = 1, and
let us give the expression of l1(y). Table C.2 gives a detailed expression of ∆1(y), d1(y), and
l1(y) for each of the 16 zones, that were further grouped to make notations more compact.

Zones ∆1(y) d1(y) l1(y)

0 → 3 −2d −2d2 −2γd(2Re(y) + d)

4 → 11 −d 0 −2γdRe(y)

12 → 15 −2d 2d2 −2γd(2Re(y)− d)

Table C.2: Hard decisions and l1(y) for the 16-QAM.

Next, noting that zones 0→ 3 and 12→ 15 are defined by |Re(y)| > d, while zones 4→ 11
are defined by |Re(y)| ≤ d, and noting that for zones 0→ 3 and 12→ 15, we have that

l1(y) = −2γd(2Re(y)− sign(Re(y))d) (C.8)
= −2γd sign(Re(y))(2|Re(y)| − d), (C.9)

which completes the proof for l1(y). From the expression of l1(y), the expression of l3(y)
follows by replacing Re(y) with −Im(y). As for l2(y) and l4(y), their expressions are easy to
obtain following similar lines as l1(y) and are omitted here for compactness. �

104 Appendix C. Bit-Interleaved Coded Modulations

C.2 Proof of Theorem 4.1

First, note that since each Lb is a deterministic function of L, and given that PL|C is a
memoryless channel, then so is PLb|C , i.e., for all lb, c ∈ {0, 1}n:

PLb|C(lb|c) =
n∏
i=1

PLb|C(lbi |ci). (C.10)

To proceed with the proof, we will first prove that PLb|C(0|0) = PLb|C(1|1). Consider the
following result:

PLb|C(0|0) = 1
m

m∑
s=1

PLb|C,S(0|0, s) (C.11)

(a)= 1
m|X s0 |

m∑
s=1

∑
x∈X s0

PLb|X,S(0|x, s) (C.12)

= 1
m|X s0 |

m∑
s=1

∑
x∈X s0

∫
C
PLb,Y |X,S(0, y|x, s)dy (C.13)

(b)= 1
m|X s0 |

m∑
s=1

∑
x∈X s0

∫
Ys0
PY |X,S(y|x, s)dy (C.14)

(c)= 1
m|X s0 |

m∑
s=1

∑
x∈X s0

∫
Ys0
PY |X(y|x)dy, (C.15)

where we define the decision region Ys0 , {y ∈ C, ls(y) > 0}, where ls(y) is the LLR of the
s-th bit in the transmitted symbol, and where (a) follows the uniformity of the constellation,
while (b) follows from the Markov chain C ↔ (X,S) ↔ Lb, and (c) from the Markov chain
S ↔ X ↔ Y .

Let us then consider the 8-PSK constellation with Gray mapping of Figure C.2. Taking
into account the expressions of the LLRs ls(y) in Lemma 4.2, we give in Figure C.2 the
decision regions Ys0 for s ∈ [1 : 3].

Let us now consider the case s = 1. We have that X 1
0 = −(X 1

1)? and Y1
0 = −(Y1

1)?.
Thus, by exploiting one of the symmetries of the normal Gaussian probability distribution
PY |X(y|x) = PY |X(−y?| − x?), one can easily prove that

∑
x∈X 1

0

∫
Y1

0

PY |X(y|x)dy =
∑
x∈X 1

1

∫
Y1

1

PY |X(y|x)dy. (C.16)

Similar results can be proved for s = 2 by noticing that X 2
0 = (X 2

1)?,Y2
0 = (Y2

1)? and using
the property PY |X(y|x) = PY |X(y?|x?). Finally, for s = 3, note that X 3

0 = X 3
1 e

jπ/2 and
Y3

0 = Y3
1e
jπ/2 along with the symmetry PY |X(yejφ|xejφ) = PY |X(y?|x?) for all φ yields the

C.2. Proof of Theorem 4.1 105

same result as (C.16). Hence, recalling that |X s0 | = |X s1 |, we have:

PLb|C(0|0) = 1
m|X s0 |

m∑
s=1

∑
x∈X s0

∫
Ys0
PY |X(y|x)dy (C.17)

= 1
m|X s1 |

m∑
s=1

∑
x∈X s1

∫
Ys1
PY |X(y|x)dy (C.18)

= PLb|C(1|1). (C.19)

Hence, for the 8-PSK, the channel PLb|C is a binary symmetric channel, with crossover prob-
ability q given by:

q = PLb|C(1|0) = 1
m

m∑
s=1

P sLb|C(1|0). (C.20)

