
remote sensing  

Article

Reduced-Complexity End-to-End Variational Autoencoder for
on Board Satellite Image Compression

Vinicius Alves de Oliveira 1,2,* , Marie Chabert 1 , Thomas Oberlin 3 , Charly Poulliat 1, Mickael Bruno 4,
Christophe Latry 4, Mikael Carlavan 5, Simon Henrot 5, Frederic Falzon 5 and Roberto Camarero 6

����������
�������

Citation: Alves de Oliveira, V.;

Chabert, M.; Oberlin, T.; Poulliat, C.;

Bruno, M.; Latry, C.; Carlavan, M.;

Henrot, S.; Falzon, F.; Camarero, R.

Reduced-Complexity End-to-End

Variational Autoencoder for on Board

Satellite Image Compression. Remote

Sens. 2021, 13, 447. https://doi.org/

10.3390/rs13030447

Academic Editor: Cicily Chen

Received: 18 December 2020

Accepted: 22 January 2021

Published: 27 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 IRIT/INP-ENSEEIHT, University of Toulouse, 31071 Toulouse, France; marie.chabert@toulouse-inp.fr (M.C.);
charly.poulliat@toulouse-inp.fr (C.P.)

2 Telecommunications for Space and Aeronautics (TéSA) Laboratory, 31500 Toulouse, France
3 ISAE-SUPAERO, University of Toulouse, 31055 Toulouse, France; thomas.oberlin@isae-supaero.fr
4 CNES, 31400 Toulouse, France; Mickael.Bruno@cnes.fr (M.B.); Christophe.Latry@cnes.fr (C.L.)
5 Thales Alenia Space, 06150 Cannes, France; mikael.carlavan@thalesaleniaspace.com (M.C.);

simon.henrot@thalesaleniaspace.com (S.H.); frederic.falzon@thalesaleniaspace.com (F.F.)
6 ESA, 2201 AZ Noordwijk, The Netherlands; roberto.camarero@esa.int
* Correspondence: Vinicius.Oliveira@irit.fr

Abstract: Recently, convolutional neural networks have been successfully applied to lossy image
compression. End-to-end optimized autoencoders, possibly variational, are able to dramatically
outperform traditional transform coding schemes in terms of rate-distortion trade-off; however, this
is at the cost of a higher computational complexity. An intensive training step on huge databases
allows autoencoders to learn jointly the image representation and its probability distribution, pos-
sibly using a non-parametric density model or a hyperprior auxiliary autoencoder to eliminate
the need for prior knowledge. However, in the context of on board satellite compression, time
and memory complexities are submitted to strong constraints. The aim of this paper is to design a
complexity-reduced variational autoencoder in order to meet these constraints while maintaining the
performance. Apart from a network dimension reduction that systematically targets each parameter
of the analysis and synthesis transforms, we propose a simplified entropy model that preserves the
adaptability to the input image. Indeed, a statistical analysis performed on satellite images shows
that the Laplacian distribution fits most features of their representation. A complex non parametric
distribution fitting or a cumbersome hyperprior auxiliary autoencoder can thus be replaced by a
simple parametric estimation. The proposed complexity-reduced autoencoder outperforms the
Consultative Committee for Space Data Systems standard (CCSDS 122.0-B) while maintaining a
competitive performance, in terms of rate-distortion trade-off, in comparison with the state-of-the-art
learned image compression schemes.

Keywords: remote sensing; lossy compression; on board compression; transform coding; rate-
distortion; JPEG2000; CCSDS; learned compression; neural networks; variational autoencoder;
complexity

1. Introduction

Satellite imaging has many applications in oceanography, agriculture, biodiversity con-
servation, forestry, landscape monitoring, geology, cartography or military surveillance [1].
The increasing spectral and spatial resolutions of on board sensors allow obtaining ever-
better quality products, at the cost of an increased amount of data to be handled. In this
context, on board compression plays a key role to save transmission channel bandwidth
and to reduce data-transmission time [2]. However, it is subject to strong constraints in
terms of complexity. Compression techniques can be divided into two categories: lossless
and lossy compression. Lossless compression is a reversible technique that compresses data
without loss of information. The entropy measure, which quantifies the information con-
tained in a source, provides a theoretical boundary for lossless compression, e.g., the lowest
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attainable compression bit-rate. For optical satellite images, the typical lossless compres-
sion rate that can be achieved is less than 3:1 [3]. On the other side, lossy compression
achieves high compression rates through transform coding [4] and the optimization of
a rate-distortion trade-off. Traditional frameworks for lossy image compression operate
by linearly transforming the data into an appropriate continuous-valued representation,
quantizing its coefficients independently, and then encoding this discrete representation
using a lossless entropy coder. To give on-ground examples, JPEG (Joint Photographic
Experts Group) uses a discrete cosine transform (DCT) on blocks of pixels followed by
a Huffman coder whereas JPEG2000 [5] uses an orthogonal wavelet decomposition fol-
lowed by an arithmetic coder. In the context of on board compression, the consultative
committee for space data systems (CCSDS), drawing on the on-ground JPEG2000 standard,
recommends the use of the orthogonal wavelet transform [6]. However, the computational
requirements of the CCSDS have been considerably reduced with respect to JPEG2000,
taking into account the significant hardware constraints in payload image processing units
of satellites. This work follows the same logic; however in the context of learned image
compression. The idea is to propose a reduced-complexity learned compression scheme,
considering on board limitations regarding computational resources due to hardware and
energy consumption constraints.

In recent years, artificial neural networks appeared as powerful data-driven tools to
solve problems previously addressed with model-based methods. Their independence
from prior knowledge and human efforts can be regarded as a major advantage. In par-
ticular, image processing has been widely impacted by convolutional neural networks
(CNNs). CNNs have proven to be successful in many computer vision applications [7]
such as classification [8], object detection [9], segmentation [10], denoising [11] and feature
extraction [12]. Indeed, CNNs are able to capture complex spatial structures in the images
through the convolution operation that exploits local information. In CNNs, linear filters
are combined with non-linear functions to form deep learning structures doted of a great
approximation capability. Recently, end-to-end CNNs have been successfully employed for
lossy image compression [13–16]. Such architectures jointly learn a non-linear transform
and its statistical distribution to optimize a rate-distortion trade-off. They are able to dra-
matically outperform traditional compression schemes regarding this trade-off; however at
the cost of a high computational complexity.

