Diffusion posterior sampling: methodology and applications to ECG reconstruction

Joint work with: Yazid Janati, Gabriel Cardoso, Badr Moufad, Alain Durmus, Randal Douc, Jimmy Olsson, Eric Moulines

- Lisa Bedin
- Ecole polytechnique

Context

Electrodes Placement

aVL, aVR, aVF

ECGS

- Acquisition noise : baseline wander, electrode motion
- Incomplete ECG e.g., missing leads in portative devices Kardia, Smart Watch ...

Question : how to recover an ECG from noisy data / from incomplete data?

Denoising Diffusion models

Diffusion models

[Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models.]

 p_0

Diffusion models

 $q_{k+1|k} = \mathbf{N}(x_{k+1}; (\alpha$

 p_0

[Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models.]

$$\alpha_{k+1}/\alpha_k x_k, (1 - \alpha_{k+1}^2/\alpha_k^2) I)$$
where $\alpha_0 = 1, \alpha_n \approx 0$

$$X_n$$

 $p_{k|k+1}$

 $p_{0:n}(x_{0:n}) = p_0(x_{0:n})$

 $= p_n(x)$ $\approx \mathcal{N}(0,\mathbf{I})$

[Ho, J., Jain, A. and Abbeel, P., 2020. Denoising diffusion probabilistic models.]

$$\sum_{k=0}^{n-1} \prod_{k=0}^{n-1} q_{k+1|k}(x_{k+1} | x_k)$$
 where $\alpha_0 = 1, \alpha_n \approx 0$

$$\sum_{k=0}^{n-1} p_{k|k+1}(x_k | x_{k+1})$$
 intractable

Diffusion models

$$p_{k|k+1}(x_k | x_{k+1}) = \int q_{k|0,k}$$

- $x_{k+1}(x_k | x_0, x_{k+1}) p_{0|k+1}(x_0 | x_{k+1}) dx_0$
- $\approx q_{k|0,k+1}(x_k | D_{k+1}^{\theta}(x_{k+1}), x_{k+1})$
- where D_{k+1}^{θ} is a « denoiser » with parameters θ , minimizing $\mathbb{E}[D_{k+1}^{\theta}(X_{k+1}) X_0]$

Diffusion models

$$p_{k|k+1}(x_k | x_{k+1}) = \int q_{k|0,k}$$

- $x_{k+1}(x_k | x_0, x_{k+1}) p_{0|k+1}(x_0 | x_{k+1}) dx_0$
- $\approx q_{k|0,k+1}(x_k | D_{k+1}^{\theta}(x_{k+1}), x_{k+1})$
- where D_{k+1}^{θ} is a « denoiser » with parameters θ , minimizing $\mathbb{E}[D_{k+1}^{\theta}(X_{k+1}) X_0]$

Bayesian Inverse Problems

Bayesian inverse problems

Given a realisation Y = y, sample the most plausible reconstructions X

 $Y = A(X) + \sigma_v Z, \quad X \sim p_0$

Bayesian inverse problems

The reconstructions are encoded in the posterior distribution

$$\pi_0^y(x) \propto$$

where
$$g_0(y|x) = \mathcal{N}(y; A(x), \Sigma_y^2)$$
.

 $g_0(y | x) p_0(x)$

Sampling plausible reconstructions

Drawing samples from π_0^y

Diffusion Posterior Sampling

Diffusion Posterior Sampling

 $\pi_0^y(x) \propto g_0(y \mid x) p_0(x)$

Given a **pre-trained** diffusion model $p_0^{\theta} \approx p_0$, develop an efficient algorithm for sampling from π_0^y with no further model training

