Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

INPT: C. Poulliat, N. Thomas, M.-L. Boucheret CNES: G. Lesthievent TAS: N. Van Wambeke

Thesis Defense, January 15, 2019

1/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalizatior

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Context

- Unmanned Aerial Vehicule (UAV)
 - Earth observation
 - Remote sensing
 - Communications
 - Entertainment
 - Goods delivery
- Must ensure the reliability of the communication system with the UAV

Figure: Spy'Ranger © Aviation Design 2017

< (고) < (코) < (코) < (코) < (코) < (코) < (코) < (2/69)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Context

Command & Non Payload Communication Link by Satellite

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Constraints

- Non linearities introduced by embedded amplifiers
- Multi-path channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Choice of Continuous Phase Modulation

- Non-linear modulation;
- Constant complex envelope;
- Robustness to non-linearities introduced by amplifiers (no need of IBO);
- Good spectral occupancy;
- already in use in satellite communication standards (such as DVB-RCS2) or for tactical communications.

 Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

qualization Notivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Main contributions

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization

Antivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

(中) (문) (문) (문) (문) (문) (전) (6/69)

Main contributions

- A new Minimum Mean Square Error Frequency Domain Equalizer for CPM transmissions over frequency-selective channels
 - Has the same performance as others State of the Art Equalizers
 - But with a significantly lower computational complexity
 - Has been extended to a low-complexity "approximate" equalizer in case of doubly-selective channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Main contributions

- A new Minimum Mean Square Error Frequency Domain Equalizer for CPM transmissions over frequency-selective channels
 - Has the same performance as others State of the Art Equalizers
 - But with a significantly lower computational complexity
 - Has been extended to a low-complexity "approximate" equalizer in case of doubly-selective channels
- Joint Carrier Frequency Offset and channel estimation
 - Compatible with the equalization schemes for CPM
 - Reaches asymptotically the Cramér Rao Bound
 - can use a parametric model (case of the aeronautical channel)
 - Has been extended to Time-Varying channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model Description

Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channel

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

BICM for CPM

Figure: BICM for CPM signals

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

10/69

Complex envelope $s_b(t)$ associated with the transmitted CPM signal:

$$s_b(t) = \sqrt{\frac{2E_s}{T_s}} \exp\left(j\theta(t,\underline{\alpha})\right)$$

where
$$\theta(t, \underline{\alpha}) = 2\pi h \sum_{i=0}^{N-1} \alpha_i q(t - iT_s)$$

and
$$q(t) = egin{cases} \int_0^t g(au) d au, t \leq L T_s \ 1/2, t > L T_s \end{cases}$$

 E_s is the symbol energy, T_s is the symbol period, $\theta(t, \underline{\alpha})$ is the information phase, g(t) is the pulse response, h is the modulation index and L is the CPM memory.

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(1)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Complex envelope $s_b(t)$ associated with the transmitted CPM signal:

$$s_b(t) = \sqrt{\frac{2E_s}{T_s}} \exp\left(j\theta(t,\underline{\alpha})\right)$$

where
$$\theta(t, \underline{\alpha}) = 2\pi h \sum_{i=0}^{N-1} \alpha_i q(t - iT_s)$$

and
$$q(t) = \begin{cases} \int_0^t g(\tau) d\tau, t \leq LT_s \\ 1/2, t > LT_s \end{cases}$$

 E_s is the symbol energy, T_s is the symbol period, $\theta(t, \underline{\alpha})$ is the information phase, g(t) is the pulse response, h is the modulation index and L is the CPM memory.

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(1)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Complex envelope $s_b(t)$ associated with the transmitted CPM signal:

$$s_b(t) = \sqrt{\frac{2E_s}{T_s}} \exp\left(j\theta(t,\underline{\alpha})\right)$$

where
$$\theta(t, \underline{\alpha}) = 2\pi h \sum_{i=0}^{N-1} \alpha_i q(t - iT_s)$$

and
$$q(t) = egin{cases} \int_0^t g(au) d au, t \leq LT_s \ 1/2, t > LT_s \end{cases}$$

 E_s is the symbol energy, T_s is the symbol period, $\theta(t, \underline{\alpha})$ is the information phase, g(t) is the pulse response, h is the modulation index and L is the CPM memory.

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(1)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO

estimation Conclusions & Perspectives

References

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ ヨ ・ つ へ で 11/69

Complex envelope $s_b(t)$ associated with the transmitted CPM signal:

$$s_b(t) = \sqrt{\frac{2E_s}{T_s}} \exp\left(j\theta(t,\underline{\alpha})\right)$$

where
$$\theta(t, \underline{\alpha}) = 2\pi h \sum_{i=0}^{N-1} \alpha_i q(t - iT_s)$$

and
$$q(t) = \begin{cases} \int_0^t g(\tau) d\tau, t \leq LT_s \\ 1/2, t > LT_s \end{cases}$$

 E_s is the symbol energy, T_s is the symbol period, $\theta(t, \underline{\alpha})$ is the information phase, g(t) is the pulse response, h is the modulation index and L is the CPM memory.

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ ヨ ・ つ へ で 11/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(1)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

CPM parameters

- Pulse shapes
 - Gaussian Minimum Shift Keying (GMSK)
 - Rectangular (REC)
 - Raised Cosine (RC)
 - ...

with different properties on the CPM signal

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

(ロ) (母) (目) (日) (日) (12/69)

CPM parameters

► CPM Memory L

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ で 13/69

When L increases

- Reduces the spectrum occupancy
- Increases the receiver complexity

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

CPM parameters

- Modulation index h
 - h is generally a rational number $h = \frac{k}{p}$ smaller than 1
 - p has an influence on the number of state of the CPM trellis
 - ▶ When *h* decreases, the bandwidth occupancy is smaller ... but the Euclidean distance is smaller too

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

ntroduction System Model

Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

୬ ୯୦ 14/69

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Laurent Decomposition

A binary CPM with non-integer modulation index can be represented as a sum of linear PAM [Lau86]:

$$s_b(t) = \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} a_{k,n} g_k(t - nT_s)$$

- K is the number of Laurent Pulses
- The non-linearities is within the pseudo-symbols $\{a_{k,n}\}$
- The PAM decomposition has been extended to *M*-ary CPMs and also to integer indices schemes

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductior

(2)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Features of PAM Decomposition

▶ Most of the energy is within the first "M-1" components

Figure: Example: Binary CPM, Averaged REC/RC ($\alpha = 0.75$), L = 2 and h = 1/2

Can be used to design low-complexity detector

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

ntroduction System Model Description Laurent Decomposition Overall Receiver

A new Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CEO

System Model

Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channel

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

• Received signal: $r(t) = s_b(t) + w(t)$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

(日) (문) (문) (문) (문) (19/69)

- Received signal: $r(t) = s_b(t) + w(t)$
- ► MAP Detector using the BCJR algorithm [CB05]

・ロト ・ 日 ・ ・ 王 ・ 王 ・ シーマー・ 19/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

- Received signal: $r(t) = s_b(t) + w(t)$
- ► MAP Detector using the BCJR algorithm [CB05]
- Capitalizes on the PAM Decomposition

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ ・ 19/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

- Received signal: $r(t) = s_b(t) + w(t)$
- ► MAP Detector using the BCJR algorithm [CB05]
- Capitalizes on the PAM Decomposition

Sufficient statistics:

$$r_{k,n} = \int_0^{(L+1)T_s} r(t+nT_s)g_k^*(-t)dt$$

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ ・ 19/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

(3)

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

- Received signal: $r(t) = s_b(t) + w(t)$
- ► MAP Detector using the BCJR algorithm [CB05]
- Capitalizes on the PAM Decomposition

