Nathalie Thomas, Jean-Yves Tourneret, Anchalee Puengnim Université de Toulouse - INPT - ENSEEIHT - TéSA - IRIT Equipe Signal et Communications

A. Puengnim, "Classification de modulations linéaires et non-linéaires à l'aide de méthodes Bayésiennes", PhD Thesis, Institut National Polytechnique de Toulouse, France, Sept. 2008.

Introduction

Objective

 Classify, or recognize, at the receiver, the type of modulation used by the transmitter.

Considered set of modulations

- Linear: Pulse Amplitude Modulation (PAM), Quadrature Amplitude Modulation (QAM), Phase Shift Keying (PSK), Amplitude and Phase Shift Keying (APSK)
- Nonlinear: Gaussian Minimum Shift Keying (GMSK)

Considered channel impairments

- Carrier phase and frequency offsets,
- Possible ISI coming from a residual channel,
- Rayleigh fading.

Classification Strategies

Two main classes of modulation classification strategies

- **Statistical pattern recognition methods** based on feature extraction from the observations to be used for classification.
- **Decision-theoretic approaches** based on Bayes theory.
 - MAP (Maximum A Posteriori) classifier:

assign \mathbf{x} to λ_i if $P(\lambda_i | \mathbf{x}) \ge P(\lambda_j | \mathbf{x}), \forall j = 1, ..., c$,

 $\mathbf{x} = [x(1), ..., x(N)]$: received symbol vector, $\lambda_1, ..., \lambda_c$: set of possible modulations.

► ML (Maximum Likelihood) classifier for equally-likely modulations $(P(\lambda_j) = \frac{1}{a} \forall j = 1, ..., c)$:

assign \mathbf{x} to λ_i if $p(\mathbf{x}|\lambda_i) \ge p(\mathbf{x}|\lambda_j), \forall j = 1, ..., c$.

Two classifiers investigated in the PhD of Anchalee Puegnim

- ▶ The two classifiers are approximating the maximum likelihood classifier.
- One uses Markov Chain Monte Carlo (MCMC) methods, the other one relies on the forward/backward Baum-Welch (BW) algorithm.

ML classifier

Ideal case

$$x(k) = d_k + n(k), k = 1, ..., N$$

where $d_k \in \lambda_i = \{S_1^i, ..., S_{M_i}^i\}$, S_j^i being the j^{th} symbol among M_i of modulation λ_i and n is a Gaussian noise. The ML classifier can be rewritten as follows:

assign
$$\mathbf{x}$$
 to λ_i if $l(\mathbf{x}|\lambda_i) \ge l(\mathbf{x}|\lambda_j) \quad \forall j = 1, ..., c$,

where

$$l(\mathbf{x}|\lambda_j) = \sum_{k=1}^N \ln \left\{ \frac{1}{M_j} \sum_{i=1}^{M_j} \exp\left(-\frac{1}{\sigma_n^2} \| x(k) - S_i^j \|^2\right) \right\}.$$

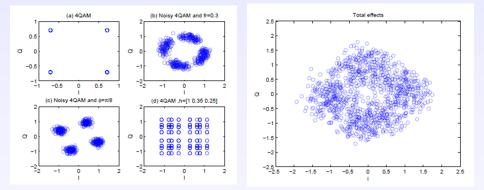
A more realistic case

$$x(k) = e^{j(\pi \frac{k}{N}f_r + \phi)} \sum_{l=0}^{q} h_l d(k-l) + n(k), \quad k = 1, ..., N$$

where

- ▶ $f_r = 2N\Delta f_c \in [-1/2, 1/2]$ is the normalized residual carrier frequency offset,
- $\mathbf{h} = [1, h_1, ..., h_q]$ is the residual channel coefficient vector,
- $\blacktriangleright \phi$ is the carrier phase offset.

Channel Impairments for a QPSK Modulation



ML Classifier for Practical Applications

Channel impairment estimation

- Unknown parameter vector $\theta = [f_r, \mathbf{h}, \phi]$
- Two strategies to obtain $\hat{\theta}$:
 - ▶ Using Markov Chain Monte Carlo (MCMC) methods.
 - Using the Baum Welch (BW) algorithm.

