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Introduction

Introduction

Objective

I Classify, or recognize, at the receiver, the type of modulation used
by the transmitter.

Considered set of modulations

I Linear: Pulse Amplitude Modulation (PAM), Quadrature
Amplitude Modulation (QAM), Phase Shift Keying (PSK),
Amplitude and Phase Shift Keying (APSK)

I Nonlinear: Gaussian Minimum Shift Keying (GMSK)

Considered channel impairments

I Carrier phase and frequency offsets,

I Possible ISI coming from a residual channel,

I Rayleigh fading.
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Classification Strategies

Classification Strategies

Two main classes of modulation classification strategies

I Statistical pattern recognition methods based on feature extraction from the
observations to be used for classification.

I Decision-theoretic approaches based on Bayes theory.

I MAP (Maximum A Posteriori) classifier:

assign x to λi if P (λi|x) ≥ P (λj |x), ∀j = 1, ..., c,

x = [x(1), ..., x(N)]: received symbol vector,
λ1, ..., λc: set of possible modulations.

I ML (Maximum Likelihood) classifier for equally-likely modulations

(P (λj) = 1
c ∀j = 1, ..., c):

assign x to λi if p(x|λi) ≥ p(x|λj), ∀j = 1, ..., c.

Two classifiers investigated in the PhD of Anchalee Puegnim

I The two classifiers are approximating the maximum likelihood classifier.

I One uses Markov Chain Monte Carlo (MCMC) methods, the other one relies on the
forward/backward Baum-Welch (BW) algorithm.
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Classification Strategies

ML classifier

Ideal case

x(k) = dk + n(k), k = 1, ..., N

where dk ∈ λi = {Si1, ..., S
i
Mi
}, Sij being the jth symbol among Mi of modulation λi and

n is a Gaussian noise. The ML classifier can be rewritten as follows:

assign x to λi if l(x|λi) ≥ l(x|λj) ∀j = 1, ..., c,

where

l(x|λj) =
N∑
k=1

ln

 1

Mj

Mj∑
i=1

exp

(
−

1

σ2
n

‖ x(k)− Sji ‖
2
) .

A more realistic case

x(k) = e
j(π k

N
fr+φ)

q∑
l=0

hld(k − l) + n(k), k = 1, ..., N

where

I fr = 2N∆fc ∈ [−1/2, 1/2] is the normalized residual carrier frequency offset,

I h = [1, h1, ..., hq ] is the residual channel coefficient vector,

I φ is the carrier phase offset.
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Classification Strategies

Channel Impairments for a QPSK Modulation
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Classification Strategies

ML Classifier for Practical Applications

Channel impairment estimation

I Unknown parameter vector θ = [fr,h, φ]

I Two strategies to obtain θ̂:

I Using Markov Chain Monte Carlo (MCMC) methods.
I Using the Baum Welch (BW) algorithm.

Modified decision rule

assign x to λi if l(x|λi, θ̂) ≥ l(x|λj , θ̂) ∀j = 1, ..., c,

with

l(x|λj , θ̂) =
N∑
k=1

ln

 1

Mj

Mj∑
i=1

exp

(
−

1

σ2
n

‖ xθ̂(k)− Sji ‖
2
) .

where

x
θ̂
(k) = F

−1

[
x(k)e

−j
(
π k
N
f̂r+φ̂

)]
,

and F−1 represents the inverse filter corresponding to ĥ = [1, ĥ1, ..., ĥq ].
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Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods

The Algorithm

MCMC Parameter Estimation

MMSE estimator computed using samples generated with an MCMC method:

θ̂MMSE = E [θ|x] =

∫
θp(θ|x)dθ '

1

L

L∑
i=1

θ
i
.

where (θ1, ..., θL) are samples distributed according to p(θ|x) generated by running a
Markov chain whose stationary distribution is p(θ|x).

Random-Walk Metropolis-Hasting algorithm
At each iteration, a candidate z is drawn according to an instrumental distribution
q(z|θn)a. This candidate is accepted with the following acceptance rule:

θ
n+1

=

{
z with probability α(θn, z)
θn with probability 1− α(θn, z)

where α(θ
n
, z) = min

{
1,

p(z|x)q(θn|z)
p(θn|x)q(z|θn)

}
,

and θn = (fnr , φ
n,hn) represents the current Markov chain state.