Sufficient statistics:

$$r_{k,n} = \int_0^{(L+1)T_s} r(t+nT_s)g_k^*(-t)dt$$
 (3)

Branch metric:

$$\mathcal{G}_{n}(\sigma_{n-1},\sigma_{n}) \propto \exp\left\{\frac{2}{N_{0}}\Re\left\{\sum_{k=0}^{K-1}r_{k,n}a_{k,n}^{*}\right\}\right\}\pi(\alpha_{n})$$
(4)
(4)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

- Received signal: $r(t) = s_b(t) + w(t)$
- ► MAP Detector using the BCJR algorithm [CB05]
- Capitalizes on the PAM Decomposition

Sufficient statistics:

$$r_{k,n} = \int_0^{(L+1)T_s} r(t+nT_s)g_k^*(-t)dt$$
 (3)

Branch metric:

$$\mathcal{G}_{n}(\sigma_{n-1},\sigma_{n}) \propto \exp\left\{\frac{2}{N_{0}}\Re\left\{\sum_{k=0}^{K-1}r_{k,n}a_{k,n}^{*}\right\}\right)\right\}\pi(\alpha_{n})$$
(4)

• Low Complexity Design by taking $K = M - 1_{\text{H}} - 1_{\text{H}}$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Overall Receiver over AWGN channels

Iterative receiver

Non-iterative receiver

- No iteration between the CPM detection and the outer channel decoder
- Can result in a non-negligible loss of performance
- May be optimal in case of "non-recursive" CPM or in case of "pragmatic CPM" (precoder)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

System Model Description Laurent Decompositior Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

<ロ> < @> < E> < E> EE のへで 21/69

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channe

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

qualization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

<ロ> < @> < E> < E> EE のへで 22/69

Contributions

- Equivalences and differences between State of the Art MMSE-FDE for CPM over frequency-selective channels
- Design of a low-complexity MMSE-FDE for CPM over frequency-selective channels
- Extension to CPM transmissions over doubly selective channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

qualization

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model

- Received signal is the linear convolution between the transmitted signal and the channel (filtered by a LPF)
- Circularization of the signal by the insertion of a CP or an UW
 - Similar to linear modulation up to termination symbols to ensure the phase continuity

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model

 Circular convolution between the channel and the transmitted over-sampled complex envelop

$$r[n] = \sum_{m} h[m]s[mod(n-m, kN)]$$

<ロ> < @> < E> < E> EE のへで 25/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(5)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

MMSE-FDE for CPM over TIV channels

- Optimal receiver
 - Joint channel equalization and data detection
 - Prohibitive complexity
 - Separation of channel equalization and data detection

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

A new Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Stimation TIV Channel estimation Joint TIV channel and CFO

estimation Conclusions & Perspectives

References

(ロ) (母) (目) (日) (日) (100 - 26/69)
MMSE-FDE for CPM over TIV channels

- Optimal receiver
 - Joint channel equalization and data detection
 - Prohibitive complexity
 - Separation of channel equalization and data detection
- Frequency Domain Equalization (FDE)
 - Complexity does not depend on the channel delay span

 Can achieve low complexity structure (linear modulation) Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE <u>An extension to</u>

Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

MMSE-FDE for CPM over TIV channels

- Optimal receiver
 - Joint channel equalization and data detection
 - Prohibitive complexity
 - Separation of channel equalization and data detection
- Frequency Domain Equalization (FDE)
 - Complexity does not depend on the channel delay span

<ロ> < @> < E> < E> EE のへで 26/69

- Can achieve low complexity structure (linear modulation)
- State of the Art MMSE-FDE
 - Channel and Laurent Pulses Equalizer (Pancaldi)
 - Channel Equalizer (Van Thillo)
 - Equivalence

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

MMSE-FDE for CPM over TIV channels

- Optimal receiver
 - Joint channel equalization and data detection
 - Prohibitive complexity
 - Separation of channel equalization and data detection
- Frequency Domain Equalization (FDE)
 - Complexity does not depend on the channel delay span
 - Can achieve low complexity structure (linear modulation)
- State of the Art MMSE-FDE
 - Channel and Laurent Pulses Equalizer (Pancaldi)
 - Channel Equalizer (Van Thillo)
 - Equivalence
- Contribution
 - A new exact low complexity MMSE-FDE
 - Complexity in O(Nlog(N))
 - Same performance as the others equalizers

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Receiver Structure

<ロ> < @> < E> < E> EE のへで 27/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Channel and Laurent Pulses Equalizer (1/2)

Fractionally-spaced representation of the signal

- ▶ Ψ(t) ideal LPF
- Received signal in the FD:

$$\underline{\underline{R}} = \underbrace{\underline{\underline{HL}}}_{\underline{\underline{A}}\underline{\underline{M}}} \underline{\underline{B}}_{2N} + \underline{\underline{W}} = \underline{\underline{MB}}_{2N} + \underline{\underline{W}}$$
(6)

• Equalizer given by $\underline{\underline{D}}_{LE} = \underline{\underline{JM}}^H [\underline{\underline{M}} \Phi \underline{\underline{M}}^H + \sigma_n^2 I_{2N}]^{-1}$:

$$\underline{\widehat{B}} = \underline{JM}^{H} [\underline{M\Phi M}^{H} + \sigma_{n}^{2} I_{2N}]^{-1} \underline{R}$$
(7)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varving

Channels

Estimation Motivation

TIV Channel estimation Joint TIV channel and CFO estimation

Channel and Laurent Pulses Equalizer (2/2)

Interest:

- If only one LP is considered, similar to [TS05]
- Similar to a Fractionally Spaced Equalizer (taking into account the correlation of the pseudo-symbols)
- Main issues:
 - Full auto-correlation matrix of the pseudo-symbols vectors <u>Φ</u> to inverse
 - Requires a non-conventional CPM detector

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

ntroduction

System Model Description Laurent Decomposition Overall Receiver

qualization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

29/69

Channel Equalizer (1/2)

Polyphase representation of the signal

Received signal in the FD:

$$\underline{\underline{R}}_{p} = \underline{\underline{\underline{H}}}_{p} \underbrace{\underline{\underline{\underline{L}}}}_{p} \underline{\underline{B}}_{p} + \underline{\underline{W}}_{p} = \underline{\underline{\underline{H}}}_{p} \underline{\underline{S}}_{p} + \underline{\underline{W}}_{p}$$

► Equalizer given by $\underline{\underline{G}} = \underline{\underline{R}}_{SS,p} \underline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{\underline{R}}_{SS,p} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1}$

 $\widehat{\underline{S}}_{p} = \underline{\underline{R}}_{SS} \underline{\underline{n}} \underline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{\underline{R}}_{SS} \underline{\underline{n}} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1} \underline{\underline{R}}_{p}$ (9)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

(8)

30/69

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Channel Equalizer (1/2)

Polyphase representation of the signal

Received signal in the FD:

$$\underline{\underline{R}}_{p} = \underline{\underline{\underline{H}}}_{p} \underbrace{\underline{\underline{\underline{L}}}}_{p} \underline{\underline{B}}_{p} + \underline{\underline{W}}_{p} = \underline{\underline{\underline{H}}}_{p} \underline{\underline{S}}_{p} + \underline{\underline{W}}_{p}$$

► Equalizer given by $\underline{\underline{G}} = \underline{\underline{R}}_{SS,p} \underline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{\underline{R}}_{SS,p} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1}$

 $\widehat{\underline{S}}_{p} = \underline{\underline{R}}_{\varsigma\varsigma} \underline{\underline{n}} \underline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{\underline{R}}_{\varsigma\varsigma} \underline{\underline{n}} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1} \underline{\underline{R}}_{p}$ (9)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