Modified decision rule

assign
$$\mathbf{x}$$
 to λ_i if $l(\mathbf{x}|\lambda_i, \widehat{\theta}) \ge l(\mathbf{x}|\lambda_j, \widehat{\theta}) \quad \forall j = 1, ..., c,$

with

$$l(\mathbf{x}|\lambda_j, \widehat{\theta}) = \sum_{k=1}^N \ln \left\{ \frac{1}{M_j} \sum_{i=1}^{M_j} \exp\left(-\frac{1}{\sigma_n^2} \| x^{\widehat{\theta}}(k) - S_i^j \|^2\right) \right\}.$$

where

$$x^{\widehat{\theta}}(k) = \mathfrak{F}^{-1}\left[x(k)e^{-j\left(\pi\frac{k}{N}\widehat{f}_r + \widehat{\phi}\right)}\right],$$

and \mathfrak{F}^{-1} represents the inverse filter corresponding to $\hat{\mathbf{h}} = [1, \hat{h}_1, ..., \hat{h}_q]$.

└─Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods └─The Algorithm

MCMC Parameter Estimation

MMSE estimator computed using samples generated with an MCMC method:

$$\widehat{\theta}_{\text{MMSE}} = E\left[\theta|\mathbf{x}\right] = \int \theta p(\theta|\mathbf{x}) d\theta \simeq \frac{1}{L} \sum_{i=1}^{L} \theta^{i}.$$

where $(\theta^1, ..., \theta^L)$ are samples distributed according to $p(\theta|\mathbf{x})$ generated by running a Markov chain whose stationary distribution is $p(\theta|\mathbf{x})$.

Random-Walk Metropolis-Hasting algorithm

At each iteration, a candidate z is drawn according to an instrumental distribution $q(z|\theta^n)^a$. This candidate is accepted with the following acceptance rule:

$$\boldsymbol{\theta}^{n+1} = \left\{ \begin{array}{ll} z & \text{with probability } \boldsymbol{\alpha}(\boldsymbol{\theta}^n, z) \\ \boldsymbol{\theta}^n & \text{with probability } 1 - \boldsymbol{\alpha}(\boldsymbol{\theta}^n, z) \end{array} \right. \text{ where } \boldsymbol{\alpha}(\boldsymbol{\theta}^n, z) = \min\left\{ 1, \frac{p(z|\mathbf{x})q(\boldsymbol{\theta}^n|z)}{p(\boldsymbol{\theta}^n|\mathbf{x})q(z|\boldsymbol{\theta}^n)} \right\},$$

and $\theta^n = (f_r^n, \phi^n, \mathbf{h}^n)$ represents the current Markov chain state. **Random-Walk:** $q(z|\theta^n) = \mathcal{N}(\theta^n, \sigma^2) \Leftrightarrow z = \theta^n + \epsilon$, with $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

^{*a*}Any instrumental distribution $q(z|\theta^n)$ can be chosen, provided that the support of $p(z|\mathbf{x})$ is contained in the support of $q(z|\theta^n)$: see W.R. Gilks, S. Richardson and D.J. Spiegelhater, Eds London U.K. Chapman & Hall, 1996

Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods

Some simulation results

Classification of Linear Modulations using MCMC Methods: Some Simulation Results

Simulation scenario

- Sets of modulations: $\lambda = \{BPSK, QPSK, 8PSK, 16QAM\} (studied in [Swami00]¹) and <math>\lambda = \{QPSK, 8PSK, 16APSK, 32APSK\} (DVB-S2 standard),$
- Transmission impairments: $\theta = [f_r, \mathbf{h}, \phi]$, with $\mathbf{h} = [1, h_1, h_2]$,
- ▶ 1000 trials belonging to each class λ_i and N = 250 observed symbols,
- For the MCMC sampler²: L = 1500 + (500 burn-in) iterations, $q(z|\theta^n) \sim \mathcal{N}(\theta^n, \sigma^2)$ where $\sigma = 0.03$.