In this paper, we start from the state-of-the-art CNN image compression schemes [13,16]
to design a reduced-complexity framework in order to adapt to satellite image compression.
Please note that the second one [16] is a sophistication of the first one [13] that leads to
higher performance at the cost of an increased complexity, by better adapting to the input
image. More precisely, the variational autoencoder [16] allows reaching state-of-the-art
compression performance, close to the one of BPG (Better Portable Graphics) [17] at the
expense of a considerable increase in complexity with respect to [13], reflected by a runtime
increase between 20% and 50% [16]. Our objective is to find an intermediary solution, with
similar performance as [16] and similar or lower complexity as [13]. The first step is an
assessment of the complexity of these reference frameworks and a statistical analysis of the
transforms they learn. The objective is to simplify both the transform derivation and the
entropy model estimation. Indeed, apart from a reduction of the number of parameters
required for the transform, we propose a simplified entropy model that still preserves the
adaptivity to the input image (as in [16]) and thus maintain compression performance.

The paper is organized as follows. Section 2 presents some background on learned
image compression and details two interesting frameworks. Section 3 performs a com-
plexity analysis of these frameworks and a statistical analysis of the transform they learn.
Based on these analyses, a complexity-reduced architecture is proposed. After a subjective
analysis of the resulting decompressed image quality, Section 4 quantitatively assesses the
performance of this architecture on a representative set of satellite images. A comparative
complexity study is performed and the impact of the different design options on the com-
pression performance is studied, for various compression rates. A discussion regarding the
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compatibility of the proposed architecture complexity with the current and future satellite
resources is then held. Section 5 concludes the paper. The symbols used in this paper are
listed in Appendix A.

2. Background: Autoencoder Based Image Compression

Autoencoders were initially designed for data dimension reduction similar to e.g., Prin-
cipal Component Analysis (PCA) [7]. In the context of image compression, autoencoders
are used to learn a representation with low entropy after quantization. When devoted to
compression, the autoencoder is composed of an analysis transform and a synthesis trans-
form connected by a bottleneck that performs quantization and coding. Please note that the
dequantization process is integrated in the synthesis transform. An auxiliary autoencoder
can also be used to infer the probability distribution of the representation as in [16]. In this
paper, we focus on two reference architectures: [13] displayed in Figure 1 (left) and [16]
displayed in Figure 1 (right).
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Figure 1. Architecture of the autoencoder [13] (left) and of the variational autoencoder [16] (right).
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The first one [13] is composed of a single autoencoder. The second one [16] is composed
of a main autoencoder (slightly different than the one in [13]) and of an auxiliary one which
aims to infer the probability distribution of the latent coefficients. Recall that the second
architecture is an upgraded version of the first one regarding both the design of the analysis
and synthesis transforms and the estimation of the entropy model.

2.1. Analysis and Synthesis Transforms

In the main autoencoder (Figure 1 (left) and left column of Figure 1 (right)), the analy-
sis transform Ga is applied to the input data x to produce a representation y = Ga(x). After
the bottleneck, the synthesis transform Gs is applied to the quantized representation ŷ to
reconstruct the image x̂ = Gs(ŷ). These representations are derived through several layers
composed of filters each followed by a non-linear activation function. The learned repre-
sentation is multi-channel (the output of a particular filter is called a channel or a feature)
and non-linear. As previously mentioned, the analysis and synthesis transforms proposed
in [16] result from improvements (mainly parameter adjustments) of the ones proposed
in [13]. Thus, for brevity, the following description focuses on [16]. In [16], the analysis
(resp. synthesis) transform Ga (resp. Gs) is derived through 3 convolutional layers each
composed of N filters with kernel support n× n associated with parametric activation func-
tions called generalized divisive normalizations (GDN) (resp. Inverse Generalized Divisive
Normalizations (IGDN)) and a downsampling (resp. upsampling) by a factor 2. These three
convolutional layers are linked to the input (resp. output) of the bottleneck by a convolu-
tion layer composed of M > N (resp. N) filters with the same kernel support but without
activation function. Please note that the last layer of the synthesis transform is composed of
M > N filters and leads to the so-called wide bottleneck that offers increased compression
performance according to [16,18]. Contrarily to usual parameter-free activation functions
(e.g., ReLU, sigmoid,. . . ), GDN and IGDN are parametric functions that implement an
adaptive normalization. In a given layer, the normalization operates through the different
channels independently on each spatial location of the filter outputs. If vi(k, l) denotes the
value indexed by (k, l) of the output of the ith filter, the GDN output is derived as follows:

GDN(vi(k, l)) =
vi(k, l)

(βi + ∑N
j=1 γijv2

j (k, l))1/2
for i = 1, . . . , N. (1)

The IGDN is an approximate inverse of the GDN, derived as follows:

IGDN(vi(k, l)) = vi(k, l)

(
β′i +

N

∑
j=1

γ′ijv
2
j (k, l)

)1/2

for i = 1, . . . , N. (2)

According to Equation (1) (resp. Equation (2)), the GDN (resp. IGDN) for channel
i is defined by N + 1 parameters denoted by βi and γij for j = 1, . . . , N (resp. β′i and γ′ij
for j = 1, . . . , N). Finally N(N + 1) parameters are required to define the GDN/IGDN in
each layer. The learning and the storage of these parameters are required. However, GDN
has been shown to reduce statistical dependencies [19,20] and thus it appears particularly
appropriate for transform coding. According to [19], the GDN better estimates the optimal
transform than conventional activation functions for a wide range of rate-distortion trade-
offs. GDN/IGDN, while intrinsically more complex than usual activation functions, are
prone to boost the compression performance especially in case of a low number of layers,
thus affording a low global complexity for the network.