Distribution path

 $p_k(x_k) = \int p_0(x_0) q_{k|0}(x_k | x_0) \, \mathrm{d}x_0$

Diffusion model for $\pi_0^y \iff$ follow path $(\pi_k)_{k=n}^0$ where

$$\pi_k^y(x_k) = \int \pi_0^y \pi_0^y$$

- $q_0^{y}(x_0)q_{k|0}(x_k|x_0) dx_0$
- $p_k(y \mid x_k) p_k(x_k)$

Posterior denoiser

Define the likelihood of y given the noised sample x_k

$$g_k(y \,|\, x_k) = \int g_0(x_k) g_0(x_k) g_0(x_k) = \int g_0(x_k) g_0(x$$

We can relate the posterior denoiser D_k^y to the prior denoiser D_k

$$D_k^y(x_k) = D_k(x_k) + \alpha_k^{-1}(1 - \alpha_k^2) \nabla \log g_k(y \mid x_k)$$

$$\approx D_k^\theta(x_k) \qquad ??$$

- $p(y | x_0) p_{0|k}(x_0 | x_k) dx_0$

Posterior denoiser

$D_k^y(x_k) = D_k(x_k) + \alpha_k^{-1}(1 - \alpha_k^2) \nabla \log g_k(y \mid x_k)$ $\approx D_k^\theta(x_k) \qquad ??$

Posterior denoiser

 $D_k^y(x_k) = D_k(x_k) + \alpha_k^{-1}(1 - \alpha_k^2) \nabla \log g_k(y \,|\, x_k)$ $\approx D_k^{\theta}(x_k)$??

[Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M. and Fleet, D.J., 2022. Video diffusion models.] [Chung, H., Kim, J., Mccann, M.T., Klasky, M.L. and Ye, J.C., 2022. Diffusion posterior sampling for general noisy inverse problems.]

[Song, J., Vahdat, A., Mardani, M. and Kautz, J., 2023, May. Pseudoinverse-guided diffusion models for inverse problems.] [Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A. and Akyildiz, O.D., 2023. Tweedie moment projected diffusions for inverse problems.]

[Moufad, B., Janati, Y., Bedin, L., Durmus, A., Douc, R., Moulines, E., Olsson, J., 2025. Diffusion posterior sampling with midpoint guidance.]

Applications to ECGs

Reconstruction of Missing Leads

Bundle Block Branch

		Errors			XRESNET1D50 AUC-PR (↑)		
Method	Task	RMSE (\downarrow)	MAD (↓)	DTW (↓)	NSR	BBB	AF
Ground-truth	-	-	-	-	1.00	1.00	0.98
RhythmDiff-MGPS	MLR	0.19 ± 0.01	0.09 ± 0.00	0.29 ± 0.02	0.99	<u>0.91</u>	0.96
RhythmDiff-DPS	MLR	1.61 ± 0.17	0.16 ± 0.01	77.35 ± 15.34	0.97	0.65	0.68
RhythmDiff- $PGDM$	MLR	0.19 ± 0.01	0.10 ± 0.003	0.32 ± 0.03	0.99	0.90	<u>0.89</u>
${\tt RhythmDiff}{-}{\tt DDNM}$	MLR	0.19 ± 0.01	0.10 ± 0.003	0.36 ± 0.03	0.99	0.92	0.81
${\tt RhythmDiff-DIFFPIR}$	MLR	0.21 ± 0.01	0.11 ± 0.003	0.39 ± 0.03	0.94	0.71	0.57
RhythmDiff- R ED D IFF	MLR	0.20 ± 0.01	0.11 ± 0.003	0.36 ± 0.02	0.97	0.87	0.75
ECGRECOVER [26]	MLR	0.34 ± 0.005	0.20 ± 0.003	1.10 ± 0.04	0.98	0.73	0.61

Atrial Fibrillation

Artefact Removal in ECGs

- 1) propose weights $\mu_{i \in [1,J]}$
- 2) sample most plausible reconstruction X
- 3) regress new $\mu_{j \in [1,J]}$
- ... iterate until convergences

 $Y = X + \sum_{j}^{J} \mu_{j} \phi_{j} + \sigma_{y} Z , \quad X \sim p_{0}$

Given J Fourier harmonics $\phi_{i \in [1,J]}$ modeling additive artifacts, and a realization Y = y