Concerning the 16-QAM, we represent in Figure C.3 the decision regions Ys1 for s ∈ [1 : 4].
It can be easily seen that, for s = 1 and s = 3, using the symmetries of X sc and of the Gaussian
distribution, one can write that:

∑
x∈X s0

∫
Ys0
PY |X(y|x)dy =

∑
x∈X s1

∫
Ys1
PY |X(y|x)dy. (C.21)

However, for s = 2 and s = 4, the previous equality does not hold in the sense that the
integration over Ys1 entails a larger clipping of the Gaussian distribution than the integration
over Ys0 . However, if the SNR is not too low –e.g., SNR ≥ 0 dB for a normalized 16-QAM
constellation– one can show that both integrations yield the same probability. The proof
follows then similarly to the 8-PSK case. �

<

=

<

=

<

=

001011

010

110

111 101

100

000

Y1
0 Y2

0 Y3
0

Figure C.2: Decision regions of the 8-PSK constellation.

106 Appendix C. Bit-Interleaved Coded Modulations

<

=

<

=

<

=

<

=

0000 0100 1100 1000

0001 0101 1101 1001

0011 0111 1111 1011

0010 0110 1110 1010

Y1
0 Y2

0

Y3
0 Y4

0

Figure C.3: Decision regions of the 16-QAM constellation.

C.3 Proof of Theorem 4.2

Let us start with two properties of an (n, k) linear block code.

(i) The pseudo-inverse of a code pinv(·) is defined by a k × n matrix A such that Ac = u;

(ii) the matrix B = [HT , AT], where H is the parity matrix of the code, is full rank, thus,
invertible.

Next, we can write for ebu ∈ {0, 1}k and l ∈ Rn:

PEbu|L(ebu|l) = PEbu| |L|,Lb(e
b
u| |l|, lb) (C.22)

= PEbu| |L|,HLb,ALb(e
b
u| |l|, Hlb, Alb), (C.23)

where we have used the fact that B = [HT , AT] is invertible. Next, recalling the result of
Theorem 4.1 in (4.20), we have that:

ALb = AC ⊕Eb
u = U ⊕Eb

u. (C.24)

C.4. Proof of Lemma 4.4 107

Since, U is i.i.d following a Bern(0.5) distribution, and since Eb
u is independent of U , then

ALb is Bern(0.5) and is independent of Eb
u. Hence, it follows that:

PEbu||L|,HLb,ALb(e
b
u||l|, Hlb, Alb) = PEbu||L|,HLb(e

b
u||l|, Hlb). (C.25)

Finally, by marginalizing both the right-hand side and left-hand side with respect to the k−1
variables (Ebu,1, . . . , Ebu,i−1, E

b
u,i+1, . . . , E

b
u,k) for all i ∈ [1 : k], concludes the proof. �

C.4 Proof of Lemma 4.4

C.4.1 8-PSK reliabilities invariances |ls|

Let us consider the LLRs of the 8-PSK constellation of Lemma 4.2 and analyze the LLR of
the 1st and 2nd bit-positions of the labeling s = 1 and s = 2. Let y ∈ C, we have that:

|l1(y)| =

2γα|Im(y)| if |Im(y)| ≤ |Re(y)|
2
√

2γ |β|Im(y)| − α|Re(y)|| else

|l2(y)| =

2γα|Re(y)| if |Re(y)| ≤ |Im(y)|
2
√

2γ |β|Re(y)| − α|Im(y)|| else

Note that, irrespective of whether |Im(y)| ≤ |Re(y)| or |Im(y)| > |Re(y)|, it follows that

|l1(y)| = |l1(−y)| = |l1(y?)| = |l1(−y?)| (C.26)
|l2(y)| = |l2(−y)| = |l2(y?)| = |l2(−y?)|. (C.27)

Assume that y = x + w and let us consider the labels of the symbols of the constellation as
shown in Figure 4.5. Then, if x = x0 or x = x1, the result follows. If x = x2, then

−y? = −x?2 − w? = x1 − w?, (C.28)

which, by the circularity of the random noiseW , i.e., PW (w) = PW (−w?) and by (C.26) proves
our claim for both s = 1 and s = 2. If x = x3, then, since x0 = −x?3, −y? = x0 − w?, which
proves similarly the claim. The same reasoning can be iterated for all possibly transmitted
symbols x, showing that either y, −y, y? or −y? would correspond to a transmitted symbol
equal to x0 or x1 with the same reliability value |ls| for s = 1 and s = 3, and with the same
noise probability since PW (w) = PW (−w) = PW (w?) = PW (−w?).