2.2. Bottleneck

The interface between the analysis transform and the synthesis transform, the so-
called bottleneck, is composed of a quantizer that produces the discrete-valued vector
ŷ = Q(y), an entropy encoder and its associated decoder. Recall that the dequantization
is performed by the synthesis transform Gs (and by Hs in the case of the variational
autoencoder). A standard entropy coding method, such as arithmetic, range or Huffman
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coding [21–23] losslessly compress the quantized data representation by exploiting its
statistical distribution. The bottleneck thus requires a statistical model of the quantized
learned representation.

2.3. Parameter Learning and Entropy Model Estimation
2.3.1. Loss Function: Rate Distortion Trade-Off

The autoencoder parameters (filter weights, GDN/IGDN parameters and represen-
tation distribution model) are jointly learned through the optimization of a loss function
involving the rate R(ŷ) and the distortion D(x, x̂) between the original image x and the
reconstructed image x̂. The rate-distortion criterion, denoted as J(x, x̂, ŷ), writes as the
weighted sum:

J(x, x̂, ŷ) = λD(x, x̂) + R(ŷ), (3)

where λ is a key parameter that tunes the rate-distortion trade-off.

• The rate R achieved by an entropy coder is lower-bounded by the entropy derived
from the actual discrete probability distribution m(ŷ) of the quantized vector ŷ.
The rate increase comes from the mismatch between the probability model pŷ(ŷ)
required for the coder design and m(ŷ). The bit-rate is given by the Shannon cross
entropy between the two distributions:

H(ŷ) = Eŷ∼m
[
−log2 pŷ(ŷ)

]
, (4)

where means distributed according to. The bit-rate is thus minimized if the distribu-
tion model pŷ(ŷ) is equal to the distribution m(ŷ) arising from the actual distribution
of the input image and from the analysis transform Ga. This highlights the key role of
the probability model.

• The distortion measure D is chosen to account for image quality as perceived by a
human observer. Due to its many desirable computational properties, the mean square
error (MSE) is generally selected. However, a measure of perceptual distortion may
also be employed such as the multi-scale structural similarity index (MS-SSIM) [24].

The loss function defined in Equation (3) is minimized through gradient descent with
back-propagation [7] on a representative image training set. However, this requires the
loss function to be differentiable. In the specific context of compression, a major hurdle
is that the derivative of the quantization function is zero everywhere except at integers,
where it is undefined. To overcome this difficulty, a quantization relaxation is considered
in the backward pass (i.e., when back-propagating the gradient of the error). Ballé et al.
(2016) [13] proposed to back-propagate an independent and identically distributed (i.i.d.)
uniform noise, while Theis et al. (2017) [14] proposed to replace the derivative of the
quantization function with a smooth approximation. In both cases, the quantization is kept
as it is in the forward pass (i.e., when processing an input data).

2.3.2. Entropy Model

As stressed above, a key element in the end-to-end learned image compression frame-
works is the entropy model defined through the probability model pŷ(ŷ) assigned to the
quantized representation for coding.

• Fully factorized model: For simplicity, in [13,14], the approximated quantized repre-
sentation was assumed independent and identically distributed within each channel
and the channels were assumed independent of each other, resulting in a fully factor-
ized distribution:

pỹ|ψ(ỹ|ψ) = ∏
i

pỹi |ψ(i)(ỹi), (5)
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where index i runs over all elements of the representation, through channels and
through spatial locations, ψ(i) is the distribution model parameter vector associated
with each element. As mentioned previously, for back-propagation derivation during
the training step, the quantization process (ŷ = Q(y)) is approximated by the addition
of an i.i.d uniform noise ∆y, whose range is defined by the quantization step. Due to
the adaptive local normalization performed by GDN non-linearities, the quantization
step can be set to one without loss of generality. Hence the quantized representation ŷ,
which is a discrete random variable taking values in Z, is modelled by the continuous
random vector ỹ defined by:

ỹ = y + ∆y (6)

taking values in R. The addition of the uniform quantization noise leads to the
following expression for pỹi |ψ(i)(ỹi) defined through a convolution by a uniform
distribution on the interval [−1/2, 1/2]:

pỹi |ψ(i)(ỹi) = pyi |ψ(i)(yi) ∗ U (−1/2, 1/2). (7)

For generality, in [13], the distribution pyi |ψ(i)(yi) is assumed non parametric, namely
without predefined shape. In [13,14], the parameter vectors are learned from data dur-
ing the training phase. This learning, performed once and for all, prohibits adaptivity
to the input images during operational phase. Moreover, the simplifying hypothesis
of a fully factorized distribution is very strong and not satisfied in practice, elements
of ŷ exhibiting strong spatial dependency as observed in [16]. To overcome these
limitations and thus to obtain a more realistic and more adaptive entropy model, [16]
proposed a hyperprior model, derived through a variational autoencoder, which takes
into account possible spatial dependency in each input image.

• Hyperprior model: Auxiliary random variables z̃, conditioned on which the quantized
representation ỹ elements are independent, are derived from y by an auxiliary autoen-
coder, connected in parallel with the bottleneck (right column of Figure 1 (right)). The
hierarchical model hyper-parameters are learned for each input image in operational
phase. Firstly, the hyperprior transform analysis Ha produces the set of auxiliary
random variables z. Secondly, z is transformed by the hyperprior synthesis transform
Hs into a second set of random variables σ. In [16], z distribution is assumed fully
factorized and each representation element ỹi, knowing z, is modeled by a zero-mean
Gaussian distribution with its own standard deviation σi. Finally, taking into account
the quantization process, the conditional distribution of each quantized representation
element is given by:

ỹi|z̃ ∼ N
(

0, σi
2
)
∗ U
(
−1

2
,

1
2

)
. (8)

The rate computation must take into account the prior distribution of z̃, which has to
be transmitted to the decoder with the compressed data, as side information.