Compared classifiers

- ML classifier (labeled ML) derived assuming $f_r = \phi = 0$ and $\mathbf{h} = [1, 0, 0]$,
- MCMC classifier (labeled MCMC),
- Classifier derived in [Swami00], based on higher-order statistics (labeled HOS).

Classification performance

$$P_{\rm cc} = \frac{1}{c} \sum_{i=1}^{c} P\left[\text{assigning } \mathbf{x} \text{ to } \lambda_i | \mathbf{x} \in \lambda_i\right].$$

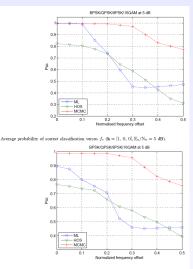
^I[Swami00]: A. Swami and B. Sadler, Hierarchical Digital Modulation Classification Using Cumulants, IEEE Trans. Commun., vol. 48, no. 3, pp. 416 – 429, March 2000

²[Robert98]: C.P. Robert, Discretization and MCMC Convergence Assessment, Berlin: Springer-Verlag, 1998.

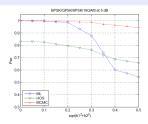
Classification of Linear Modulations using Markov Chain Monte Carlo (MCMC) Methods

└─Some simulation results

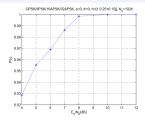
Probability of Correct Classification versus Channel Impairments



Average probability of correct classification versus f_r ($\mathbf{h} = [1, 0.25, 0.15], E_s/N_0 = 5 \text{ dB}$).



Average probability of correct classification versus residual channel modulus (only h is estimated).



Average probability of correct classification for the MCMC classifier versus Eg/N0 in the presence of a residual channel

Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

└─ The Algorithm

BW Parameter Estimation

The BW algorithm requires to associate a first order Hidden Markov Model to the received baseband communication signal: x(k) = f(s(k)) + n(k)

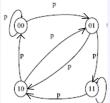
- A state of the HMM at time instant $k : s(k) \in \{s_1, s_2, ..., s_K\},\$
- A state transition probability defined by $d_{ij} = P[s(k+1) = s_j | s(k) = s_i]$
- An initial state distribution vector $\pi = (\pi_1, ..., \pi_K)^T$ defined by $\pi_i = P[s(1) = s_i] = 1/K$ for i = 1, ..., K.
- The pdf of the observation x(k) conditioned on state s_i :

$$p_i[x(k)] \equiv p[x(k)|s(k) = s_i] = \frac{1}{\pi \sigma_n^2} \exp\left(-\frac{|x(k) - m_i|^2}{\sigma_n^2}\right) \text{ for } i = 1, ..., K.$$

where $m_i = f(s_i)$.

Example: BPSK modulation $(d(k) \in \{0, 1\}, M = 2)$, two taps residual channel $(x(k) = h_0 d(k) + h_1 d(k-1) + n(k), k = 1, ..., N)$

- ▶ $s(k) = [d(k)d(k-1)] \in \{s_1 = 00, s_2 = 01, s_3 = 11, s_4 = 10\}, K = 4$
- $\mathbf{m} = [0, h_1, h_0 + h_1, h_0],$
- ▶ $p = d_{ij} = P[s(k+1) = s_j | s(k) = s_i] = \frac{1}{M} = \frac{1}{2}$ if all symbols are equally likely.
- $\pi = (\pi_1, ..., \pi_K)^T$ defined by $\pi_i = P[s(1) = s_i] = 1/4$ for i = 1, ..., 4.



Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

BW Parameter Estimation

Given the HMM, the BW algorithm^a can be used:

- ▶ to determine the probability of the observation sequence given the modulation,
- to estimate the unknown parameters.

Forward Backward procedure

Parameter initialization.