As for s = 3, recalling the result of Lemma 4.2, one can write that, for all y ∈ C:

|l3(y)| = 2γ(β − α)
∣∣|Im(y)| − |Re(y)|

∣∣. (C.29)

In this case, we can show that:

|l3(y)| = |l3(−y)| = |l3(y?)| = |l3(−y?)|

108 Appendix C. Bit-Interleaved Coded Modulations

= |l3(jy)| = |l3(−jy)| = |l3(jy?)| = |l3(−jy?)|, (C.30)

where j2 = −1. This implies a stronger result than for s = 1 and s = 2 in that all received
noisy symbols y could be mapped to a noisy symbol obtained from the transmission of x0
while maintaining the same observed reliability |l3(y)|.

To conclude, for the 8-PSK, all possible reliabilities |ls| can be generated from the trans-
mission of x0 and x1. �

C.4.2 16-QAM reliabilities invariances |ls|

Let us consider the 16-QAM constellation of Figure 4.5 and let y ∈ C. Following similar lines
as for the 8-PSK, let us recall the expressions of the LLRs of Lemma 4.3. We have that, for
s = 1 and s = 3,

|l1(y)| =

2γd|Re(y)| if |Re(y)| ≤ d
2γd |2|Re(y)| − d| else,

(C.31)

|l3(y)| =

2γd|Im(y)| if |Im(y)| ≤ d
2γd |2|Im(y)| − d| else.

(C.32)

It can be shown from the above expressions that whatever the interval to which |Re(y)| and
|Im(y)| belong, we have

|l1(y)| = |l1(y + jz)| = |l1(−y + jz)| = |l1(y? + jz)|
|l3(y)| = |l3(y + z)| = |l3(−y + z)| = |l3(y? + z)|,

for any z ∈ R. Hence, assuming that y = x+ w, if x = x0 or x = x1 or x = x4, the result is
trivial for s = 1 and s = 3. Otherwise, if for instance x = x2, then observing that

y + 2jd = x2 + 2jd+ w = x0 + w, (C.33)

the result follows. Similarly, if x = x5, then noting that x5 = x4 − jd allows to write that
y − jd = x4 + w. Hence, one can follow similar lines of proof for all possibly transmitted
symbols of the 16 QAM constellation by resorting either to y + kjd or −y? + kjd for s = 1,
or y + kd or y? + kd for s = 3, where k ∈ [−3 : 3]. As for s = 2, and s = 4, having that

|l2(y)| = 2γd ||Re(y)| − d| (C.34)
|l4(y)| = 2γd ||Im(y)| − d| , (C.35)

one could show the result of the theorem by using the three symbols x0, x1, and x4 following
similar lines as the case of s = 1 and s = 3. �

Bibliography

[3GP18] 3GPP. “ETSI TS 123 501.” In: 5G; System Architecture for the 5G System (2018)
(cit. on p. 1).

[3GP20] 3GPP. “ETSI TS 138 212.” In: 5G NR Multiplexing and channel coding (2020)
(cit. on p. 24).

[Ahm+20] Ijaz Ahmad et al. “Machine Learning Meets Communication Networks: Current
Trends and Future Challenges.” In: IEEE Access 8 (2020), pp. 223418–223460
(cit. on p. 1).

[Alv08] Alex Alvarado. On Bit-interleaved Coded Modulation with QAM Constellations.
English. Other. 2008 (cit. on pp. 7, 73, 74, 76).

[AML12] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.T. Lin. Learning from data. Vol. 4.
AMLBook New York, 2012 (cit. on pp. 3, 28).

[APP20] Sami Akın, Maxim Penner, and Jürgen Peissig. Joint Channel Estimation and
Data Decoding using SVM-based Receivers. 2020 (cit. on pp. 3, 33).

[Ari09] Erdal Arikan. “Channel Polarization: A Method for Constructing Capacity-
Achieving Codes for Symmetric Binary-Input Memoryless Channels.” In: IEEE
Transactions on Information Theory 55.7 (July 2009), pp. 3051–3073 (cit. on
pp. 2, 5, 6, 15, 16, 24).

[BB89] J. Bruck and M. Blaum. “Neural Networks, Error-Correcting Codes, and Poly-
nomials Over the Binary n-cube.” In: IEEE Transactions on Information Theory
35.5 (1989), pp. 976–987 (cit. on p. 2).

[BBB15] Alexios Balatsoukas-Stimming, Mani Bastani Parizi, and Andreas Burg. “LLR-
Based Successive Cancellation List Decoding of Polar Codes.” In: IEEE Trans-
actions on Signal Processing 63.19 (Oct. 2015), pp. 5165–5179 (cit. on p. 23).