In the following we derive the complexity of the analysis and synthesis transforms,
involved both in the main and in the auxiliary autoencoders of [16]. We also perform a
statistical analysis of the learned transform on a representative set of satellite images. The
objective is to propose an entropy model simpler while adaptive, because more specifically
tailored than the two previous ones.

3. Reduced-Complexity Variational Autoencoder

In the literature, the design of learned image compression frameworks hardly takes
into account the computational complexity: the objective is merely to obtain the best
performance in terms of rate-distortion trade-off. However, in the context of on board
compression, a trade-off between performance and complexity has also be considered to
take into account the strong computational constraints. Our focus here is to propose a
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complexity-reduced alternative to the state-of-the-art structure [16] minimizing the impact
on the performance. Please note that this complexity reduction must be essentially targeted
at the coding part of the framework, most subject to the on board constraints. A meaningful
indicator of the complexity reduction is the number of network parameters. Indeed, its
reduction has a positive impact not only on the memory complexity, but also on the time
complexity and on the training difficulty. Indeed, the optimization problem involved in the
training step applies on a smaller number of parameters. This is an advantage even if the
training is performed on ground. The convergence is thus obtained with less iterations and
thus within a shorter time. Moreover, the complexity reduction has also a positive impact
on the ease to upload the final model to the spacecraft (once commissioning is finished and
the training with real data completed) as the up-link transmission is severely limited.

3.1. Analysis and Synthesis Transforms
3.1.1. Complexity Assessment

First, let characterize the computational complexity of a convolutional layer composing
the analysis and synthesis transforms. Let Nin denote the number of features at the
considered layer input. In the particular case of the network first layer, Nin is the number of
channels of the input image (Nin = 1 for a panchromatic image) else Nin is the number of
filters of the previous layer. Let Nout denote the number of features at this layer output, i.e.,
the number of filters of this layer. As detailed in Section 2, in [16], Nout = N for each layer
of the analysis and synthesis transforms except for the last one of the main auto-encoder
analysis transform and the last one of the auxiliary auto-encoder synthesis transform
composed of M filters with M > N and thus for these layers Nout = M. As in [13,16],
we consider square filters with size n× n. The number of parameters associated with the
filtering part of the layer is:

Param f = (n× n× Nin + δ)× Nout. (9)

The term δ is equal to 1 when a bias is introduced and is equal to 0 otherwise. Please
note that this bias is rarely used in the considered architectures (except in Tconv3, as
displayed in Figure 1). The filtering is applied to each input channel after downsampling
(respectively upsampling). The downsampled (resp. upsampled) input channel if of
size sout × sout with sout = sin/D (respectively sout = sin × D) where D denotes the
downsampling (respectively upsampling) factor and sin × sin is the size of a feature at the
filter input. Floating points operations Operation f for the filtering operation is thus:

Operation f = Param f × sout × sout. (10)

GDN/IGDN perform a normalization of a filter output with respect to the other filter
outputs. According to Section 2, the number of parameters and the number of operations
of each GDN/IGDN are expressed by:

Paramg = (Nout + 1)× Nout

Operationg = Paramg × sout × sout.
(11)

Since the number of layers is already very low for the considered architectures, the
reduction of the complexity of the analysis and synthesis transforms may target, according
to the previous complexity assessment, the number of filters per layer, the size of these
filters and the choice of the activation functions. Our proposal below details our strategy
for complexity reduction.

3.1.2. Proposal: Simplified Analysis and Synthesis Transforms

Our approach to reduce the complexity of the analysis and synthesis transforms, while
maintaining an acceptable rate-distorsion trade-off, is to fine-tune the parameters of each
layer (number of filters and filter sizes) and to consider the replacement of GDN/IGDN by
simpler non-parametric activation functions.
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In a first step, we propose a fine-tuning of the number of filters composing the convo-
lutional layers of the analysis and synthesis transforms. The state-of-the-art frameworks
generally involve a large number of filters with the objective of increasing the network
approximation capability [13,16]. However, a high number of filters also implies a high
number of parameters and operations in the GDN/IGDN, as it increases the depth of
the tensors (equal to the number of filters) at their input. Apart from a harder training, a
large number of filters comes with a high number of operations as well as a high memory
complexity, which is problematic in the context of on board compression. In [16], the
number of filters at the bottleneck (M) and for the other layers (N) are fixed according to
the target bit-rate: the higher the target bit-rate, the higher M and N. Indeed, higher bit
rates mean lower distortion and thus increased network approximation capabilities to learn
accurate analysis and synthesis transforms [16]. This principle also applies to the auxiliary
autoencoder implementing the hyperprior illustrated in Figure 1 (right column of the right
part). In the present paper, we propose and evaluate a reduction of the number of filters
in each layer for different target rate ranges. In particular, we investigate the impact of M
on the attainable performance when imposing a drastic reduction of N. The question is
whether there is a real need for a high global number of filters (high N and M) or whether a
high bottleneck size (low N and high M) is sufficient to achieve good performance at high
rates. For that purpose, we impose a low value of N (typically N = 64) and we consider
increasing values of M defined by M = 2N, 3N, 4N, 5N to determine the minimum value
of M that leads to an acceptable performance in a given rate range.

In a second step, we investigate the replacement of the GDN/IGDN by non-parametric
activation functions. As previously mentioned, according to [19], GDN/IGDN allow
obtaining good performance even with a low number of layers. However, for the sake of
completeness, we also test their replacement by ReLU functions. Finally, we propose to
evaluate the effect of the filter kernel support. The main autoencoder in [16] is entirely
composed of filters with kernel support n× n. The idea then is to test different kernel
supports that is (n− 2)× (n− 2) and (n + 2)× (n + 2).