(8)

30/69

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Channel Equalizer (2/2)

- <u><u><u>R</u></u>_{SS,p} non diagonal matrix</u>
 - Due to the polyphase representation, its Time-Domain counterpart is NOT a circulant matrix:

Conventional CPM Detector

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

References

Equivalence

- Both MMSE-FDE (same sampling rate...)
- Should have the same performance
- Channel Equalizer: <u>S</u> = <u>GR</u>
- Channel and LP Equalizer: $\underline{\widehat{B}} = \underline{D}_{IF} \underline{R}$
- Link between them: $\underline{\underline{G}}_{MMSE} = \underline{\underline{L}}_{p} \underline{\underline{D}}_{LE}$
- Therefore $\underline{\widetilde{S}} = \underline{\underline{L}}_{p} \underline{\widehat{B}}$
- Strictly equivalent up to a proper linear post-processing

・ロト ・ 日 ・ ・ ヨ ・ ヨ = つへで 32/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Limitation of the previous equalizers

- Both uses the circularization of the channel:
 - Channel matrix diagonal in the FD
 - But time-averaged auto-correlation matrix NOT diagonal
 - Still have an important computational complexity

イロト (得) (日) (日) (日) (日)

Does NOT exploit the circularization of the signal

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

qualization

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

33/69

Table of Content

System Model Description Laurent Decompositior Overall Receiver

Equalization

Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ ・ 34/69

A new MMSE-FDE

- Also a MMSE Frequency Domain Equalizer
- We use the Fractionally-Spaced Representation
- We achieve the same performance than the previous MMSE-FDEs
 - No approximation is made
- ... but with a significantly lower complexity
 - "One-tap" MMSE-FDE
 - by exploiting the circular properties of the signal

・ロト ・ 日 ・ ・ ヨ ・ ヨ = つへで 35/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Circularization of the signal

- Equivalence between the circular convolution and the linear convolution
- Over a finite-time observation, equivalence between this circular convolution and a linear convolution of <u>h</u> and a periodic version of <u>s</u>
- By considering this periodic version of <u>s</u>, the time-averaged auto-correlation function of <u>s</u> is periodic

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying

Channels 2arameters

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Circularization of the signal

- Equivalence between the circular convolution and the linear convolution
- Over a finite-time observation, equivalence between this circular convolution and a linear convolution of <u>h</u> and a periodic version of <u>s</u>
- By considering this periodic version of <u>s</u>, the time-averaged auto-correlation function of <u>s</u> is periodic

<ロ> < @> < E> < E> EE のへで 36/69

Figure: Periodization of the time-averaged auto-correlation function

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Use the FS representation of the signal as [PV06]

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

- Use the FS representation of the signal as [PV06]
- Considers only the channel contribution as [VT+09]

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

(日) (문) (문) (문) (문) (10,000 37/69)

- Use the FS representation of the signal as [PV06]
- Considers only the channel contribution as [VT+09]
- Received signal in the FD: $\underline{\mathbf{R}} = \underline{\mathbf{HS}} + \underline{\mathbf{W}}$
- Equalizer given by:

$$\underline{\underline{J}}_{\text{MMSE}} = \underline{\underline{R}}_{\text{SS}} \underline{\underline{H}}^{H} (\underline{\underline{HR}}_{\text{SS}} \underline{\underline{H}}^{H} + \sigma_{n\underline{\underline{I}}kN}^{2})^{-1}$$
(10)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

- Use the FS representation of the signal as [PV06]
- Considers only the channel contribution as [VT+09]
- Received signal in the FD: $\underline{\mathbf{R}} = \underline{\mathbf{HS}} + \underline{\mathbf{W}}$
- Equalizer given by:

$$\underline{\underline{J}}_{\text{MMSE}} = \underline{\underline{R}}_{\text{SS}} \underline{\underline{H}}^{H} (\underline{\underline{HR}}_{\text{SS}} \underline{\underline{H}}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{kN})^{-1}$$
(10)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

 r_{ss} is the time-averaged discrete auto-correlation function of the over-sampled complex envelope of the transmitted CPM signal Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varving

Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

・ロト ・ 日 ・ ・ ヨ ・ ヨ = うへで 38/69

- \blacktriangleright \underline{r}_{ss} is the time-averaged discrete auto-correlation function of the over-sampled complex envelope of the transmitted CPM signal
 - also periodic

•
$$r_{ss}^{*}(l) = r_{ss}(-l) = r_{ss}(kN - l)$$

- r sis circulant
 R circulant, by DFT properties (as <u>H</u>)

$$\mathbf{r}_{=ss} = \begin{bmatrix} r_{ss}(0) & r_{ss}^{*}(1) & r_{ss}^{*}(2) & \dots & r_{ss}^{*}(kN-1) \\ r_{ss}(1) & r_{ss}(0) & r_{ss}^{*}(1) & \dots & r_{ss}^{*}(kN-2) \\ r_{ss}(2) & r_{ss}(1) & r_{ss}(0) & \dots & r_{ss}^{*}(kN-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{ss}(kN-1) & r_{ss}(kN-2) & r_{ss}(kN-3) & \dots & r_{ss}(0) \end{bmatrix}$$
(11)
$$= \begin{bmatrix} r_{ss}(0) & r_{ss}(kN-1) & r_{ss}(kN-2) & \dots & r_{ss}(1) \\ r_{ss}(1) & r_{ss}(0) & r_{ss}(kN-1) & \dots & r_{ss}(2) \\ r_{ss}(2) & r_{ss}(1) & r_{ss}(0) & \dots & r_{ss}(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{ss}(kN-1) & r_{ss}(kN-2) & r_{ss}(kN-3) & \dots & r_{ss}(0) \end{bmatrix}$$
(12)

Romain Chayot

Description Laurent Decomposition Overall Receiver

Motivation

An extension to Time-Varving

Channels

Motivation TIV Channel stimation Joint TIV channel and CFO estimation

- \blacktriangleright \underline{r}_{ss} is the time-averaged discrete auto-correlation function of the over-sampled complex envelope of the transmitted CPM signal
 - also periodic

•
$$r_{ss}^{*}(l) = r_{ss}(-l) = r_{ss}(kN - l)$$

- r sis circulant
 R circulant, by DFT properties (as <u>H</u>)

$$\mathbf{r}_{sss} = \begin{bmatrix} r_{ss}(0) & r_{ss}^{*}(1) & r_{ss}^{*}(2) & \dots & r_{ss}^{*}(kN-1) \\ r_{ss}(1) & r_{ss}(0) & r_{ss}^{*}(1) & \dots & r_{ss}^{*}(kN-2) \\ r_{ss}(2) & r_{ss}(1) & r_{ss}(0) & \dots & r_{ss}^{*}(kN-3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{ss}(kN-1) & r_{ss}(kN-2) & r_{ss}(kN-3) & \dots & r_{ss}(0) \end{bmatrix}$$
(11)
$$= \begin{bmatrix} r_{ss}(0) & r_{ss}(kN-1) & r_{ss}(kN-2) & \dots & r_{ss}(1) \\ r_{ss}(1) & r_{ss}(0) & r_{ss}(kN-1) & \dots & r_{ss}(2) \\ r_{ss}(2) & r_{ss}(1) & r_{ss}(0) & \dots & r_{ss}(3) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ r_{ss}(kN-1) & r_{ss}(kN-2) & r_{ss}(kN-3) & \dots & r_{ss}(0) \end{bmatrix}$$
(12)

