New statistical modeling of multi-sensor images with application to change detection

Jorge PRENDES

Marie CHABERT, Frédéric PASCAL, Alain GIROS, Jean-Yves TOURNERET

June 15, 2015 - TéSA

(日) (國) (필) (필) (필) 표

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000

Outline

- 2 Image model
- 3 Similarity measure
- 4 Expectation maximization
- 5 Bayesian non parametric

6 Conclusions

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction •00000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Remote Sensing Images

J. Prendes

Remote sensing images are images of the Earth surface captured from a satellite or an airplane.

ものの 加 (出)・(出)・(四)・(日)

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 0●0000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Change Detection

J. Prendes

Multitemporal datasets are groups of images acquired at different times. We can detect changes on them!

・ロット (四)・ (川)・ (日)・ (日)・

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Heterogeneous Sensors

J. Prendes

Optical images are not the only kind of images captured. For instance, SAR images can be captured during the night, or with bad weather conditions.

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions
Introduction					

Difference Image

- ・ロ・・聞・・思・・思・ しゅうへん

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Sliding window

・ロ・・聞・・聞・・聞・ 聞 めんの

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 00000●000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Correlation coefficient

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 0000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Correlation coefficient

- ・ロ・・聞・・聞・・聞・ のへの

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 0000000●0	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Mutual information

$$d = f(W_1, W_2) = \sum_{w_1 \in W_1} \sum_{w_2 \in W_2} p(w_1, w_2) \log\left(\frac{p(w_1, w_2)}{p(w_1)p(w_2)}\right)$$

$$intermediate intermediate intermedintermediate intermedintermediate intermedintermediate in$$

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

<ロ> <四> <四> <日> <日> <日</p>

New statistical modeling of multi-sensor images with application to change detection

2

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Introduction					

Mutual information

- ・ロ・・聞・・思・・思・ しゅ・

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model ●○○○	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Image model					

Optical image

 Affected by additive Gaussian noise

$$\begin{split} I_{\mathsf{Opt}} &= T_{\mathsf{Opt}}(P) + \nu_{\mathcal{N}(0,\sigma^2)} \\ I_{\mathsf{Opt}}|P \sim \mathcal{N}\big[T_{\mathsf{Opt}}(P), \sigma^2 \big] \end{split}$$

where

- T_{Opt}(P) is how an object with physical properties P would be ideally seen by an optical sensor
- σ^2 is associated with the noise variance

[1] J. Prendes, M. Chabert, F. Pascal, A. Giros, and J.-Y. Tourneret, "A new multivariate statistical model for change detection in images acquired by homogeneous and heterogeneous sensors," IEEE Trans. Image Process., vol. 24, no., 3, pp. 799–812, March 2015.

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model ○●○○	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions
Image model					

SAR image

 Affected by multiplicative speckle noise (with gamma distribution)

$$I_{SAR} = T_{SAR}(P) \times \nu_{\Gamma\left(L,\frac{1}{L}\right)}$$
$$I_{SAR}|P \sim \Gamma\left[L,\frac{T_{SAR}(P)}{L}\right]$$

where

- T_{SAR}(P) is how an object with physical properties P would be ideally seen by a SAR sensor
- L is the number of looks of the SAR sensor

J. Prendes

Introduction 000000000	lmage model 00●0	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Image model					

Joint distribution

Independence assumption for the sensor noises

 $p(I_{Opt}, I_{SAR}|P) =$ $p(I_{Opt}|P) \times p(I_{SAR}|P)$

Conclusion Statistical dependency (CC, MI) is not always an appropriate similarity measure

I Prendes

A ► <

3 → TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 000●	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Image model					

Sliding window

- Usually includes a finite number of objects, K
- Different values of P for each object

$$\Pr(P = P_k | W) = w_k$$

$$p(I_{\text{Opt}}, I_{\text{SAR}} | W) = \sum_{k=1}^{K} w_k p(I_{\text{Opt}}, I_{\text{SAR}} | P_k)$$

Mixture distribution!