3.2. Reduced Complexity Entropy Model
3.2.1. Statistical Analysis of the Learned Transform

This section first performs a statistical analysis of each feature of the learned repre-
sentation in the particular case of satellite images. A similar statistical analysis has been
conducted in the case of natural images in [25] with the objective to properly design the
quantization in [13]. The probability density function related to each feature, averaged
on a representative set of natural images, was estimated through a normalized histogram.
The study showed that most features can be accurately modelled as Laplacian random
variables. Interestingly, a similar result has also been analytically demonstrated in [26] for
block-DCT coefficients of natural images under the assumption that the variance is constant
on each image block and that its values on the different blocks are distributed according
to an exponential or a half-normal distribution. We conducted the statistical analysis on
the representation obtained by the main autoencoder as defined in [16], with N = 128 and
M = 192, but used alone, as in [13], without auxiliary autoencoder. Indeed, on one side
the main autoencoder in [16] benefits from improvements with respect to the one in [13]
and on another side, the auxiliary autoencoder is not necessary in this statistical study.
This autoencoder is trained on a representative dataset of satellite images and for rates
between 2.5 bits/pixel and 3 bits/pixel. First, as an illustration, let consider the satellite
image displayed in Figure 2. This image of the city of Cannes (French Riviera) is a 12-bit
simulated panchromatic Pléiades image with size 512× 512 and resolution 70 cm.
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Figure 2. Simulated 12-bit Pléiades image of Cannes with size 512× 512 and resolution 70 cm.

Figure 3 shows the 1st 32× 32 feature derived from the Cannes image and its normal-
ized histogram with Laplacian fitting.

(a) 1st feature. (b) Normalized histogram and Laplacian fitting.

Figure 3. First feature of Cannes image representation, its normalized histogram with Laplacian fitting.

On this example, the fitting with an almost centered Laplacian seems appropriate.
According to the Kolmogorov-Smirnov goodness-of-fit test [27], 94% of the features derived
from this image follow a Laplacian distribution with a significance level α = 5%. Recall
that the Laplacian distribution Laplace(µ, b) is defined by:

f (ζ, µ, b) =
1
2b

(
−|ζ − µ|

b

)
for ζ ∈ R, (12)

where µ is the mean value and b > 0 is a scale parameter related to the variance by
Var(ζ) = 2b2.

To extend this result, the representation (composed of M = 192 feature maps) was
derived for 16 simulated 512× 512 Pléiades images. Figure 4 shows the normalized his-
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tograms (derived from 16 observations) of some feature maps (each of size 32× 32) and
the Laplacian fitting.

(a) i = 1. (b) i = 58.

(c) i = 136. (d) i = 144.

Figure 4. Normalized histogram of the ith feature map and Laplacian fitting f (., µ, b).

Most of the feature maps have a similar normalized histogram. According to
Kolmogorov-Smirnov goodness-of-fit test [27], 94% of the features derived from this image
follow a Laplacian distribution with a significance level α = 5%. Please note that the
Gaussian distribution, N (µ, σ2) with a small value of µ, also fits the features albeit to a
lesser extent. The remaining non-Laplacian feature maps (6% of the maps for this example)
stay close to the Laplacian distribution. Figure 5 displays two representative examples of
non-Laplacian feature maps. Please note that the first one (19th feature map) is far from
Laplacian, this feature appears as a low-pass approximation of the input image. However,
this is a very particular case: the second displayed feature has a typical behavior, not so far
from a Laplacian distribution.
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(a) 19th feature. (b) Normalized histogram and Laplacian fitting.

(c) 55th feature. (d) Normalized histogram and Laplacian fitting.

Figure 5. Normalized histogram of the ith feature map and Laplacian fitting f (., µ, b).

3.2.2. Proposal: Simplified Entropy Model

The entropy model simplification aims at achieving a compromise between simplic-
ity and performance while preserving the adaptability to the input image. In [13], the
representation distribution is assumed fully factorized and the statistical model for each
feature is non-parametric to avoid a prior choice of a distribution shape. This model is
learned once, during the training. In [16], the strong independence assumption leading
to a fully factorized model is avoided by the introduction of the hyperprior distribution,
whose parameters are learned for each input image even in the operational phase. Both
models are general and thus suitable to a wide variety of images; however the first one
implies a strong hypothesis of independence and prohibits adaptivity while the second one
is computationally expensive. Based on the previous analysis, we propose the following
parametric model for each of the M features. Consider the jth feature elements yij for
ij ∈ Ij, where Ij denotes the set of indexes covering this feature:

yij ∼ Laplace(0, bj) (resp. yj
i ∼ N (0, σ2

j ))

with: bj =

√
Var(yj

i)/2 (resp. σ2
j = Var(yj

i)).
(13)

The problem then boils down to the estimation of a single parameter per feature
referred to as the scale bj (respectively the standard deviation σj) in the case of the Laplacian
(resp. Gaussian) distribution. Starting from [16], this proposal reduces the complexity at
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two levels. First, the hyperprior autoencoder, including the analysis Ha and synthesis Hs
transforms, is removed. Second, the side information initially composed of the compressed
auxiliary random variable set (z) of size 8 × 8 × M now reduces to a M × 1 vector of
variances. The auxiliary network simplification is displayed on the right part of Figure 6.

5x5 conv1, N, /2

GDN1

5x5 conv2, N, /2

GDN2

5x5 conv3, N, /2

GDN3

5x5 conv4, M, /2

Quantization

Arithmetic Encoder

Arithmetic Decoder

5x5 Tconv1, N, /2

IGDN1

5x5 Tconv2, N, /2

IGDN2

5x5 Tconv3, N, /2

IGDN3

5x5 Tconv4, N, /2

Variance Estimator

Quantization

Arithmetic Encoder

Arithmetic Decoder

(vector)

Proposed

Figure 6. Proposed architecture after entropy model simplification: main autoencoder (left column)
and simplified auxiliary autoencoder (right column).
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In the next section, the performance of these proposals and of their combinations are
studied for different rate ranges.