[BCK18a] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. “Deep Learning for De-
coding of Linear Codes - A Syndrome-Based Approach.” In: 2018 IEEE Inter-
national Symposium on Information Theory (ISIT). IEEE, June 2018 (cit. on
pp. 5, 6, 45–47, 49–51, 54, 55, 57, 58, 64, 65, 67, 71–73, 77–79, 87, 92).

[BCK18b] Amir Bennatan, Yoni Choukroun, and Pavel Kisilev. Deep Learning for Decoding
of Linear Codes - A Syndrome-Based Approach. 2018 (cit. on pp. 50, 95).

[BCL21] Valerio Bioglio, Carlo Condo, and Ingmar Land. “Design of Polar Codes in 5G
New Radio.” In: IEEE Communications Surveys & Tutorials 23.1 (2021), pp. 29–
40 (cit. on p. 24).

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. “A Training
Algorithm for Optimal Margin Classifiers.” In: Proceedings of the fifth annual
workshop on Computational learning theory. COLT92. ACM, July 1992 (cit. on
pp. 3, 28).

109

110 Bibliography

[Bla19] Mario Blaum. A Short Course on Error-Correcting Codes. 2019 (cit. on p. 11).
[BR60] R.C. Bose and D.K. Ray-Chaudhuri. “On a class of error correcting binary group

codes.” In: Information and Control 3.1 (Mar. 1960), pp. 68–79 (cit. on p. 15).
[Cha72] David Chase. “A Class of Algorithms for Decoding Block Codes with Channel

Measurement Information.” In: IEEE Transactions on Information Theory 18.1
(Jan. 1972), pp. 170–182 (cit. on p. 56).

[Che+23] Qi Chen et al. “A Novel Labeling Scheme for Neural Belief Propagation in Polar
Codes.” In: 2023 International Wireless Communications and Mobile Computing
(IWCMC). IEEE, June 2023 (cit. on p. 5).

[Cho+14] Kyunghyun Cho et al. “Learning Phrase Representations using RNN En-
coder–Decoder for Statistical Machine Translation.” In: Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, 2014 (cit. on p. 51).

[Cho+15] Franccois Chollet et al. Keras. 2015 (cit. on pp. 64, 85).
[CTB98] G. Caire, G. Taricco, and E. Biglieri. “Bit-Interleaved Coded Modulation.” In:

IEEE Transactions on Information Theory 44.3 (May 1998), pp. 927–946 (cit.
on pp. 7, 73, 74, 76).

[CV95] Corinna Cortes and Vladimir Vapnik. “Support-Vector Networks.” In: Machine
Learning 20.3 (Sept. 1995), pp. 273–297 (cit. on pp. 3, 28).

[CW22a] Yoni Choukroun and Lior Wolf. Error Correction Code Transformer. 2022 (cit.
on pp. 6, 46, 52, 53, 55, 64, 65, 67, 69, 71, 72, 79, 87).

[CW22b] Yoni Choukroun and Lior Wolf. “Error Correction Code Transformer.” In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35.
Curran Associates, Inc., 2022, pp. 38695–38705 (cit. on pp. 6, 57).

[CW23] Yoni Choukroun and Lior Wolf. “Denoising Diffusion Error Correction Codes.”
In: The Eleventh International Conference on Learning Representations. 2023
(cit. on pp. 6, 46, 55, 79).

[DAM22] Ken R. Duffy, Wei An, and Muriel Medard. “Ordered Reliability Bits Guessing
Random Additive Noise Decoding.” In: IEEE Transactions on Signal Processing
70 (2022), pp. 4528–4542 (cit. on p. 89).

[DB23] Gastón De Boni Rovella and Meryem Benammar. “Improved Syndrome-based
Neural Decoder for Linear Block Codes.” In: GLOBECOM 2023 - 2023 IEEE
Global Communications Conference. IEEE, Dec. 2023 (cit. on pp. 47, 54).

[DeB+23] Gastón De Boni Rovella et al. “SVM pour la démodulation et le décodage con-
joints.” In: GRETSI (Aug. 2023) (cit. on p. 28).

[DeB+24a] Gastón De Boni Rovella et al. “On the Optimality of Support Vector Machines
for Channel Decoding.” In: 2024 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit). IEEE, June 2024 (cit.
on pp. 28, 35).

Bibliography 111

[DeB+24b] Gastón De Boni Rovella et al. “Optimizing the Parity-Check Matrix for
Syndrome-Based Neural Decoders (submitted).” In: IEEE Communications
Letters (2024) (cit. on p. 54).

[DeB+24c] Gastón De Boni Rovella et al. “Scalable Syndrome-based Neural Decoders for
Bit-Interleaved Coded Modulations.” In: 2024 IEEE International Conference
on Machine Learning for Communication and Networking (ICMLCN). IEEE,
May 2024, pp. 341–346 (cit. on p. 74).