Romain Chayot

Description Laurent Decomposition Overall Receiver

Motivation

An extension to Time-Varving Channels

Motivation TIV Channel stimation Joint TIV channel and CFO estimation

Structure of the equalizer

▶ <u>J</u>_{MMSE} is a diagonal matrix
 ▶ "One-tap" MMSE-FDE:

$$J[I] = \frac{R_{\rm SS}[I]H^*[I]}{R_{\rm SS}[I]|H[I]|^2 + \sigma_I^2}$$

イロト (得) (日) (日) (日) (日) (の)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(13)

39/69

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Structure of the equalizer

▶ <u>J</u>_{MMSE} is a diagonal matrix
 ▶ "One-tap" MMSE-FDE:

$$J[I] = \frac{R_{\rm SS}[I]H^*[I]}{R_{\rm SS}[I]|H[I]|^2 + \sigma_{\rm R}^2}$$

イロト (得) (日) (日) (日) (日) (の)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

(13)

39/69

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Structure of the equalizer

▶ <u>J</u>_{MMSE} is a diagonal matrix
 ▶ "One-tap" MMSE-FDE:

$$J[I] = \frac{R_{\rm SS}[I]H^*[I]}{R_{\rm SS}[I]|H[I]|^2 + \sigma_n^2}$$

- Use of a conventional CPM Detector
- Has a low-complexity structure without any approximation

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduc

(13)

Dystem Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

MMSE-FDE An extension to Time-Varying Channels

Parameters stimation Motivation

TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

References

Difference with the Channel MMSE-FDE [VT+09]

- Difference in the representation of the received signal
- Using the polyphase representation, the time-domain auto-correlation matrix of the over-sampled complex envelope does not have anymore a circular structure

- Its FD counterpart is therefore not diagonal
- ► Also, the Channel matrix in the FD (<u>H</u>_p) is not a diagonal in the Polyphase Rep.

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Summary and Computational complexity comparison

Notation	Reference	Equalizer	Signal Rep.
LD-FS-MMSE-FDE	[PV06]	$\widehat{\underline{B}} = \underline{J}\underline{M}^{H} [\underline{M}\underline{\Phi}\underline{M}^{H} + \sigma_{n}^{2} I_{2N}]^{-1} \underline{R}$	FS
PP-MMSE-FDE	[VT+09]	$\widehat{\underline{S}}_{p} = \overline{\underline{R}}_{SS,p} \overline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{R}_{SS,p} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{I}_{2N}]^{-1} \underline{R}_{p}$	Polyphase
LD-PP-MMSE-FDE	[Cha+17]	$\underline{\widehat{B}} = \underline{R}_{BB} \underline{P}^{H} [\underline{P} R_{BB} \underline{P}^{H} + \sigma_n^2 I_{2N}]^{-1} \underline{R}_p$	Polyphase
FS-MMSE-FDE	[Cha+18]	$\widehat{\underline{S}} = \underline{\underline{R}}_{SS} \underline{\underline{H}}^{H} [\underline{\underline{HR}}_{SS} \underline{\underline{H}}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1} \underline{\underline{R}}$	FS

Receiver Type	FFTs and IFFTs	Equalizer Calc.	Equalization
Linear MMSE-TDE [PV06]	0	$+8N^{3}$	$+\mathcal{O}(PN^3)$
LD-FS-MMSE-FDE [PV06]	$2N\log(2N) + PN\log(N)$	$+8N^{3}$	$+\mathcal{O}(PN^3)$
PP-MMSE-FDE [VT+09]	$2N\log(N) + PN\log(N)$	$+8N^{3}$	$+\mathcal{O}(PN^3)$
Approx. PP-MMSE-FDE [VT+09]	$2N\log(N) + PN\log(N)$	+O(2N)	$+\mathcal{O}(PN)$
FS-MMSE-FDE	$2N\log(2N) + PN\log(N)$	+O(2N)	+O(PN)

Romain Chayot

Description Laurent Decomposition Overall Receiver

Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Summary and Computational complexity comparison

Notation	Reference	Equalizer	Signal Rep.
LD-FS-MMSE-FDE	[PV06]	$\widehat{\underline{B}} = \underline{J}\underline{M}^{H} [\underline{M}\underline{\Phi}\underline{M}^{H} + \sigma_{n}^{2} I_{2N}]^{-1} \underline{R}$	FS
PP-MMSE-FDE	[VT+09]	$\widehat{\underline{S}}_{p} = \overline{\underline{R}}_{SS,p} \overline{\underline{H}}_{p}^{H} [\underline{\underline{H}}_{p} \underline{R}_{SS,p} \underline{\underline{H}}_{p}^{H} + \sigma_{n}^{2} \underline{I}_{2N}]^{-1} \underline{R}_{p}$	Polyphase
LD-PP-MMSE-FDE	[Cha+17]	$\underline{\widehat{B}} = \underline{R}_{BB} \underline{P}^{H} [\underline{P} R_{BB} \underline{P}^{H} + \sigma_n^2 I_{2N}]^{-1} \underline{R}_p$	Polyphase
FS-MMSE-FDE	[Cha+18]	$\widehat{\underline{S}} = \underline{\underline{R}}_{SS} \underline{\underline{H}}^{H} [\underline{\underline{HR}}_{SS} \underline{\underline{H}}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N}]^{-1} \underline{\underline{R}}$	FS

Receiver Type	FFTs and IFFTs	Equalizer Calc.	Equalization
Linear MMSE-TDE [PV06]	0	$+8N^{3}$	$+\mathcal{O}(PN^3)$
LD-FS-MMSE-FDE [PV06]	$2N\log(2N) + PN\log(N)$	$+8N^{3}$	$+\mathcal{O}(PN^3)$
PP-MMSE-FDE [VT+09]	$2N\log(N) + PN\log(N)$	$+8N^{3}$	$+\mathcal{O}(PN^3)$
Approx. PP-MMSE-FDE [VT+09]	$2N\log(N) + PN\log(N)$	+O(2N)	$+\mathcal{O}(PN)$
FS-MMSE-FDE	$2N\log(2N) + PN\log(N)$	$+\mathcal{O}(2N)$	$+\mathcal{O}(PN)$

Romain Chayot

Description Laurent Decomposition Overall Receiver

Motivation

A new MMSE-FDE

An extension to Time-Varying Channels

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Simulation Results (1/2)

Figure: BER over an aeronautical channel

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalizatio

Motivation

MMSE-FDE

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Simulation Results (2/2)

Figure: Maximum achievable coding rate for the different MMSE-FDE over a generic frequency-selective channel Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

System Model Description Laurent Decomposition Overall Receiver Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

43/69

Table of Content

System Model Description Laurent Decompositior Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

An extension to Time-Varying Channels: Motivation

CPM transmission over Time-Variant (TV) channels

$$r[l] = r\left(\frac{lT}{k}\right) = \sum_{m} s[m]h[l; l-m] + w[l] \qquad (17)$$

<ロ> < @> < E> < E> EE のへで 45/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

arameters stimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

An extension to Time-Varying Channels: Motivation

CPM transmission over Time-Variant (TV) channels

$$r[l] = r\left(\frac{lT}{k}\right) = \sum_{m} s[m]h[l; l-m] + w[l] \qquad (17)$$

<ロ> < @> < E> < E> EE のへで 45/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

arameters stimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

An extension to Time-Varying Channels: Motivation

CPM transmission over Time-Variant (TV) channels

$$r[l] = r\left(\frac{lT}{k}\right) = \sum_{m} s[m]h[l; l-m] + w[l] \qquad (17)$$

<ロ> < @> < E> < E> EE のへで 45/69

- State of the Art [Dar+16]
 - MMSE Time-Domain Equalizer
 - Complexity growing with the channel span
 - Capitalizes on the Laurent Decomposition