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure ●0000	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Similarity measu	ıre				

Motivation

Parameters of the mixture distribution

 Can be used to derive [T_{Opt}(P), T_{SAR}(P)] for each object

$$I_{\text{Opt}}|P \sim \mathcal{N}\left[T_{\text{Opt}}(P), \sigma^{2}\right]$$
$$I_{\text{SAR}}|P \sim \Gamma\left[L, \frac{T_{\text{SAR}}(P)}{L}\right]$$

Related to P

J. Prendes

They are not independent

Introduction 000000000	Image model 0000	Similarity measure ○●○○○	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000			
Similarity measure								

J. Prendes

- For each unchanged window,
 v(P) = [T_{Opt}(P), T_{SAR}(P)]
 can be considered as a point
 on a manifold
- The manifold is parametric on P
- Estimating v(P) from pixels with different values of P will trace the manifold

Introduction 000000000	Image model 0000	Similarity measure 00●00	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions
Similarity measu	ure				

Distance to the manifold

Unchanged regions

J. Prendes

- Pixels belong to the same object
- *P* is the same for both images
- $\hat{v} = \left[\hat{T}_{Opt}(P), \hat{T}_{SAR}(P)\right]$

Changed regions

- Pixels belong to different objects
- *P* changes from one image to another

•
$$\hat{\mathbf{v}} = \left[\hat{T}_{\mathsf{Opt}}(P_1), \hat{T}_{\mathsf{SAR}}(P_2)\right]$$

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model 0000	Similarity measure 000●0	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000
Similarity meas	ure				

Manifold estimation

- The manifold is a priori unknown
- We must estimate the distance to the manifold
- PDF of v(P)

J. Prendes

- Good distance measure
- Learned using training data from unchanged images

*H*₀ : Absence of change*H*₁ : Presence of change

$$\hat{p}_{oldsymbol{
u}}(\hat{oldsymbol{
u}})^{-1} \mathop{\gtrless}\limits_{H_0}^{H_1} au \ H_0$$

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure 0000●	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions		
Similarity measure							

Summary

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

<ロ> <四> <四> <日> <日> <日</p>

New statistical modeling of multi-sensor images with application to change detection

æ

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization •000 •0000	Bayesian non parametric 0000000 0000	Conclusions 000
Expectation ma	ximization				
Mativa	tion				

- To estimate v(P) we must estimate the mixture parameters θ
- We can use a maximum likelihood estimator

$$\theta = \arg \max_{\theta} \mathsf{p}(I_{\mathsf{Opt}}, I_{\mathsf{SAR}} | \theta)$$

• Two pixels $i_{Opt,n}$ and $i_{SAR,m}$ are not independent

J. Prendes

IVIULIVALIUII

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

< 回 > < 三 > < 三 >

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions		
Expectation maximization							

Algorithm

J. Prendes

The class labels Z make the pixels independent

$$p(I_{\text{Opt}}, I_{\text{SAR}} | \theta, Z) = \prod_{n=1}^{N} p(i_{\text{Opt},n}, i_{\text{SAR},n} | \theta, z_n)$$

where we have N pixels in the window

Now we also have to estimate Z

$$\theta = \arg \max_{\theta} p(I_{\text{Opt}}, I_{\text{SAR}} | \theta, Z)$$
$$= \sum_{n=1}^{N} \log \left[p(i_{\text{Opt},n}, i_{\text{SAR},n} | \theta, z_n) \right]$$

くロト 《 伊 ト 4 注 ト 4 注 ト 注 の へ
て で
SONDRA – INP/ENSEEIHT – CNES

	0000 00000	0000000	000			
Expectation maximization						

Algorithm

• Iterative algorithm, estimate $\theta^{(i)}$ using $\theta^{(i-1)}$

$$\begin{split} \mathsf{p}\Big(z_n^{(i)} = k\Big) &= \frac{\mathsf{p}\Big(i_{\mathsf{Opt},n}, i_{\mathsf{SAR},n} \big| \theta^{(i-1)}, z_n = k\Big)}{\sum_{j=1}^{K} \mathsf{p}\Big(i_{\mathsf{Opt},n}, i_{\mathsf{SAR},n} \big| \theta^{(i-1)}, z_n = j\Big)}\\ \theta^{(i)} &= \sum_{n=1}^{N} \log \left[\sum_{j=1}^{K} \mathsf{p}\Big(i_{\mathsf{Opt},n}, i_{\mathsf{SAR},n} \big| \theta^{(i-1)}, z_n = j\Big) \times \mathsf{p}\Big(z_n^{(i)} = j\Big)\right] \end{split}$$

• The value of K is fixed, or estimated heuristically^[1]

 M. A. T. Figueiredo and A. K. Jain, "Unsupervised learning of finite mixture models," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381–396, March 2002.