[DeB+24d] Gastón De Boni Rovella et al. “Syndrome-Based Neural Decoding for Higher-
Order Modulations (submitted).” In: IEEE Transactions on Communications
(2024) (cit. on pp. 47, 74).

[DeB+25] Gastón De Boni Rovella et al. “Bitwise Approach for Optimal SVM-based De-
coding (submitted).” In: EURASIP Journal on Wireless Communications and
Networking (2025) (cit. on p. 28).

[DH10] Robert Daniels and Robert W. Heath. “Online Adaptive Modulation and Coding
with Support Vector Machines.” In: 2010 European Wireless Conference (EW).
IEEE, 2010 (cit. on pp. 3, 28).

[DS17] Rahul Dey and Fathi M. Salem. “Gate-variants of Gated Recurrent Unit (GRU)
neural networks.” In: 2017 IEEE 60th International Midwest Symposium on Cir-
cuits and Systems (MWSCAS). IEEE, Aug. 2017 (cit. on p. 58).

[Eld+22] Yonina C Eldar et al.Machine learning and wireless communications. Cambridge
University Press, 2022 (cit. on p. 1).

[FL95] M.P.C. Fossorier and Shu Lin. “Soft-Decision Decoding of Linear Block Codes
Based on Ordered Statistics.” In: IEEE Transactions on Information Theory
41.5 (1995), pp. 1379–1396 (cit. on pp. 21, 23, 85, 89).

[Gal63] Robert G. Gallager. Low-Density Parity-Check Codes. The MIT Press, 1963 (cit.
on p. 5).

[Gar+06] M.J.F.-G. Garcia et al. “Support Vector Machines for Robust Channel Estima-
tion in OFDM.” In: IEEE Signal Processing Letters 13.7 (July 2006), pp. 397–
400 (cit. on p. 3).

[GB08] Michael Grant and Stephen Boyd. “Graph implementations for nonsmooth con-
vex programs.” In: Recent Advances in Learning and Control. Ed. by V. Blondel,
S. Boyd, and H. Kimura. Lecture Notes in Control and Information Sciences.
http://stanford.edu/~boyd/graph_dcp.html. Springer-Verlag Limited,
2008, pp. 95–110 (cit. on p. 39).

[GB14] Michael Grant and Stephen Boyd. CVX: Matlab Software for Disciplined Convex
Programming, version 2.1. https://cvxr.com/cvx. Mar. 2014 (cit. on p. 39).

[Gia+18] E. Giacoumidis et al. “Unsupervised Support Vector Machines for Nonlinear
Blind Equalization in CO-OFDM.” In: IEEE Photonics Technology Letters 30.12
(June 2018), pp. 1091–1094 (cit. on p. 3).

http://stanford.edu/~boyd/graph_dcp.html
https://cvxr.com/cvx

112 Bibliography

[GK99] Xiaohong Gong and A. Kuh. “Support vector machine for multiuser detection in
CDMA communications.” In: Conference Record of the Thirty-Third Asilomar
Conference on Signals, Systems, and Computers (Cat. No.CH37020). ACSSC-
99. IEEE, 1999 (cit. on p. 3).

[Gru+17] Tobias Gruber et al. “On deep learning-based channel decoding.” In: 2017 51st
Annual Conference on Information Sciences and Systems (CISS). IEEE, Mar.
2017 (cit. on pp. 2, 4, 92).

[HC06] Thomas Halford and Keith Chugg. “Random Redundant Soft-In Soft-Out De-
coding of Linear Block Codes.” In: 2006 IEEE International Symposium on In-
formation Theory. IEEE, July 2006 (cit. on p. 71).

[HDL19] Tiep M. Hoang, Trung Q. Duong, and Sangarapillai Lambotharan. “Secure Wire-
less Communication Using Support Vector Machines.” In: 2019 IEEE Confer-
ence on Communications and Network Security (CNS). IEEE, June 2019 (cit. on
p. 3).

[Hel+19] Michael Helmling et al. Database of Channel Codes and ML Simulation Results.
www.uni-kl.de/channel-codes. 2019 (cit. on pp. 39, 62, 65, 71).

[Hil90] Raymond Hill. A First Course in Coding Theory. Oxford University Press, USA,
1990, p. 264 (cit. on pp. 14, 15).

[HL02] Chih-Wei Hsu and Chih-Jen Lin. “A Comparison of Methods for Multiclass Sup-
port Vector Machines.” In: IEEE Transactions on Neural Networks 13.2 (Mar.
2002), pp. 415–425 (cit. on pp. 33, 34).