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

An extension to Time-Varying Channels: Motivation

CPM transmission over Time-Variant (TV) channels

$$r[l] = r\left(\frac{lT}{k}\right) = \sum_{m} s[m]h[l; l-m] + w[l] \qquad (17)$$

- State of the Art [Dar+16]
 - MMSE Time-Domain Equalizer
 - Complexity growing with the channel span
 - Capitalizes on the Laurent Decomposition
- Main Issue for MMSE-FDE
 - FD channel matrix is no more diagonal
 - Requires higher computation (inversion of full matrix)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Band MMSE-FDE: Motivation

 Main idea: exploit the band structure of the channel matrix in the FD ([RBL06])

$$\underline{\underline{H}} \approx \underline{\underline{H}}_Q = \underline{\underline{B}}^{(Q)} \circ \underline{\underline{H}}$$

 $\underline{\underline{B}}^{(Q)}$ matrix with 1's only on Q sub-diagonals \circ element-wise multiplication

detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

(18)

<ロ> < @> < E> < E> EE のへで 46/69

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation TIV Channel estimation Joint TIV channel

Conclusions & Perspectives

References
Band MMSE-FDE: Motivation

 Main idea: exploit the band structure of the channel matrix in the FD ([RBL06])

$$\underline{\underline{H}} \approx \underline{\underline{H}}_{Q} = \underline{\underline{B}}^{(Q)} \circ \underline{\underline{H}}$$

 $\underline{\underline{B}}^{(Q)} matrix with 1's only on Q sub-diagonals$ o element-wise multiplication

Figure: FD channel matrix from [RBL06]

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ で 46/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

(18)

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Linear block MMSE equalizer given by:

 $\underline{\underline{J}}_{\mathsf{MMSE},Q} = \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} (\underline{\underline{H}}_{Q} \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N})^{-1}$ (19)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE <u>An extension to</u>

Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO

estimation Conclusions & Perspectives

References

Linear block MMSE equalizer given by:

$$\underline{\underline{J}}_{\mathsf{MMSE},Q} = \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} (\underline{\underline{H}}_{Q} \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N})^{-1}$$
(19)

• Capitalization on the band structure of $\underline{J}_{\text{MMSE},Q}$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

References

Linear block MMSE equalizer given by:

 $\underline{\underline{J}}_{\mathsf{MMSE},Q} = \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} (\underline{\underline{H}}_{Q} \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N})^{-1}$ (19)

- ► Capitalization on the band structure of J_MMSE.Q
- Procedure:
 - Compute the band matrix $\underline{\underline{K}} = \underline{\underline{H}}_{Q} \underline{\underline{R}}_{SS} \underline{\underline{H}}_{Q}^{H} + \sigma_{n=\underline{\underline{I}}_{kN}}^{2}$;
 - Compute the LDL decomposition of $\underline{\underline{K}} = \underline{\underline{L}}\underline{\underline{D}}\underline{\underline{L}}^{H}$ where $\underline{\underline{\underline{L}}}$ is a lower triangular matrix and $\underline{\underline{D}}$ a diagonal matrix following [RBL05];
 - Solve the triangular system $\underline{Lf} = \underline{R}$;
 - Solve the diagonal system $\underline{\underline{Dg}} = \overline{\underline{f}};$
 - Solve the triangular system $\underline{\underline{L}}^{H}\underline{\underline{d}} = \underline{\underline{g}}$;
 - Solve the triangular system $\underline{\underline{L}}^{H} \underline{\underline{d}} = \underline{\underline{g}}$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Linear block MMSE equalizer given by:

$$\underline{\underline{J}}_{\mathsf{MMSE},Q} = \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} (\underline{\underline{H}}_{Q} \underline{\underline{R}}_{\mathsf{SS}} \underline{\underline{H}}_{Q}^{H} + \sigma_{n}^{2} \underline{\underline{I}}_{2N})^{-1}$$
(19)

- ► Capitalization on the band structure of <u>J</u>_MMSE.Q
- Procedure:
 - Compute the band matrix $\underline{\underline{K}} = \underline{\underline{H}}_Q \underline{\underline{R}}_{SS} \underline{\underline{H}}_Q^H + \sigma_n^2 \underline{\underline{I}}_{\underline{k}N}$;
 - Compute the LDL decomposition of $\underline{\underline{K}} = \underline{\underline{LDL}}^{H}$ where $\underline{\underline{\underline{L}}}$ is a lower triangular matrix and $\underline{\underline{\underline{D}}}$ a diagonal matrix following [RBL05];
 - Solve the triangular system $\underline{Lf} = \underline{R}$;
 - Solve the diagonal system $\underline{\underline{Dg}} = \overline{\underline{f}};$
 - Solve the triangular system $\underline{\underline{L}}^{H}\underline{\underline{d}} = \underline{\underline{g}}$;
 - Solve the triangular system $\underline{\underline{L}}^{H}\underline{\underline{d}} = \underline{\underline{g}}$
- Computational complexity: $O(kN(2Q^2 + Q + \log(kN)))$

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

qualization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Simulation Results (1/3)

"En Route" Scenario:

- Aeronautical channel by satellite
- C Band
- Power ratio between the two paths: C/M = 5dB

<ロ> < @> < E> < E> EE のへで 48/69

Doppler Spread of 500Hz

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Simulation Results (2/3)

Figure: Influence of the parameter Q

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ ヨ ・ つ へ で 49/69

Simulation Results (3/3)

 Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductior

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation TIV Channel

Joint TIV channel and CFO estimation

Table of Content

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

A new

An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Table of Content

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation TIV Channel estimation

Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation

TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Motivation

- Previous work -> perfect synchronization and perfect channel knowledge
- CFO, phase and timing recovery
 - most of those methods for CPM transmission over AWGN channels
 - CRB derived in case of AWGN channels [HP13]
- Case of interest: transmission over TIV and TV channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Contributions

Channel Estimation

- Case of TIV channels
- Case of TV channels (using BEM)

Joint Carrier Frequency Offset and Channel Estimation

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ ・ 54/69

- Case of TIV channels
- Case of TV channels
- Derivation of the Cramér Rao Bound

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters stimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Contributions

Channel Estimation

- Case of TIV channels
- Case of TV channels (using BEM)

Joint Carrier Frequency Offset and Channel Estimation

・ロト ・ 日 ・ ・ ヨ ・ ヨ ・ シ へ ・ 54/69

- Case of TIV channels
- Case of TV channels
- Derivation of the Cramér Rao Bound

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Table of Content

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

qualization Motivation

MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

<ロ> < @> < E> < E> EE のへで 55/69

System Model

Received signal:

$$\begin{bmatrix} r_{[1]} \\ \vdots \\ \vdots \\ r_{[kJ-1]} \end{bmatrix} = \begin{bmatrix} s_{[0]} & s_{[-1]} & \dots & s_{[-L_{h}+1]} \\ s_{[1]} & s_{[0]} & s_{[-1]} & \dots \\ s_{[L_{h}-1]} & \dots & s_{[1]} & s_{[0]} \\ \vdots \\ s_{[kJ-1]} & \cdots & s_{[kJ-L_{h}+1]} & s_{[kJ-L_{h}]} \end{bmatrix} \begin{bmatrix} h_{[0]} \\ h_{[1]} \\ \vdots \\ \vdots \\ h_{[L_{h}-1]} \end{bmatrix} + \underline{w}$$

$$(20)$$

$$= \underline{sh} + \underline{w}$$

$$(21)$$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

References

56/69

System Model

Received signal:

$$\begin{bmatrix} r[0] \\ r[1] \\ \vdots \\ \vdots \\ r[kJ-1] \end{bmatrix} = \begin{bmatrix} s[0] & s[-1] & \dots & s[-L_h+1] \\ s[1] & s[0] & s[-1] & \dots \\ s[L_h-1] & \dots & s[1] & s[0] \\ \vdots \\ s[kJ-1] & \dots & s[kJ-L_h+1] & s[kJ-L_h] \end{bmatrix} \begin{bmatrix} h[0] \\ h[1] \\ \vdots \\ \vdots \\ h[L_h-1] \end{bmatrix} + \underline{w}$$

$$(20)$$

$$= sh + w$$

$$(21)$$

Difference with linear modulations:

- We do not estimate a discrete equivalent channel (at baud rate)
- We estimate an over-sampled channel filtered by a LPF at the receiver

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation TIV Channel estimation Joint TIV channel and CFO

Channel to estimate

Figure: Finite impulse responses of $h_c(t)$ and h(t)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Estimation Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Channel Estimation

Least Squares Channel estimate:

$$\widehat{\underline{\boldsymbol{h}}}_{\mathsf{LS}} = (\underline{\underline{\boldsymbol{s}}}^H \underline{\underline{\boldsymbol{s}}})^{-1} \underline{\underline{\boldsymbol{s}}}^H \underline{\boldsymbol{r}}$$
(22)

イロト 不得下 イヨト イヨト 日日 うえで

- Works at kR_s ($k \ge 2$)
- Can be improved by using an *a priori* knowledge of the delays (aeronautical channel by satellite)
- Can be extended to TV Channels using Basis Expansion Models (*BEM*)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

58/69

Simulation Results

 Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation Motivation

estimation Joint TIV channel and CFO estimation

Table of Content

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introductio

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

System Model

Introduction of a Carrier Frequency Offset:

 $\underline{\mathbf{r}} = \underline{\underline{\Gamma}}(f)\underline{\underline{\mathbf{s}}}\underline{\mathbf{h}} + \underline{\mathbf{w}}$

$$\underline{\underline{\Gamma}}(f) = \operatorname{diag}\{1, e^{j2\pi fT_e}, e^{j2\pi f2T_e}, \dots, e^{j2\pi f(kJ-1)T_e}\}$$

$$\underline{\underline{s}} = \begin{bmatrix} s[0] & 0 & \dots & 0 \\ s[1] & s[0] & 0 & \vdots \\ s[L_h-1] & \dots & s[1] & s[0] \\ \ddots & \ddots & \ddots & \ddots \\ s[kJ-1] & \dots & s[kJ-L_h+1] & s[kJ-L_h] \end{bmatrix}^{T}$$

$$\underline{\underline{h}} = \begin{bmatrix} h[0] & h[1] & \dots & \dots & h[L_h-1] \end{bmatrix}^{T}$$

<ロト < @ ト < E ト < E ト E E の へ C 61/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

(23)

System Model Description Laurent Decomposition Overall Receiver

Equalization

Anew A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

System Model

Introduction of a Carrier Frequency Offset:

 $\underline{r} = \underline{\underline{\Gamma}}(f)\underline{\underline{s}}\underline{h} + \underline{w}$

[

$$\underline{\underline{f}}(f) = \text{diag}\{1, e^{j2\pi fT_e}, e^{j2\pi f^2 T_e}, \dots, e^{j2\pi f(kJ-1)T_e}\}$$

$$\underline{\underline{s}} = \begin{bmatrix} s[0] & 0 & \dots & 0 \\ s[1] & s[0] & 0 & \vdots \\ s[L_h - 1] & \dots & s[1] & s[0] \\ \ddots & \ddots & \ddots & \ddots \\ s[kJ - 1] & \dots & s[kJ - L_h + 1] & s[kJ - L_h] \end{bmatrix}$$

$$\underline{\underline{h}} = \begin{bmatrix} h[0] & h[1] & \dots & h[L_h - 1] \end{bmatrix}^T$$

(中) (문) (문) (문) 문) 전역은 61/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

(23)

System Model Description Laurent Decomposition Overall Receiver

Equalization

Anew A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Joint ML Estimation of \underline{h} and the CFO f

- [MM00] for linear modulations
- Log-likelihood function for the parameters <u>h</u> and f is:

$$\Delta(\underline{\widetilde{h}},\widetilde{f}) = -\frac{1}{\sigma_n^2} [\underline{\underline{r}} - \underline{\underline{\Gamma}}(\widetilde{f}) \underline{\underline{\underline{s}}} \underline{\widetilde{h}}]^H [\underline{\underline{r}} - \underline{\underline{\Gamma}}(\widetilde{f}) \underline{\underline{\underline{s}}} \underline{\widetilde{h}}] \qquad (24)$$

- Maximize Δ over $\underline{\widetilde{h}}$ and \widetilde{f}
- Estimate of \underline{h} for a given \tilde{f} is

$$\underline{\widehat{h}}(\widetilde{f}) = (\underline{\underline{s}}^H \underline{\underline{s}})^{-1} \underline{\underline{s}}^H \underline{\underline{\Gamma}}^H (\widetilde{f}) \underline{\underline{r}}$$

We use this estimate in Eq.(24) to estimate f

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

(25)

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

Procedure

• Compute \hat{f} as follows:

$$\widehat{f} = \arg\max_{\widetilde{f}} \left(-\rho(0) + 2\Re \left\{ \sum_{m=0}^{kJ-1} \rho(m) e^{-j2\pi \widetilde{f}m} \right\} \right)$$
(26)

where
$$\rho(m) = \sum_{l=0}^{kJ-1} [\underline{\underline{B}}]_{l-m,m} r[l] r^*[l-m]$$
 (27)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References

(28)

• Compute $\underline{\hat{h}}$ using the LS estimate on the counter-rotated received samples using $\underline{\hat{h}}(\tilde{f}) = (\underline{s}^H \underline{s})^{-1} \underline{s}^H \underline{\Gamma}^H(\tilde{f}) \underline{r}$.

and $\underline{\boldsymbol{B}} \triangleq \underline{\boldsymbol{s}}(\underline{\boldsymbol{s}}^H \underline{\boldsymbol{s}})^{-1} \underline{\boldsymbol{s}}^H$

Simulation Results (1/2)

Figure: Carrier Recovery for 4-ary CPM over AWGN channel

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Simulation Results (2/2)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Table of Content

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions

Derivation a low-complexity MMSE-FDE for CPM

- Exact for TIV channels
- Approximate for TV channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

<ロト < @ ト < E ト < E ト E E の Q @ 67/69

Conclusions

Derivation a low-complexity MMSE-FDE for CPM

- Exact for TIV channels
- Approximate for TV channels
- Derivation of a LS Channel Estimation
 - In case of TIV channel
 - In case of TV channel (using BEM)
 - Parametric Estimation with an *a priori* knowledge on the delays

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions

Derivation a low-complexity MMSE-FDE for CPM

- Exact for TIV channels
- Approximate for TV channels
- Derivation of a LS Channel Estimation
 - In case of TIV channel
 - In case of TV channel (using BEM)
 - Parametric Estimation with an a priori knowledge on the delays
- Derivation of a joint ML Channel and CFO Estimator
 - For both TIV and TV channels
 - Reaches the CRB (also derived) asymptotically

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Non-linear equalization scheme (DFE or Turbo)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

(日) (문) (문) (문) (문) (문) (전) (68/69)

- Non-linear equalization scheme (DFE or Turbo)
- Receiver Windowing for Band MMSE-FDE for CPM transmissions over doubly-selective channels

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives

- Non-linear equalization scheme (DFE or Turbo)
- Receiver Windowing for Band MMSE-FDE for CPM transmissions over doubly-selective channels