4. Performance Analysis

This section assesses the performance, in terms of rate-distortion, of the proposed
method in comparison with the CCSDS 122.0-B [6], JPEG2000 [5] and with the reference
methods [13,16]. Beforehand, a subjective image quality assessment is proposed. Although
informal, it allows comparing the artefacts produced by learned compression and by the
CCSDS 122.0-B [6].

4.1. Implementation Setup

To assess the relevance of the proposed complexity reductions, experiments were
conducted using TensorFlow. The batch size (i.e., the number of training samples to work
through before the parameters are updated) was set to 8 and up to 1M iterations were
performed. Both training and validation datasets are composed of simulated 12-bit Pléiades
panchromatic images provided by the CNES, covering various landscapes (i.e., desert,
water, forest, industrial, cloud, port, rural, urban). The reference learned frameworks for
image compression are designed to handle 8-bit RGB natural images and they generally
target low rates (typically up to a maximum of 1.5 bits/pixel). In contrast, on board satellite
compression handles 12-bit panchromatic images and targets higher rates (from 2bits/pixel
to 3.5 bits/pixel). The training dataset is composed of 8M of patches (of size 256× 256)
randomly cropped from 112 images (of size 585× 585). The validation dataset is composed
of 16 images (of size 512× 512). MSE was considered to be the distortion metric for training.
The rate and distortion measurements were averaged across the validation dataset for a
given value of λ. Please note that the value of λ has to be set by trial and error for a targeted
rate range.

In addition to the MSE, we also evaluate those results in terms of MS-SSIM. Please
note that they exhibit a similar behavior even if the models were trained for the MSE only.
The proposed framework is compared with the CCSDS 122.0-B [6], JPEG2000 [5] and with
the reference methods [13,16] implemented for values of N and M recommended by their
authors for particular rate ranges.

• Ballé(2017)–non-parametric-N refers to the autoencoder [13] and is implemented
for N = 192 (respectively N = 256) for rates below 2 bits/pixel (respectively above
2bits/pixel).

• Ballé(2018)–hyperprior-N-M refers to the variational autoencoder [16] and is im-
plemented for N = 128 and M = 192 (respectively N = 192 and M = 320) for rates
below 2 bits/pixel (respectively above 2 bits/pixel).

4.2. Subjective Image Quality Assessment

At low rates, JPEG2000 is known to produce quite prominent blurring and ringing
artifacts, which is particularly visible in high-frequency textures [5]. This is also the case for
the CCSDS 122.0-B [6]. Figure 7a,b shows the original image of the city of Blagnac, which is
a 12-bit simulated panchromatic Pléiades image with size 512 × 512 and resolution 70 cm.
The figure also shows the image compressed by CCSDS 122.0 (c) and the image compressed
by the reference learned compression architecture Ballé(2017)–non-parametric-N (d), for
a low compression rate (1.15 bits/pixel). The image obtained through learned compression
appears closest to the original one than the image obtained through the CCSDS.
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(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 7. Subjective image quality analysis (R = 1.15 bits/pixel).

For medium luminances, far less artifacts, such as blurring and flattened effects are
observed. In particular, the building edges are sharper. The same is true for low luminances,
corresponding to shaded areas: the ground markings are sharp and less flatened areas are
observed. As shown in Figure 8, for a higher rate of 1.66 bits/pixel, the two reconstructed
images are very close. However, the image obtained through learning compression remains
closest to the original one, especially in shaded areas.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 8. Subjective image quality analysis (R = 1.66 bits/pixel).
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Finally, as shown in Figure 9 for an even higher rate of 2.02 bits/pixel, CCSDS 122.0 still
produces flattened effects, especially in low variance areas. The learned compression method
leads to a reconstructed image that is closest to the original one. Even though the stadium
ground markings slightly differs from the original, the image quality is overall preserved.

(a) Original image. (b) Zoom on the original image.

(c) Zoom on the CCSDS compressed image. (d) Zoom on the end-to-end compressed image.

Figure 9. Subjective image quality analysis—R = 2.02 bits/pixel.

Finally, for various rates, the learned compression method [13] does not suffer from
the troublesome artifacts induced by the CCSDS 122.0, leading to a more uniform image
quality. The same behavior was observed for the proposed method.

In the following, an objective performance analysis is performed in terms of rate-
distortion trade-off for the CCSDS 122.0-B [6], JPEG2000, the reference methods [13,16]
and the proposed ones.

4.3. Impact of the Number of Filter Reduction
4.3.1. At Low Rates

We first consider architectures devoted to low rates, say up to 2 bits/pixel. Starting
from [16] denoted as Ballé(2018)–hyperprior-N128-M192, the number of filters N (for
all layers, apart from the one just before the bottleneck) is reduced from N = 128 to N = 64,
keeping M = 192 for the layer just before the bottleneck. This reduction is applied jointly
to the main autoencoder and to the hyperprior one. The proposed simplified architecture is
termed Ballé(2018)-s-hyperprior-N64-M192. The complexity of this model is evaluated
in terms of number of parameters and of floating point operation per pixel (FLOPp) in
Table 1 .
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Table 1. Detailed complexity of Ballé(2018)-s-hyperprior-N64-M192.

Layer
Filter Size Channels Output Parameters FLOPp

n n Nin Nout sout sout

conv1 5 5 1 64 256 256 1664 4.16× 102

GDN1 4160 1.04× 103

conv2 5 5 64 64 128 128 102,464 6.40× 103

GDN2 4160 2.60× 102

conv3 5 5 64 64 64 64 102,464 1.60× 103

GDN3 4160 0.65× 102

conv4 5 5 64 192 32 32 307,392 1.2× 103

Hconv1 3 3 192 64 32 32 110,656 4.32× 102

Hconv2 5 5 64 64 16 16 102,464 1.00× 102

Hconv3 5 5 64 64 8 8 102,464 0.25× 102

HTconv1 5 5 64 64 16 16 102,464 1.00× 102

HTconv2 5 5 64 64 32 32 102,464 4.00× 102

HTconv3 3 3 64 192 32 32 110,784 4.32× 102

Tconv1 5 5 192 64 64 64 307,264 4.80× 103

IGDN1 4160 0.65× 102

Tconv2 5 5 64 64 128 128 102,464 6.40× 103

IGDN2 4160 2.60× 102

Tconv3 5 5 64 64 256 256 102,464 2.56× 104

IGDN3 4160 1.04× 103

Tconv4 5 5 64 1 512 512 1601 1.60× 103

Total 1,683,969 5.2264× 104

Table 2 compares the complexity of Ballé(2018)-s-hyperprior-N64-M192 to the
reference Ballé(2018)-hyperprior-N128-M192.