► Compute the normalized forward variable $\alpha_i(k) = P\left[\mathbf{x}_{1:k}, s(k) = s_i | \mathbf{m}, \sigma_n^2, \lambda_j\right]$: Initialization: $\alpha_i(1) = \pi_i p_i(x(1))$ for $1 \le i \le K$ and $c(1) = \left(\sum_{i=1}^K \alpha_i(1)\right)^{-1}$ Induction for k = 1, ..., N - 1, j = 1, ..., K:

$$\alpha_j(k+1) = c(k)p_j\left[x(k+1)\right] \sum_{i=1}^K \alpha_i(k)d_{ij}, \ c(k+1) = \left(\sum_{i=1}^K \alpha_i(k+1)\right)^{-1}$$

• Compute the normalized backward variable $\beta_i(k) = P\left[\mathbf{x}_{k+1:N}, s(k) = s_i | \mathbf{m}, \sigma_n^2, \lambda_j\right]$: Initialization: $\beta_i(N) = c(N)$ for $1 \le i \le N$ Induction for k = 1, ..., N - 1, j = 1, ..., K:

$$\beta_j(k) = c(k) \sum_{j=1}^{K} d_{ij} p_j [x(k+1)] \beta_j(k+1)$$

 $^{{}^{}a}$ [Rabiner89]: L. Rabiner, A tutorial on Hidden Markov Models and selected applications in speech recognition, Proc. IEEE, 77(2):257-286, February 1989

Classification of Linear and Non Linear Modulations using the Baum Welch algorithm

L The Algorithm

BW Parameter Estimation

Parameter estimators:

$$\widehat{m}_{i} = \frac{\sum_{k=1}^{N} \gamma_{i}(k) x(k)}{\sum_{k=1}^{N} \gamma_{i}(k)}$$

$$\hat{\sigma}_n^2 = \frac{1}{N} \sum_{k=1}^N \sum_{i=1}^N \gamma_i(k) |m_i - x(k)|^2$$

where $\gamma_i(k) = \alpha_i(k)\beta_i(k)$.

Estimated probability of the observation sequence given the model:

$$\widehat{p}(\mathbf{x}|\boldsymbol{m}, \sigma_n^2, \lambda_j) = \frac{\sum_{i=1}^{K} \alpha_i(N)}{\sum_{i=1}^{N} c(i)},$$
(1)

To be computed for each possible modulation λ_j , j = 1, ..., c and used in the classification rule.

Classification of Digital Linear and Nonlinear Modulations Classification of Linear Modulations: Some Simulation Results

Classification of Linear Modulations: Some Simulation Results

Simulation scenario 1

- Set of modulations: $\lambda = \{ \text{QPSK}, 8\text{PSK}, 16\text{APSK} \},\$
- Transmission impairments: $f_r = 0$, $\phi = 0$, $\mathbf{h} = [1, 0.35 + 0.33j]$,
- ▶ 1000 trials belonging to each class λ_i and N = 250 observed symbols.

Classification performance

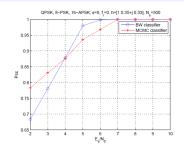


Fig. 14. Average probability of correct classification for MCMC and BW classifiers versus E_s/N_0 in the presence of a residual channel (DVB-S2 standard modulations).

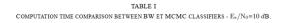
Classification of Linear Modulations: Some Simulation Results

Simulation scenario 2

- Set of modulations: $\lambda = \{QPSK, 8PSK, 16APSK, 32APSK\},\$
- Transmission impairments: $f_r = 0, \phi = 0, \mathbf{h} = [1],$
- ▶ 1000 trials belonging to each class λ_i and N = 250 observed symbols.
- $E_s/N_0 = 10 dB$, QPSK emitted constellation.