Preamble design

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Perspectives

- Non-linear equalization scheme (DFE or Turbo)
- Receiver Windowing for Band MMSE-FDE for CPM transmissions over doubly-selective channels

4 ロ ト 4 日 ト 4 王 ト モニ ク へ で 68/69

- Preamble design
- Timing Recovery

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Perspectives

- Non-linear equalization scheme (DFE or Turbo)
- Receiver Windowing for Band MMSE-FDE for CPM transmissions over doubly-selective channels
- Preamble design
- Timing Recovery
- Optimal BEM model for the aeronautical channel

4 ロ ト 4 日 ト 4 王 ト モニ ク へ で 68/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation

A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

List of publications

Journal Paper:

"A New Exact Low-Complexity MMSE Equalizer for Continuous Phase Modulation", IEEE Communications Letters, 2018

International conference papers:

- "Doubly-Selective Channel Estimation for Continuous Phase Modulation", *IEEE Int. Military Communications Conference* (*MILCOM*), Los Angeles (CA), U.S.A, 2018
- "A Frequency-Domain Band-MMSE Equalizer for Continuous Phase Modulation over Frequency-Selective Time-Varying Channels", European Signal Processing Conference (EUSIPCO), Rome, Italy, 2018
- Channel Estimation and Equalization for CPM with application for aeronautical communications via a satellite link", *IEEE Int. Military Communications Conference (MILCOM)*, Baltimore (MD), U.S.A, 2017
- "Joint Channel and Carrier Frequency Estimation for M-ary CPM over frequency-selective channel using PAM decomposition", *IEEE Int. Conf. Acoust., Speech, and Signal Proc. (ICASSP)*, New Orleans LA, U.S.A, 2017

National conference paper:

"Sur l'égalisation fréquentielle des modulations à phase continue", Colloque GRETSI sur le traitement du Signal, Juan-les-pins, France, 2017 Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

Conclusions & Perspectives References
References I

G. Colavolpe and A. Barbieri. "Simplified iterative detection of serially concatenated CPM signals". In: *IEEE Global Telecommunications Conference (GLOBECOM), St. Louis, MO* 3 (2005) (cit. on pp. 24–29).

R. Chayot et al. "Channel estimation and equalization for CPM with application for aeronautical communications via a satellite link". In: *MILCOM 2017 - 2017 IEEE Military Communications Conference*. 2017 (cit. on pp. 63, 64).

R. Chayot et al. "A New Exact Low-Complexity MMSE Equalizer for Continuous Phase Modulation". In: *IEEE Communications Letters* 22.11 (2018), pp. 2218–2221 (cit. on pp. 63, 64).

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

References II

D. Darsena et al. "LTV equalization of CPM signals over doubly-selective aeronautical channels". In: *Metrology for Aerospace* (*MetroAeroSpace*), 2016 IEEE. IEEE. 2016, pp. 75–80 (cit. on pp. 68–71).

E. Hosseini and E. Perrins. "The Cramer-Rao Bound for Training Sequence Design for Burst-Mode CPM". In: *IEEE Transactions on Communications* 61.6 (2013), pp. 2396–2407 (cit. on p. 83).

P. Laurent. "Exact and Approximate Construction of Digital Phase Modulations by Superposition of Amplitude Modulated Pulses (AMP)". In: *IEEE Transactions on Communications* 34.2 (1986), pp. 150–160 (cit. on p. 21). Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

References III

M. Morelli and U. Mengali. "Carrier-frequency estimation for transmissions over selective channels". In: *IEEE Transactions on Communications* 48.9 (2000), pp. 1580–1589 (cit. on p. 95).

F. Pancaldi and G. M. Vitetta. "Equalization algorithms in the frequency domain for continuous phase modulations". In: *IEEE Transactions on Communications* 54.4 (2006), pp. 648–658 (cit. on pp. 52–55, 63, 64).

L. Rugini, P. Banelli, and G. Leus. "Simple equalization of time-varying channels for OFDM". In: *IEEE communications letters* 9.7 (2005), pp. 619–621 (cit. on pp. 74–77). Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization

Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

References IV

L. Rugini, P. Banelli, and G. Leus. "Low-complexity banded equalizers for OFDM systems in Doppler spread channels". In: *EURASIP Journal on Applied Signal Processing* 2006 (2006), pp. 248–248 (cit. on pp. 72, 73).

J. Tan and G. L. Stuber. "Frequency-domain equalization for continuous phase modulation". In: *IEEE Transactions on Wireless Communication*. Vol. 4. 5. 2005, pp. 2479–2490 (cit. on pp. 42, 113–130).

W. Van Thillo et al. "Low-complexity linear frequency domain equalization for continuous phase modulation". In: *IEEE Transactions on Wireless Communications* 8.3 (2009), pp. 1435–1445 (cit. on pp. 52–55, 62–64).

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Introduction

System Model Description Laurent Decomposition Overall Receiver

Equalization Motivation A new MMSE-FDE An extension to Time-Varying Channels

Parameters Estimation

Motivation TIV Channel estimation Joint TIV channel and CFO estimation

MMSE-FDE [TS05]

Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE Parametric Channel Estimation Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM

MMSE-FDE [TS05] (1/2)

Based on an orthogonal basis of the signal space $\{f_k(t)\}$

Figure: MMSE-FDE with orthogonal representation from [TS05]

Requires delays multiple of T_s

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE TS05] Parametric Channel Estimation Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM

MMSE-FDE [TS05] (2/2)

Based on the Laurent Decomposition

Figure: MMSE-FDE from [TS05]

Does not take into account the auto-correlation of the pseudo-symbols

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE TSO5] Parametric Channel Estimation TV Channel Estimation TV Channel Estimation Gramér Rao Bound Pragmatic CPM

MMSE-FDE [TS05] Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound

Pragmatic CPM

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE [TS05] Parametric Channel Estimation Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM

Parametric Least Squares Estimation (1/2)

- directly estimate the attenuations {h_l}_l and the delays
 {\(\tau_l\)\)}_l of the different path of the channel
- the delays are known in this aeronautical context by GPS and geometrical consideration
- Introduction of the dependency on those delays:

а

$$\underline{\underline{P}}(\underline{\tau}) = \begin{bmatrix} \Psi(0 - \tau_0) & \dots & \Psi(0 - \tau_{L_c - 1}) \\ \Psi(T_e - \tau_0) & \dots & \Psi(T_e - \tau_{L_c - 1}) \\ \vdots & \dots & \vdots \\ \Psi(kNT_e - \tau_0) & \dots & \Psi(kNT_e - \tau_{L_c - 1}) \end{bmatrix}$$
(29)
nd so $\underline{\underline{h}} = \underline{\underline{P}}(\underline{\tau})[h_0, h_1, \dots, h_{L_c - 1}]^T$ (30)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Parametric Channel Estimation TV Channel Estimation Gramér Rao Bound Pragmatic CPM

Parametric Least Squares Estimation (2/2)

New system model:

$$\underline{\underline{r}} = \underline{\underline{\underline{s}}}\underline{\underline{h}} + \underline{\underline{w}} = \underline{\underline{\underline{s}P}}(\underline{\underline{\tau}}) \underline{\underline{a}} + \underline{\underline{w}}$$
(31)
$$= \underline{\underline{\underline{s}}}(\underline{\underline{\tau}})\underline{\underline{a}} + \underline{\underline{w}}$$
(32)

LS channel estimation:

$$\underline{\widehat{a}} = (\underline{\underline{s}}(\tau)^{H} \underline{\underline{s}}(\tau))^{-1} \underline{\underline{s}}(\tau)^{H} \underline{\underline{r}}$$
(33)
and
$$\underline{\widehat{h}} = \underline{\underline{P}}(\tau) \underline{\widehat{a}}$$
(34)