Table 2. Comparative complexity of the global architectures-Case of target rates up to 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)–hyperprior-N128-M192 5,055,105 1.9115× 105 1.00

Ballé(2018)-s-hyperprior-N64-M192 1,683,969 5.2264× 104 0.27

Ballé(2018)-s-laplacian-N64-M192 1,052,737 5.0774× 104 0.265

The complexity of the proposed simplified architecture is 73% lower in terms of
FLOPp with respect to the reference method. Now let consider the impact on compression
performance of the reduction of N. Figure 10 displays the performance, in terms of MSE
and MS-SSIM, of our different proposed solutions, of the reference learned methods and
of the JPEG2000 [5] and CCSDS 122.0-B [6] standards. The gray curve portions indicate
that the values of N and M are not recommended for this rate range (above 2 bits/pixel).
In this first experiment, we are mainly concerned by the comparison of the blue lines: the
solid one for the reference method Ballé(2018)–hyperprior-N128-M192 and the dashed
one for the proposal Ballé(2018)–hyperprior-N64-M192.
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(a) Log–log scale. Distortion measure: MSE.
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(b) Distortion measure: MS-SSIM (dB).

Figure 10. Rate-distortion curves for the considered learned frameworks and for the CCSDS 122.0-B [6] and JPEG2000 [5]
standards in terms of MSE and MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM))-Case of rates up to 2 bits/pixel.

As expected, Ballé(2018)-s-hyperprior–N64-M192 achieves a rate-distortion per-
formance close to the one of Ballé(2018)–hyperprior-N128-N192 [16], both in terms of
MSE and MS-SSIM, for rates up to 2 bits/pixel. We can conclude that the decrease in
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performance is very small, keeping in mind the huge complexity reduction. Please note
that our proposal outperforms by far CCSDS 122.0-B [6], JPEG2000 [5] standards as well as
Ballé(2017)-non-parametric-N192 [13].

4.3.2. At High Rates

Now let consider the architecture devoted to higher rates, say above 2 bits/pixel. For such
rates, the reference architectures involve a high number of filters (N = 256 in [13], N = 192
and M = 320 in [16]). Starting from [16], we reduced the number of filters to N = 64 in all
layers except the one before the bottleneck, keeping M = 320. The proposal Ballé(2018)-
s-hyperprior–N64-M320 is compared to the reference Ballé(2018)-hyperprior–N192-M320
but also to Ballé(2017)-non-parametric–N256 and to JPEG2000 [5] and CCSDS 122.0-B [6]
standards. Table 3 compares the complexity of Ballé(2018)-s-hyperprior-N64-M320 to the
reference Ballé(2018)-hyperprior-N192-M320.

Table 3. Comparative complexity of the global architectures-Case of target rates above 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)–hyperprior-N192-M320 11,785,217 4.3039× 105 1.00

Ballé(2018)-s-hyperprior-N64-M320 1,683,969 5.6966× 104 0.13

Ballé(2018)-s-laplacian-N64-M320 1,052,737 5.4774× 104 0.1273

The complexity of the proposed simplified architecture is 87% lower in terms of
FLOPp with respect to the reference method. Now let consider the impact on compression
performance of the reduction of N. Figure 11 displays the performance, in terms of MSE
only, of our different proposed solutions, of the reference learned methods and of the
JPEG2000 and CCSDS standards. The MS-SSIM shows the same behaviour.

2 2.5 3 3.5 4 4.5

bit rate [bits/pixel]

10 1

10 2

10 3

M
S

E

Ballé (2018)--hyperprior-N192-M320

Ballé (2018)--non-parametric-N192-M320

Ballé (2018)--laplacian-N192-M320

Ballé (2017)--non-parametric-N256

Ballé (2018)-s-hyperprior-N64-M320

Ballé (2018)-s-non-parametric-N64-M320

Ballé (2018)-s-laplacian-N64-M320

CCSDS standard

JPEG2000

Figure 11. Rate-distortion curves at higher rates for learned frameworks and for the CCSDS 122.0-B [6] and JPEG2000 [5]
standards for MSE in log-log scale Case of high rates (above 2 bits/pixel).
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Theses curves show that the simplified architectures (e.g., resulting from a decrease of
N) by far outperform the JPEG2000 and CCSDS standard even at high rates, while showing
a low decrease in performance with respect to the reference architectures. Note how-
ever that, for both the reference (Ballé(2018)–hyperprior-N192-M320) and the simplified
(Ballé(2018)-s-hyperprior-N64-M320) variational models, a training of 1M iterations
seems insufficient for the highest rates. Indeed, due to the auxiliary autoencoder im-
plementing the hyperprior, the training has conceivably to be longer, which can be a
disadvantage in practice. This may be an additional argument to propose a simplified
entropy model.

4.3.3. Summary

As an intermediary conclusion, for either low or high bit rates, a drastic reduction
of N starting from the reference architecture [16], does not decrease significantly the
performance, both in MSE and in MS-SSIM, while it leads to a complexity decrease of more
than 70%. These results are interesting since it was mentioned in [13,16,19] that structures
of reduced complexity would not be able to perform well at high rates.