[Hoc59] Alexis Hocquenghem. “Codes correcteurs d’erreurs.” In: Chiffers 2 (1959),
pp. 147–156 (cit. on p. 15).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory.” In: Neu-
ral Computation 9.8 (Nov. 1997), pp. 1735–1780 (cit. on p. 51).

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators.” In: Neural Networks 2.5 (Jan. 1989),
pp. 359–366 (cit. on pp. 4, 83).

[Jia+17] Chunxiao Jiang et al. “Machine Learning Paradigms for Next-Generation Wire-
less Networks.” In: IEEE Wireless Communications 24.2 (Apr. 2017), pp. 98–105
(cit. on p. 1).

[KB08] J.W.H. Kao and S. M. Berber. “Error Control Coding Based on Support Vector
Machine.” In: (2008) (cit. on pp. 3, 28, 33, 34, 36, 40).

[Kha+19] Faisal Nadeem Khan et al. “An Optical Communication’s Perspective on Ma-
chine Learning and Its Applications.” In: Journal of Lightwave Technology 37.2
(Jan. 2019), pp. 493–516 (cit. on p. 1).

[KP20] E. Kavvousanos and V. Paliouras. “An Iterative Approach to Syndrome-based
Deep Learning Decoding.” In: 2020 IEEE Globecom Workshops (GC Wkshps.
IEEE, Dec. 2020 (cit. on pp. 6, 46, 79).

www.uni-kl.de/channel-codes

Bibliography 113

[LG18] Loren Lugosch and Warren J. Gross. “Learning from the Syndrome.” In: 2018
52nd Asilomar Conference on Signals, Systems, and Computers. IEEE, Oct.
2018 (cit. on p. 5).

[LHL05] Cheng-Jian Lin, Shang-Jin Hong, and Chi-Yung Lee. “Using Least Squares
Support Vector Machines for Adaptive Communication Channel Equalization.”
In: International Journal of Applied Science and Engineering 3 (1 Apr. 2005),
pp. 51–59 (cit. on p. 3).

[Lim+24] Heimrih Lim Meng Kee et al. “A Review on Machine Learning for Channel
Coding.” In: IEEE Access 12 (2024), pp. 89002–89025 (cit. on p. 2).

[Mar+15] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. Software available from tensorflow.org. 2015 (cit. on pp. 64, 85).

[MLL19] Manuel Eugenio Morocho-Cayamcela, Haeyoung Lee, and Wansu Lim. “Machine
Learning for 5G/B5G Mobile and Wireless Communications: Potential, Limita-
tions, and Future Directions.” In: IEEE Access 7 (2019), pp. 137184–137206 (cit.
on p. 1).

[Moo05] Todd K. Moon. Error Correction Coding: Mathematical Methods and Algo-
rithms. Wiley, May 2005 (cit. on p. 12).

[Nac+17] Eliya Nachmani et al. RNN Decoding of Linear Block Codes. 2017 (cit. on p. 5).
[Nac+18] Eliya Nachmani et al. “Deep Learning Methods for Improved Decoding of Linear

Codes.” In: IEEE Journal of Selected Topics in Signal Processing 12.1 (Feb.
2018), pp. 119–131 (cit. on pp. 5, 71, 72).

[NBB16] Eliya Nachmani, Yair Be’ery, and David Burshtein. “Learning to Decode Lin-
ear Codes Using Deep Learning.” In: 2016 54th Annual Allerton Conference on
Communication, Control, and Computing (Allerton). IEEE, Sept. 2016 (cit. on
pp. 4, 5, 87, 92).

[Niu+21] Kai Niu et al. “Deep Learning Methods for Channel Decoding: A Brief Tu-
torial.” In: 2021 IEEE/CIC International Conference on Communications in
China (ICCC). IEEE, July 2021 (cit. on p. 2).

[NW21] Eliya Nachmani and Lior Wolf. Autoregressive Belief Propagation for Decoding
Block Codes. 2021 (cit. on pp. 5, 87).

[Par+23] Seong-Joon Park et al. How to Mask in Error Correction Code Transformer:
Systematic and Double Masking. 2023 (cit. on pp. 6, 46, 79).

[Pfi17] Henry D. Pfister. “A Brief Introduction to Polar Codes.” In: 2017 (cit. on pp. 16,
24).

[Ram+09] R. Ramanathan et al. “Generalised and Channel Independent SVM Based Ro-
bust Decoders for Wireless Applications.” In: 2009 International Conference on
Advances in Recent Technologies in Communication and Computing. IEEE, Oct.
2009 (cit. on pp. 4, 28, 34).