- lower bound of the more generic case where a joint delays and attenuations estimation
- Iower complexity and better performance

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Estimation TV Channel Estimation Gramér Rao Bound Pragmatic CPM

MMSE-FDE [TS05] Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Amesse MMSE-FDE (TS05) Parametric Channel Estimation Parametric Channel Estimation Channel Estimation Cramér Rao Pragmatic CPM

System Model

- We assume perfect timing synchronization
- Unknown parameters:
 - Propagation Channel
 - Carrier Frequency Offset
 - Initial Phase
- Doubly-selective channel:

 $\underline{\mathbf{r}} = \underline{\mathbf{hs}} + \underline{\mathbf{w}}$ with $\underline{\mathbf{r}} = [r[0], r[1], \dots, r[kN-1]]^T$ $\underline{\mathbf{s}} = [s[0], s[1], \dots, s[kN-1]]^T$ and $\underline{\mathbf{w}} = [w[0], w[1], \dots, w[kN-1]]^T$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annesse MMSE-FDE [TS05] Parametric Channel Estimation Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM

(35)

with

Basis Expansion Model (BEM)

Complex attenuation of the Ith path:

$$\underline{\boldsymbol{h}}_{l} = \begin{bmatrix} h[0, l], h[1, l], \dots, h[kN - 1, l] \end{bmatrix}^{T}$$
(37)
$$= \underbrace{[\underline{\boldsymbol{\zeta}}_{0}, \underline{\boldsymbol{\zeta}}_{1}, \dots, \underline{\boldsymbol{\zeta}}_{P-1}]}_{\underline{\boldsymbol{\zeta}}} \underbrace{[\eta_{l,0}, \eta_{l,1}, \dots, \eta_{l,P-1}]^{T}}_{=\underline{\boldsymbol{\eta}}_{l}}$$
(38)
$$= \sum_{p=0}^{P-1} \eta_{l,p} \underline{\boldsymbol{\zeta}}_{p}$$
(39)

- $\{\underline{\zeta}_p\}$ is a basis of the attenuation's vectors space
- This basis is deterministic
- Only have to estimate the P(L − 1) coefficients {η_{l,p}} (P << kN − 1)</p>

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Estimation TV Channel Estimation Cramér Rao Pragmatic CPM Matrix-wise representation of the received signal

Channel Matrix:

$$\underline{\underline{h}} = \sum_{l=0}^{L-1} \underline{\underline{Z}}_{l} \operatorname{diag}(\underline{h}_{l})$$

$$= \sum_{l} \sum_{p} \eta_{l,p} \underbrace{\operatorname{diag}(\underline{\zeta}_{p}) \underline{\underline{Z}}_{l}}_{=\underline{\Omega}_{l,p}} = \sum_{l} \sum_{p} \eta_{l,p} \underline{\Omega}_{l,p}$$

$$= \underline{\underline{\Omega}}(\underline{\eta} \otimes \underline{\underline{I}}_{kN})$$

$$(40)$$

Received signal:

$$\underline{\underline{r}} = \underline{\underline{\Omega}}(\underline{\underline{\eta}} \otimes \underline{\underline{I}}_{kN})\underline{\underline{s}} + \underline{\underline{w}}$$
(43)
$$= \underline{\underline{\Omega}}(\underline{\underline{I}}_{LP} \otimes \underline{\underline{s}})\underline{\underline{\eta}} + \underline{\underline{w}}$$
(44)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE ITS05] Parametric Channel Estimation Parametric Channel Estimation TV Channel Estimation Gramér Rao Bound Pragmatic CPM

<ロト < @ ト < E ト < E ト E E の Q C 83/69

LS Estimation of the BEM parameters

- Similar to the TIV case, let $\underline{\underline{s}} \triangleq \underline{\underline{\Omega}}(\underline{\underline{l}}_{LP} \otimes \underline{\underline{s}})$
- LS channel estimate:

$$\underline{\widehat{\eta}} = (\underline{\underline{s}}^{H} \underline{\underline{s}})^{-1} \underline{\underline{s}}^{H} \underline{\underline{r}}$$
(45)
and so
$$\underline{\underline{\widehat{h}}} = \underline{\underline{\Omega}} (\underline{\widehat{\eta}} \otimes \underline{\underline{l}}_{kN})$$
(46)

 Can be performed on circular block based CPM transmission using UW Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Estimation TV. Channel Estimation Gramér Rao Bound Pragmatic CPM

Simulation Results (1/3)

Scenario:

- ▶ TV aeronautical channel by satellite
- C-band
- ► *C*/*M* = 5dB
- ▶ Doppler Spread of 0.0183*R_S*, then 0.0008*R_s*

<ロ> < @> < E> < E> EE のへで 85/69

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

MMSE-FDE

TYSOS] Parametric Channel Estimation Estimation TV Channel Estimation Gramér Rao Bound Pragmatic CPM

Simulation Results (2/3)

Figure: NMSE over TV channels using KL-BEM

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Parametric Channel Estimation TV, Channel Estimation Gramér Rao Bound Pragmatic CPM

Simulation Results (3/3)

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE (TS05) Parametric Channel Estimation Parametric Channel Estimation TV, Channel Estimation Gramér Rao Bound Pragmatic CPM

Figure: NMSE over TV channels using KL-BEM for block-based CPM

<ロト < @ ト < E ト < E ト E E の Q C 87/69

MMSE-FDE [TS05] Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Ampexe MMSE-FDE (TS05) Parametric Channel Estimation Parametric Channel Estimation TV Channel Estimation Gramér Rao Pragmatic CPM

Cramér Rao Bound for carrier recovery in case of TIV Channel

- Sys. Mod.: $\underline{\underline{r}} = \underline{\underline{\Gamma}}(f)\underline{\underline{s}}\underline{\underline{h}} + \underline{\underline{w}}$
- Set of unknown parameters: $u = (\underline{h}_r, \underline{h}_i, f)$
- Fisher Information Matrix:

$$[\underline{\mathbf{F}}]_{i,j} = -E\left[\frac{\partial^2 \ln\Delta(\underline{\mathbf{r}}, u)}{\partial u(i)\partial u(j)}\right]$$

• CRB(f) =
$$\frac{\sigma_n^2}{2\underline{y}^H(\underline{I}_{\underline{k}J} - \underline{\underline{B}})\underline{y}}$$

with
$$\underline{y} = 2\pi \underline{Msh}$$

and $\underline{M} = \text{diag}(0, 1, \dots, kJ - 1)$

AWGN Case:

$$CRB_{AWGN}(f) = \frac{\sigma_n^2}{2\underline{y}^H(\underline{I}_{kJ} - \underline{\underline{B}})\underline{y}} \approx \frac{3}{2\pi^2 J^3} (SNR)^{-1}$$

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

MMSE-FDE MSE-FDE Parametric Channel Estimation Parametric Channel Estimation TV, Channel Estimation TV, Channel Estimation Gramér Rao Pragmatic CPM

MMSE-FDE [TS05] Parametric Channel Estimation TV Channel Estimation Cramér Rao Bound Pragmatic CPM Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

Annexe MMSE-FDE [TS05] Parametric Channel Estimation TV Channel Estimation TV Channel Gramér Rao Bound Pragmatic CPM

Pragmatic CPM

 cf Thesis "Nouvelle forme d'onde et récepteur avancé pour la télémesure des futurs lanceurs", by C.-U. Piat-Durozoi

Synchronization, detection and equalization for Continuous Phase Modulation over doubly-selective channels

Romain Chayot