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

• • • • • • • • • • • • •

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000		
Expectation maximization							

J. Prendes

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ うへで

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000		
Expectation maximization							

J. Prendes

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ うへで

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000		
Expectation maximization							

J. Prendes

・ 白マ ・ 白マ ・ 山マ ・ 白マ ・ シャル・

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000		
Expectation maximization							

J. Prendes

- * ロ * * @ * * 注 * * 注 * ここ うくぐ

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000		
Expectation maximization							

J. Prendes

- * ロ * * @ * * 注 * * 注 * ここ うくぐ

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization	Bayesian non parametric 0000000 0000	Conclusions 000			
Expectation maximization								

J. Prendes

₫ > ≣⇒ æ

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introd	

model Simil

Similarity meas

Expectation maximization 0000 •0000 Bayesian non parametri 0000000 0000 Conclusions

Results

J. Prendes

Results – Synthetic Optical and SAR Images

Synthetic SAR image

Mutual Information

Correlation Coefficient

- • □ • • ● • • 三 • • 三 • のへの

Change mask

Image model	Expectation maximization	Bayesian non parametric	Conclusions
	0000 0000	000000 0000	

Results

Results – Real Optical and SAR Images

before the flooding

the flooding

[2] G. Mercier, G. Moser, and S. B. Serpico, "Conditional copulas for change detection in heterogeneous remote sensing images," IEEE Trans. Geosci, and Remote Sensing, vol. 46, no. 5, pp. 1428-1441, May 2008.

Mutual Information

Proposed Method

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

∃ > TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

J. Prendes

Results – Pléiades Images

Pléiades - May 2012

J. Prendes

Pléiades - Sept. 2013

Change map

Change mask Special thanks to CNES for providing the Pléiades images

Results

J. Prendes

Results – Pléiades and Google Earth Images

(日) (同) (三) (

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Results	Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization ○○○○ ○○○○●	Bayesian non parametric 0000000 0000	Conclusions 000
	Results					

Homogeneous images

- CC and MI
 Similar performance
- Proposed method Improved performance

Heterogeneous images

CC
 Reduced Performance

 Proposed method and MI Performance not affected

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

• • • • • • • • • • • • •

J. Prendes

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric •000000 0000	Conclusions 000		
Bayesian non parametric							
Mativa	tion						

- Introduce a Bayesian framework into the labels: K is not fixed
- Classic mixture model

J. Prendes

$$egin{aligned} &oldsymbol{i}_n |oldsymbol{v}_n \sim \mathcal{F}(oldsymbol{v}_n) \ &oldsymbol{v}_n |oldsymbol{V}' \sim \sum_{k=1}^K w_k \deltaig(oldsymbol{v}_n - oldsymbol{v}'_k) \end{aligned}$$

 $i_n = [i_{Opt,n}, i_{SAR,n}]$, and \mathcal{F} is a distribution family which is application dependent, i.e., a bivariate Normal-Gamma distribution.

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

・ロト ・回ト ・ヨト ・ヨト

New statistical modeling of multi-sensor images with application to change detection

э

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0●00000 0000	Conclusions 000		
Bayesian non parametric							

Prior in the mixture parameters

$$oldsymbol{v}_k^\prime \sim \mathcal{V}_0$$

 $oldsymbol{w} \sim \mathsf{Dir}ig(lpha \mathcal{K}^{-1} oldsymbol{u}_{\mathcal{K}}ig)$

Now make $K \to \infty$

v_n will still present clustering behavior

• There are infinite parameters for the prior of \boldsymbol{v}_n

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

イロト イヨト イヨト イ

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 00●0000 0000	Conclusions 000			
Bayesian non pa	Bayesian non parametric							

Bayesian non parametric

Dirichlet Process $i_n | \mathbf{v}_n \sim \mathcal{F}(\mathbf{v}_n)$ $m{v}_n \sim \mathcal{V}$ $\mathcal{V} \sim \mathsf{DP}(\mathcal{V}_0, \alpha).$ Algorithm For n > 1 $u \sim \text{Uniform}(1, \alpha + n)$ If u < n $\mathbf{v}_n \leftarrow \mathbf{v}_{|\mu|}$ Flse $m{v}_n\sim\mathcal{V}_0$

$$egin{aligned} &oldsymbol{i}_n | z_n \sim \mathcal{F}ig(oldsymbol{v}'_{z_n} ig) \ &oldsymbol{z} \sim \mathsf{CRP}(lpha) \ &oldsymbol{v}'_k \sim \mathcal{V}_0. \end{aligned}$$