[RL09] William Ryan and Shu Lin. Channel Codes: Classical and Modern. Cambridge
University Press, Sept. 2009 (cit. on pp. 4, 13, 17).

114 Bibliography

[Ros58] F. Rosenblatt. “The perceptron: A probabilistic model for information storage
and organization in the brain.” In: Psychological Review 65.6 (1958), pp. 386–
408 (cit. on p. 4).

[Row+24] Mohammad Rowshan et al. “Channel Coding Toward 6G: Technical Overview
and Outlook.” In: IEEE Open Journal of the Communications Society 5 (2024),
pp. 2585–2685 (cit. on p. 1).

[RU01] T.J. Richardson and R.L. Urbanke. “The capacity of low-density parity-check
codes under message-passing decoding.” In: IEEE Transactions on Information
Theory 47.2 (2001), pp. 599–618 (cit. on pp. 45, 47, 48).

[Sal+14] S. Salcedo-Sanz et al. “Support vector machines in engineering: an overview.”
In: WIREs Data Mining and Knowledge Discovery 4.3 (Apr. 2014), pp. 234–267
(cit. on p. 3).

[Sha48] C. E. Shannon. “A Mathematical Theory of Communication.” In: Bell System
Technical Journal 27.3 (July 1948), pp. 379–423 (cit. on pp. 6, 60).

[She+20] Changyang She et al. “Deep Learning for Ultra-Reliable and Low-Latency Com-
munications in 6G Networks.” In: IEEE Network 34.5 (Sept. 2020), pp. 219–225
(cit. on p. 1).

[Sim18] Osvaldo Simeone. “A Very Brief Introduction to Machine Learning With Appli-
cations to Communication Systems.” In: IEEE Transactions on Cognitive Com-
munications and Networking 4.4 (Dec. 2018), pp. 648–664 (cit. on p. 1).

[SW20] Victor Garcia Satorras and Max Welling. Neural Enhanced Belief Propagation
on Factor Graphs. 2020 (cit. on p. 5).

[SY16] V. Sudharsan and B. Yamuna. “Support Vector Machine Based Decoding Al-
gorithm for BCH Codes.” In: Journal of telecommunications and information
technology 2016 (2016) (cit. on pp. 3, 4, 28, 33, 34, 36, 40).

[Tek+19] Kursat Tekbiyik et al. “Multi–Dimensional Wireless Signal Identification Based
on Support Vector Machines.” In: IEEE Access 7 (2019), pp. 138890–138903
(cit. on p. 3).

[TV11] Ido Tal and Alexander Vardy. “List Decoding of Polar Codes.” In: 2011 IEEE
International Symposium on Information Theory Proceedings. IEEE, July 2011
(cit. on pp. 24, 85).

[TV13] Ido Tal and Alexander Vardy. “How to Construct Polar Codes.” In: IEEE Trans-
actions on Information Theory 59.10 (Oct. 2013), pp. 6562–6582 (cit. on p. 16).

[Vap97] Vladimir N. Vapnik. “The Support Vector method.” In: Artificial Neural Net-
works — ICANN’97. Springer Berlin Heidelberg, 1997, pp. 261–271 (cit. on
pp. 3, 28).

[Vas+17] Ashish Vaswani et al. “Attention is All you Need.” In: Advances in Neural Infor-
mation Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates,
Inc., 2017 (cit. on pp. 6, 52, 69).

References 115

[Vaz+21] Miguel Angel Vazquez et al. “Machine Learning for Satellite Communications
Operations.” In: IEEE Communications Magazine 59.2 (Feb. 2021), pp. 22–27
(cit. on p. 1).

[WW96] Xiao-An Wang and S.B. Wicker. “An Artificial Neural Net Viterbi Decoder.” In:
IEEE Transactions on Communications 44.2 (1996), pp. 165–171 (cit. on pp. 2,
4).

[Xu+17] Weihong Xu et al. “Improved Polar Decoder Based on Deep Learning.” In: 2017
IEEE International Workshop on Signal Processing Systems (SiPS). IEEE, Oct.
2017 (cit. on p. 5).

[YBW89] J. Yuan, V.K. Bhargava, and Q. Wang. “An Error Correcting Neural Network.”
In: Conference Proceeding IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing. IEEE, 1989 (cit. on p. 2).

[Ye+24] Neng Ye et al. “Artificial Intelligence for Wireless Physical-Layer Technologies
(AI4PHY): A Comprehensive Survey.” In: IEEE Transactions on Cognitive Com-
munications and Networking (2024), pp. 1–1 (cit. on p. 1).