Random-Walk: q(z|θn) = N (θn, σ2)⇔ z = θn + ε, with ε ∼ N (0, σ2).

a
Any instrumental distribution q(z|θn) can be chosen, provided that the support of p(z|x) is

contained in the support of q(z|θn): see W.R. Gilks, S. Richardson and D.J. Spiegelhater, Eds London
U.K. Chapman & Hall, 1996
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Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods

Some simulation results

Classification of Linear Modulations using MCMC Methods:
Some Simulation Results

Simulation scenario

I Sets of modulations: λ = {BPSK,QPSK, 8PSK, 16QAM} (studied in [Swami00]1)
and λ = {QPSK, 8PSK, 16APSK, 32APSK} (DVB-S2 standard),

I Transmission impairments: θ = [fr,h, φ], with h = [1, h1, h2],

I 1000 trials belonging to each class λi and N = 250 observed symbols,

I For the MCMC sampler2: L = 1500 + (500 burn-in) iterations,
q(z|θn) ∼ N (θn, σ2) where σ = 0.03.

Compared classifiers

I ML classifier (labeled ML) derived assuming fr = φ = 0 and h = [1, 0, 0],

I MCMC classifier (labeled MCMC),

I Classifier derived in [Swami00], based on higher-order statistics (labeled HOS).

Classification performance

Pcc =
1

c

c∑
i=1

P [assigning x to λi|x ∈ λi] .

1
[Swami00]: A. Swami and B. Sadler, Hierarchical Digital Modulation Classification Using

Cumulants, IEEE Trans. Commun., vol. 48, no. 3, pp. 416 − 429, March 2000
2

[Robert98]: C.P. Robert, Discretization and MCMC Convergence Assessment, Berlin:
Springer-Verlag, 1998.
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Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods

Some simulation results

Probability of Correct Classification versus Channel Impairments
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Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

The Algorithm

BW Parameter Estimation

The BW algorithm requires to associate a first order Hidden Markov Model
to the received baseband communication signal: x(k) = f (s(k)) + n(k)

I A state of the HMM at time instant k : s(k) ∈ {s1, s2, ..., sK},
I A state transition probability defined by dij = P [s(k + 1) = sj |s(k) = si]

I An initial state distribution vector π = (π1, ..., πK)T defined by
πi = P [s(1) = si] = 1/K for i = 1, ..., K.

I The pdf of the observation x(k) conditioned on state si:

pi[x(k)] ≡ p [x(k)|s(k) = si] =
1

πσ2
n

exp

(
−
|x(k)−mi|2

σ2
n

)
for i = 1, ..., K.

where mi = f(si).

Example: BPSK modulation (d(k) ∈ {0, 1}, M = 2), two taps residual channel
(x(k) = h0d(k) + h1d(k − 1) + n(k), k = 1, ..., N)

I s(k) = [d(k)d(k − 1)] ∈ {s1 = 00, s2 = 01, s3 =
11, s4 = 10}, K = 4

I m = [0, h1, h0 + h1, h0],

I p = dij = P [s(k + 1) = sj |s(k) = si] = 1
M = 1

2
if all symbols are equally likely.

I π = (π1, ..., πK)T defined by
πi = P [s(1) = si] = 1/4 for i = 1, ..., 4.
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Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

The Algorithm

BW Parameter Estimation

Given the HMM, the BW algorithma can be used:

I to determine the probability of the observation sequence given the modulation,

I to estimate the unknown parameters.

Forward Backward procedure

I Parameter initialization.

I Compute the normalized forward variable αi(k) = P
[
x1:k, s(k) = si|m, σ2

n, λj
]
:

Initialization: αi(1) = πipi(x(1)) for 1 ≤ i ≤ K and c(1) =
(∑K

i=1 αi(1)
)−1

Induction for k = 1, ..., N − 1, j = 1, ..., K:

αj(k + 1) = c(k)pj [x(k + 1)]
∑K
i=1 αi(k)dij , c(k + 1) =

(∑K
i=1 αi(k + 1)

)−1

I Compute the normalized backward variable βi(k) = P
[
xk+1:N , s(k) = si|m, σ2

n, λj
]
:

Initialization: βi(N) = c(N) for 1 ≤ i ≤ N
Induction for k = 1, ..., N − 1, j = 1, ..., K:

βj(k) = c(k)
∑K
j=1 dijpj [x(k + 1)] βj(k + 1)

a
[Rabiner89]: L. Rabiner, A tutorial on Hidden Markov Models and selected applications in speech

recognition, Proc. IEEE, 77(2) : 257 − 286, February 1989
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Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

The Algorithm

BW Parameter Estimation

I Parameter estimators:

m̂i =

∑N
k=1 γi(k)x(k)∑N
k=1 γi(k)

σ̂
2
n =

1

N

N∑
k=1

K∑
i=1

γi(k)|mi − x(k)|2

where γi(k) = αi(k)βi(k).

I Estimated probability of the observation sequence given the model:

p̂(x|m, σ
2
n, λj) =

∑K
i=1 αi(N)∑N
i=1 c(i)

, (1)

To be computed for each possible modulation λj , j = 1, ..., c and used in the classification
rule.
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Classification of Linear Modulations: Some Simulation Results

MCMC/BW comparison

Classification of Linear Modulations: Some Simulation Results

Simulation scenario 1

I Set of modulations: λ = {QPSK, 8PSK, 16APSK},
I Transmission impairments: fr = 0, φ = 0, h = [1, 0.35 + 0.33j],

I 1000 trials belonging to each class λi and N = 250 observed symbols.

Classification performance
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Classification of Linear Modulations: Some Simulation Results

MCMC/BW comparison

Classification of Linear Modulations: Some Simulation Results

Simulation scenario 2

I Set of modulations: λ = {QPSK, 8PSK, 16APSK, 32APSK},
I Transmission impairments: fr = 0, φ = 0, h = [1],

I 1000 trials belonging to each class λi and N = 250 observed symbols.

I Es/N0 = 10dB, QPSK emitted constellation.

Computation time comparison using Matlab 7.4.0.287 (R2007a)
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Some Simulation Results with non linear modulations using the BW Algorithm

Classification of Linear and Non Linear Modulations using the
BW Algorithm: Some Simulation Results

Simulation scenario 3

I Sets of modulations: λ = {BPSK,QPSK, 8PSK,GMSK25,GMSK50},

GMSK modulation: x(k) = ejΦ(kT,d) + n(k)

Φ(kT,d) = π
∑k
i=k−L+1 diq((k − i)T ) + Φk

φk =
[
π
2

∑k−L
i=−∞ di

]
mod(2π)

q(t) =
∫ t
−∞ g(τ)dτ,

g(t) = 1
2T

Q
2πBT

t−T
2

T
√

ln 2

 − Q
2πBT

t+T
2

T
√

ln 2

,

where Q(t) =
∫∞
t

1√
2π

exp(− τ
2

2
)dτ.

I Transmission impairments: fr = 0, φ = 0, h = [1],

I 1000 trials belonging to each class λi and N ∈ {100, 200, 500, 1000} observed
symbols.
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Some Simulation Results with non linear modulations using the BW Algorithm

Classification of Linear and Non Linear Modulations using the
BW Algorithm: Some Simulation Results

Simulation scenario 3

I Sets of modulations: λ = {BPSK,QPSK, 8PSK,GMSK25,GMSK50},

I Transmission impairments: fr = 0, φ = 0, h = [1],

I 1000 trials belonging to each class λi and N ∈ {100, 200, 500, 1000}
observed symbols.

Classification performance
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Future Work

Future Work

New classes of modulations

I OFDM, SC-FDMA, GFDM, Dual Talk signals...

New classification methods

I Use cyclostationarity ([Dobre08]3, [Datta14]4) ?

Robustness with respect to other system parameters

I Symbol rate, synchronization, roll off factor, interferences...

3
O. A. Dobre, Q. Zhang, S. Rajan and R. Inkol: second-order cyclostationnarity of cyclically

prefixed single carrier linear digital modulations with applications to signal recognition. Global
Telecommunications Conference (IEEE CLOBECOM) 2008.

4
R. Datta, D. Panaitopol and G. Fettweis, Cyclostationary Detection of 5G GFDM Waveform in

Cognitive Radio Transmission, Proc. of the Int. Conf. on Ultra Wideband (ICUWB) 2014.
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