Computation time comparison using Matlab 7.4.0.287 (R2007a)

Tested constellation	QPSK	8-PSK	16-APSK	32-APSK
BW classifier	1.47 seconds	4.9 seconds	20.88 seconds	111.9 seconds
MCMC classifier	10.6 seconds	14.4 seconds	23.46 seconds	50.18 seconds



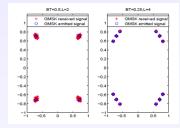
Classification of Linear and Non Linear Modulations using the BW Algorithm: Some Simulation Results

Simulation scenario 3

Sets of modulations: $\lambda = \{BPSK, QPSK, 8PSK, GMSK25, GMSK50\},\$

GMSK modulation: $x(k) = e^{j\Phi(kT,\mathbf{d})} + n(k)$

$$\begin{split} & \Phi(kT,\mathbf{d}) = \pi \sum_{i=k-L+1}^{k} d_i q((k-i)T) + \Phi_k \\ & \phi_k = \left[\frac{\pi}{2} \sum_{i=-\infty}^{k-L} d_i \right] \operatorname{mod}(2\pi) \\ & q(t) = \int_{-\infty}^{t} g(\tau) d\tau, \\ & g(t) = \frac{1}{2T} \left\{ Q\left(2\pi BT \frac{t-\frac{T}{2}}{T\sqrt{\ln 2}} \right) - Q\left(2\pi BT \frac{t+\frac{T}{2}}{T\sqrt{\ln 2}} \right) \right\} \\ & \text{where } Q(t) = \int_{t}^{\infty} \frac{1}{\sqrt{2\pi}} \exp(-\frac{\tau^2}{2}) d\tau. \end{split}$$



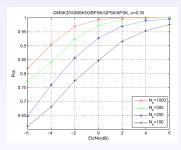
- Transmission impairments: $f_r = 0, \phi = 0, \mathbf{h} = [1],$
- ▶ 1000 trials belonging to each class λ_i and $N \in \{100, 200, 500, 1000\}$ observed symbols.

Classification of Linear and Non Linear Modulations using the BW Algorithm: Some Simulation Results

Simulation scenario 3

- Sets of modulations: $\lambda = \{BPSK, QPSK, 8PSK, GMSK25, GMSK50\},\$
- Transmission impairments: $f_r = 0, \phi = 0, \mathbf{h} = [1],$
- ▶ 1000 trials belonging to each class λ_i and $N \in \{100, 200, 500, 1000\}$ observed symbols.

Classification performance



In/Out	GMSK25	GMSK50	BPSK	QPSK	8PSK
GMSK25	449	51	0	0	0
GMSK50	13	487	0	0	0
BPSK	0	0	500	0	0
QPSK	0	0	0	498	2
8PSK	0	0	0	0	500
		TADLE I			

TABLE II							
w	CLASSIFIER - CONFUSION MATRIX FOR Eh/No=0 dB						

B

In/Out	GMSK25	GMSK50	BPSK	QPSK	8PSK
GMSK25	334	164	1	0	1
GMSK50	123	375	0	1	1
BPSK	0	0	488	4	8
QPSK	0	0	0	313	187
8PSK	0	0	0	81	419

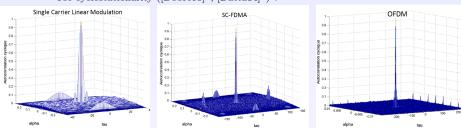
TABLE IV ${\rm BW} \ {\rm classifier} \ {\rm -Confusion} \ {\rm matrix} \ {\rm for} \ {\rm E_b}/{\rm N_0}{=}{-6} \ d{\rm B}$

Future Work

New classes of modulations

▶ OFDM, SC-FDMA, GFDM, Dual Talk signals...

New classification methods



▶ Use cyclostationarity ([Dobre08]³, [Datta14]⁴) ?

Robustness with respect to other system parameters

Symbol rate, synchronization, roll off factor, interferences...

³O. A. Dobre, Q. Zhang, S. Rajan and R. Inkol: second-order cyclostationnarity of cyclically prefixed single carrier linear digital modulations with applications to signal recognition. Global Telecommunications Conference (IEEE CLOBECOM) 2008.

 $^{^4}$ R. Datta, D. Panaitopol and G. Fettweis, Cyclostationary Detection of 5G GFDM Waveform in Cognitive Radio Transmission, Proc. of the Int. Conf. on Ultra Wideband (ICUWB) 2014.