[ZHA89] G. Zeng, D. Hush, and N. Ahmed. “An Application of Neural Net in Decoding
Error-Correcting Codes.” In: IEEE International Symposium on Circuits and
Systems. IEEE, 1989 (cit. on p. 2).

[Zib+16] Darko Zibar et al. “Machine Learning Techniques in Optical Communication.”
In: Journal of Lightwave Technology 34.6 (Mar. 2016), pp. 1442–1452 (cit. on
p. 1).

[ZPH19] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. “Deep Learning in Mobile
and Wireless Networking: A Survey.” In: IEEE Communications Surveys & Tu-
torials 21.3 (2019), pp. 2224–2287 (cit. on p. 1).

Résumé — Dans cette thèse de doctorat, nous explorons des solutions basées sur
l’apprentissage automatique pour le décodage canal dans les systèmes de communication
de type Machine-à-Machine, où l’atteinte de communications ultra-fiables et à faible latence
(URLLC) est essentielle. Leur principal problème provient de la croissance exponentielle de
la complexité du décodeur à mesure que la taille du paquet augmente. Cette malédiction de
la complexité se manifeste sous trois aspects différents : i) le nombre de schémas de bruit cor-
rigeables, ii) l’espace des mots de code à explorer, et iii) le nombre de paramètres entraînables
dans les modèles. Pour pallier la première limitation, nous explorons des solutions basées sur
les Machines à Vecteurs de Support (SVM) et proposons une approche bit-à-bit qui réduit
considérablement la complexité des solutions SVM existantes. Pour aborder la deuxième lim-
itation, nous investiguons des décodeurs neuronaux de type syndrome-based et introduisons
un nouveau décodeur orienté message qui améliore les schémas existants tant au niveau de
son architecture que du choix de la matrice de parité. Concernant la taille du réseau, nous
développons une version récurrente d’un décodeur basé sur le transformer qui réduit le nombre
de paramètres tout en maintenant l’efficacité par rapport aux solutions précédentes. Enfin,
nous étendons le décodeur proposé pour supporter les modulations d’ordre supérieur via les
Modulations Codées avec et sans Entrelacement de Bits (BICM et CM, resp.), facilitant ainsi
son application dans des environnements de communication plus réalistes.

Mots clés : Communications, codage canal, apprentissage automatique, réseaux de
neurones, machine à vecteurs de support.

Abstract — In this Ph.D. thesis, we explore machine learning-based solutions for channel
decoding in Machine-to-Machine type communications, where achieving ultra-reliable low-
latency communications (URLLC) is essential. Their primary issue arises from the exponential
growth in the decoder’s complexity as the packet size increases. This curse of dimensionality
manifests itself in three different aspects: i) the number of correctable noise patterns, ii) the
codeword space to be explored, and iii) the number of trainable parameters in the models. To
address the first limitation, we explore solutions based on a Support Vector Machine (SVM)
framework and suggest a bitwise SVM approach that significantly reduces the complexity
of existing SVM-based solutions. To tackle the second limitation, we investigate syndrome-
based neural decoders and introduce a novel message-oriented decoder, which improves on
existing schemes both in the decoder architecture and in the choice of the parity check matrix.
Regarding the neural network size, we develop a recurrent version of a transformer-based
decoder, which reduces the number of parameters while maintaining efficiency, compared to
previous neural-based solutions. Lastly, we extend the proposed decoder to support higher-
order modulations through Bit-Interleaved and generic Coded Modulations (BICM and CM,
respectively), aiding its application in more realistic communication environments.

Keywords: Communications, channel coding, machine learning, neural networks, sup-
port vector machine.

	List of Acronyms
	Notations
	Introduction
	Preliminaries on coding theory and linear modulations
	Introduction to binary linear block codes
	Linear modulations and log-likelihood ratios
	System model
	Classical decoders

	Support Vector Machines for joint demodulation and decoding
	Introduction to SVMs
	Previous works on SVM-based decoding
	Contributions: proposed system and training framework
	Numerical results and analysis
	Conclusion and perspectives

	Syndrome-based neural decoding for BPSK
	Model-free decoding approach
	Contributions to the model-free decoder
	Experiments

	Application of SBND to higher-order modulations
	Preliminaries and problem statement
	Model-free decoding for BICM
	On the optimality of SBND for BICM
	Experiments
	Discussion: SBND for a generic CM scenario

	Conclusion
	Optimality of the SBND
	Proof of Theorem 3.2
	Proof of Lemma 3.1

	Parity-check matrix analysis
	Proof of Theorem 3.3
	Proof of 3.2

	Bit-Interleaved Coded Modulations
	Proof of LLR expressions
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Lemma 4.4

	References