Allows to sample the finite \boldsymbol{v}_n from α and \mathcal{V}_0 skipping the infinite parameters

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

(日) (同) (三) (三)

New statistical modeling of multi-sensor images with application to change detection

3

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000		
Bavesian non parametric							

Bayesian non parametric

J. Prendes

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 000		
Bayesian non parametric							

Markov random fields

- Markov random fields are a common tool to capture spatial correlation
- We would like to define

$$\mathsf{p}(z_n|\boldsymbol{z}_{\backslash n})=\mathsf{p}(z_n|\boldsymbol{z}_{\delta(n)})$$

• MRF define the constraints to define a joint distribution p(Z)

A (1) > (1) > (1)

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 00000●0 0000	Conclusions 000		
Bayesian non parametric							

Markov random fields

We will define out joint distribution as

$$p(z_n | \mathbf{z}_{\setminus n}) \propto \exp \left[H(z_n | \mathbf{z}_{\setminus n}) \right]$$
$$H(z_n | \mathbf{z}_{\setminus n}) = H_n(z_n) + \sum_{\substack{m \in \delta(n) \\ z_n = z_m}} \omega_{nm} \mathbf{1}_{z_n}(z_m)$$

• The trick is to take $H_n(z_n) = \log p(z_n | I_n, \mathbf{V})$

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

<ロ> <四> <四> <日> <日> <日</p>

New statistical modeling of multi-sensor images with application to change detection

J. Prendes

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 000000 0000	Conclusions	
Bayesian non parametric						

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 000000 0000	Conclusions 000		
Bayesian non parametric							

J. Prendes

・ロン・国マ・国マ・国マ うへの

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 000000 0000	Conclusions	
Bayesian non parametric						

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

J. Prendes

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 000000● 0000	Conclusions 000		
Bayesian non parametric							

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 000000 0000	Conclusions		
Bayesian non parametric							

J. Prendes

・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ うへぐ

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introd	

Bayesian non parametric 0000

Results

J. Prendes

Results – Synthetic Optical and SAR Images

Synthetic SAR image

Mutual Information

BNP

Change mask

< ロ > < 同 > < 三 > < 三

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric ○○○○○○ ○●○○	Conclusions 000

Results

Results - Real Optical and SAR Images

J. Prendes

AR image during the flooding

Change mask

Mutual Information

《曰》《卽》《철》《철》 철 '오이()

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric ○○○○○○ ○○●○	Conclusions 000
Results					

Results – Pléiades Images

Special thanks to CNES for providing the Pléiades images

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric ○○○○○○ ○○○●	Conclusions

Results

Results – Pléiades and Google Earth Images

Pléiades - May 2012

Google Earth - July 2013

BNP

A (1) > A (1) > A

J. Prendes

TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

New statistical modeling of multi-sensor images with application to change detection

Change mask

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions ●00
C					

Conclusions and Future Work

Conclusions

New statistical model to describe multi-channel images

- Analyze the joint behavior of the channels to detect changes, in contrast with channel by channel analysis
- e.g., Pléiades multi-spectral and panchromatic images
- New similarity measure showing encouraging results for homogeneous and heterogeneous sensors
 - Pléiades Pléiades
 - Pléiades SAR
 - Pléiades Other VHR instument

Interesting for many applications

- Change detection
- Classification
- Registration using the similarity measure to measure miss-registration

J. Prendes

New statistical modeling of multi-sensor images with application to change detection

・ 同 ト ・ ヨ ト ・ ヨ ト

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 0●0
Conclusions					

Conclusions and Future Work

Future Work

Study the method performance for different image features

- Texture coefficients: Haralick, Gabor, QMF
- Wavelet coefficients
- Gradients

J. Prendes

TéSA – Supélec-SONDRA – INP/ENSEEIHT – CNES

(日) (同) (三) (

Introduction 000000000	Image model 0000	Similarity measure	Expectation maximization 0000 00000	Bayesian non parametric 0000000 0000	Conclusions 00●
Conclusions					

Thank you for your attention

Jorge Prendes jorge.prendes@tesa.prd.fr

J. Prendes

∃ > TéSA - Supélec-SONDRA - INP/ENSEEIHT - CNES

A ►