Artefact Removal in ECGs

Bundle Block Branch

		Errors			XRESNET1D50 AUC-PR (†)		
Method	Task	RMSE (↓)	MAD (↓)	DTW (↓)	NSR	BBB	AF
Ground-truth	-	-	-	-	1.00	1.00	0.98
RhythmDiff-MGPS	EMR	0.097 ± 0.002	0.059 ± 0.001	0.13 ± 0.01	1.00	1.00	0.86
DeScod [29]	EMR	0.100 ± 0.002	0.074 ± 0.001	0.13 ± 0.01	1.00	0.98	0.81
RhythmDiff-MGPS	BWR	0.134 ± 0.003	0.078 ± 0.001	0.24 ± 0.02	0.99	0.97	0.86
DeScod [29]	BWR	0.088 ± 0.002	0.062 ± 0.001	0.11 ± 0.01	0.99	0.99	0.88

Atrial Fibrillation

Conclusion

A single trained diffusion model for multiple downstream task

[Bedin, L., Cardoso, G., Duchateau, J., Dubois, R., Moulines, E., 2024. Leveraging an ECG beat diffusion model for morphological reconstruction from indirect signals.]

[Moufad, B., Janati, Y., Bedin, L., Durmus, A., Douc, R., Moulines, E., Olsson, J., 2025. Diffusion posterior sampling with midpoint guidance.]

Midpoint Guidance Posterior Sampling

Posterior denoiser approximation

 $\int g_0(y \,|\, x_0) p_{0|k}(x_0 \,|\, x_k) \,\mathrm{d}x_0 \approx g_0(y \,|\, D_k(x_k))$

implicitly assumes that $p_{0|k}(\cdot | x_k) \approx \delta_{D_k(x_k)}$

$$D_k^{y}(x_k) \approx D_k(x_k) + \alpha_k^{-1}(1 - \alpha_k^2) \nabla_{x_k} \log g_0(y | D_k(x_k))$$

- Samples diverge after a few iterations
- Instead, [Chung et al. 2023] plugs $\frac{C_k}{\|v A(D_k(x_k))\|}$
- ~ 50 % more expensive in terms of memory and runtime:

$$\nabla_{x_k} \log g_0(y \,|\, D_k(x_k)) = \nabla_{x_k} D_k(x_k)^{\mathsf{T}} \nabla_{x_0} \log g_0(y \,|\, x_0)_{|x_0 = D_k(x_k)}$$

[Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M. and Fleet, D.J., 2022. Video diffusion models.] [Chung, H., Kim, J., Mccann, M.T., Klasky, M.L. and Ye, J.C., 2022. Diffusion posterior sampling for general noisy inverse problems.]

$$\frac{1}{\|y\|} \nabla_{x_k} \log g_0(y | D_k(x_k))$$

Midpoint guidance

- Usual improvement: Gaussian approximation of $p_{0|k}(\cdot | x_k)$, but too expensive • As $\ell \to 0$, $g_{\ell}(y | x_{\ell}) \approx g_0(y | D_{\ell}(x_{\ell}))$ is a more reasonable approximation • How can it be leveraged at step k of the denoising process?

Step $k \implies$ sample

[Song, J., Vahdat, A., Mardani, M. and Kautz, J., 2023, May. Pseudoinverse-guided diffusion models for inverse problems.] [Boys, B., Girolami, M., Pidstrigach, J., Reich, S., Mosca, A. and Akyildiz, O.D., 2023. Tweedie moment projected diffusions for inverse problems.]

e
$$q_{k|0,k+1}(\cdot | \hat{D}_k^y(x_{k+1}), x_{k+1})$$

Posterior backward chain

$$\pi_{0:n}^{y}(x_{0:n}) = \pi_{0}^{y}(x_{0}) \prod_{k=0}^{n-1} q_{k+1|k}(x_{k+1} | x_{k})$$

= $\pi_{n}^{y}(x_{n}) \prod_{k=0}^{n-1} \pi_{k|k+1}^{y}(x_{k} | x_{k+1})$
 $\approx \mathcal{N}(0,I)$ to be approximated

where $\pi_{k|k+1}^{y}(x_{k}|x_{k+1}) =$

not very useful

$$= \pi_k^y(x_k) q_{k+1|k}(x_{k+1} | x_k) / \pi_{k+1}^y(x_{k+1})$$

 $= g_{k}(y | x_{k}) p_{k|k+1}(x_{k} | x_{k+1}) / g_{k+1}(y | x_{k+1})$

Midpoint decomposition

For all
$$\ell \in [0:k]$$

$$\pi_{k|k+1}^{y}(x_{k}|x_{k+1}) = \int q_{k|\ell,k+1}$$

where
$$\pi_{\ell|k+1}^{y}(x_{\ell}|x_{k+1})$$

• As $\ell \to 0$, $g_{\ell}(y | x_{\ell}) \approx g_0(y | D_{\ell}(x_{\ell}))$ is a more reasonable approximation

• But, $p_{\ell|k+1}(x_{\ell}|x_{k+1}) = \int \prod_{i=\ell}^{k} p_{j|j+1}(x_j|x_{j+1}) dx_{\ell+1:k}$: more multi-modal as $\ell \to 0$

 $\frac{1}{\ell} (x_k | x_\ell, x_{k+1}) \pi^y_{\ell | k+1} (x_\ell | x_{k+1}) \, \mathrm{d} x_\ell$

Gaussian + easy to sample from

) $\propto g_{\ell}(y \mid x_{\ell}) p_{\ell \mid k+1}(x_{\ell} \mid x_{k+1})$

prior backward transition

There is a tradeoff!

Midpoint decomposition

Conditional densities involved in $\pi^{y}_{k|k+1}(\cdot | x_{k+1})$ for different choices of ℓ

Long arrow \iff more difficult to approximate

Surrogate model

Let $(\ell_k)_{k=1}^n \in [1:n]^n$ with $\ell_k \leq k$.

 $\pi_{\ell_k|k+1}^{y}(x_{\ell_k}|x_{k+1}) \propto$

For $p_{\ell_k|k+1}(\cdot | x_{k+1})$ we use the Gaussian approximation: $p_{\ell_k|k+1}^{\theta}(x_{\ell_k}|x_{k+1}) = q_{\ell_k}$

Surrogate backward posterior transition:

$$\hat{\pi}^{\theta}_{\ell_k|k+1}(x_{\ell_k}|x_{k+1}) \propto g_0$$

$$g_{\ell_k}(y \mid x_{\ell_k}) p_{\ell_k \mid k+1}(x_{\ell_k} \mid x_{k+1})$$

$$P_{k|0,k+1}(x_{\ell_{k}}|D_{k+1}^{\theta}(x_{k+1}),x_{k+1})$$

 $(y | D^{\theta}_{\ell_k}(x_{\ell_k})) p^{\theta}_{\ell_k|k+1}(x_{\ell_k} | x_{k+1})$

Surrogate model

Our approximation of π is $\hat{\pi}_0^{\ell}(x_0) = \int \mathbf{N}(x_n; 0)$

where
$$\hat{\pi}_{k|k+1}^{\ell}(x_k|x_{k+1}) = \int q_{k|\ell_k,k+1}(x_k|x_{\ell_k},x_{k+1}) \hat{\pi}_{\ell_k|k+1}^{\ell}(x_{\ell_k}|x_{k+1}) dx_{\ell_k}$$

straightforward to sample approximate inference

$$\pi^{\theta}_{\ell_k|k+1}(x_{\ell_k}|x_{k+1}) \propto g_0$$

$$(D_d, I_d) \prod_{k=0}^{n-1} \hat{\pi}_{k|k+1}^{\ell} (x_k | x_{k+1}) \, \mathrm{d}x_{1:n}$$

straightforward to sample approxim

 $(y|D_{\ell_k}^{\theta}(x_{\ell_k}))p_{\ell_k|k+1}^{\theta}(x_{\ell_k}|x_{k+1})$