4.4. Impact of the Bottleneck Size

As previously highlighted, the bottleneck size (M) plays a key role in the perfor-
mance of the considered architectures. Thus, we now consider a fixed low value of N
(N = 64) and then we vary the bottleneck size (M = 128, 192, 256 and 320). This experi-
ment, performed on the proposed architecture integrating the simplified entropy model
Ballé(2018)-s-laplacian-N64-M, allows quantifying the impact of M on the performance
in terms of both MSE and MS-SSIM for increasing values of the target rate. Figure 12 shows
the rate-distortion averaged over the validation dataset. According to the literature, high
bit rates require a large global number of filters [16].

1 1.5 2 2.5 3 3.5 4 4.5
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M
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(a) Log–log scale. Distortion measure: MSE.

Figure 12. Cont.
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Figure 12. Impact of the bottleneck size in terms of MSE and MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)) .

Figure 12 shows that increasing the bottleneck size M only, while keeping N very
small, allows maintaining the performance as the rate increases. As displayed in Figure 12,
while the performance reaches a saturation point for a given bottleneck size, it is possible
to renew its dynamic by increasing M only. This result is consistent since the number of
output channels (M), just before the bottleneck, corresponds to the number of features that
must be compressed and transmitted. It therefore makes sense to produce more features at
high rates for a better reconstruction of the compressed images. Interestingly, this figure
allows establishing in advance the convolution layer dimensions (N and M) for a given
rate range, taking into account a complexity concern.

4.5. Impact of the Gdn/Igdn Replacement in the Main Autoencoder

The original architecture Ballé(2018)–hyperprior-N128-M192 of [16], involving
GDN/IGDN non-linearities, is compared with the architecture obtained after a full ReLU
replacement, except for the last layer of the decoder part. Indeed, this layer involves a
sigmoid activation function for constraining the pixel interval mapping between 0 and 1
before the quantization. Figure 13 shows the rate-distortion averaged over the validation
dataset in terms of both MSE and MS-SSIM.

As claimed in [19], GDN/IGDN perform better than ReLU for all rates and especially
at high rates. Thus, although GDN/IGDN increase the number of parameters to be
learned and stored, as well as the number of FLOPp, on one side this increase represents a
small percentage of the overall structure with respect to conventional non-linearities [19].
On the other side, GDN/IGDN lead to a dramatic performance boost. In view of these
considerations, the complexity reduction in this paper does not target the GDN/IGDN.
However, their replacement by simpler activation functions can be envisioned in future
work to take into account on board hardware requirements.
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Figure 13. Impact of the GDN/IGDN replacement and of the filter kernel support on performance in terms of MSE and
MS-SSIM (dB) (derived as −10 log10(1−MS-SSIM)).
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4.6. Impact of the Filter Kernel Support in the Main Autoencoder

The original architecture Ballé(2018)–hyperprior-N128-M192 of [16] is also com-
pared when the 5× 5 filters composing the convolutional layers of the main autoencoder
are replaced by 3× 3 and 7× 7 filters. It is worth mentioning that all the variant architec-
tures considered in this part share the same entropy model obtained through the same
auxiliary autoencoder in terms of number of filters and kernel supports, since the objective
here is not to assess the impact of the entropy model. According to Figure 13, a kernel
support reduction from 5 × 5 to 3 × 3 leads to a performance decrease. This result is
expected in the sense that filters with a smaller kernel support correspond to a reduced
approximation capability. On the other hand, a kernel support increase from 5× 5 to 7× 7
does not lead to a significant performance improvement. This result indicates that the
approximation capability obtained with a kernel support 5× 5 is sufficient.

4.7. Impact of the Entropy Model Simplification
4.7.1. At Low Rates

For rates up to 2 bits/pixel, the proposed architectures Ballé(2018)–laplacian-N128-
M192 (with the simplified entropy model) and Ballé(2018)-s-laplacian-N64-M192 (com-
bining the reduction of the number of filters to N = 64 and the simplified Laplacian en-
tropy model) are compared with the non-variational reference method Ballé(2017)–non-
parametric-N192 [13], with the variational reference method Ballé(2018)–hyperprior-
N128-M192 [16], with its version after reduction of the number of filters Ballé(2018)-s-
hyperprior-N64-M192, with the architecture denoted as Ballé(2018)-nonparametric-N128-
M192 (combining the main auto-encoder in [16] and the non-parametric entropy model in [13])
and its version after reduction of the number of filters Ballé(2018)-s-non-parametric-N64-
M192. Table 4 shows that the coding part complexity of Ballé(2018)-s-laplacian-N64-M192
is 13% lower than the one of Ballé(2018)-s-hyperprior-N64-M192.

Table 4. Reduction of the encoder complexity induced by simplified entropy model on the coding
part-Case of rates up to 2 bits/pixel).

Method Parameters FLOPp Relative

Ballé(2018)-s-hyperprior-N64-M192 1,157,696 1.25× 104 1

Ballé(2018)-s-laplacian-N64-M192 526,464 1.09× 104 0.87

Figure 10 shows the rate-distortion averaged over the validation dataset for the
trained models for both MSE and MS-SSIM quality measures. Recall that the architec-
tures were trained for MSE only. The proposed simplified entropy model (Ballé(2018)-s-
laplacian-N64-M192) achieves an intermediate performance between the variational model
(Ballé(2018)-s-hyperprior-N64-M192) and the non-variational model (Ballé (2018)-s-
non-parametric-N64-M192). Obviously, due to the entropy model simplification,
Ballé(2018)-s-laplacian-N64-M192 underperforms the more general and thus more
complex Ballé(2018)-s-hyperprior-N64-M192 model. However, the proposed entropy
model, even if simpler, preserves the adaptability to the input image, unlike the models
Ballé(2018)–non-parametric-N128-M192 and Ballé(2017)–non-parametric-N192 [13].
Please note that the simplified Laplacian entropy model perform close to the hyperprior
model at relatively high rates. One possible explanation for this behaviour can be the
increased amount of side information required by the hyperprior model [16] for these
rates [28].

4.7.2. At High Rates

For high rates (above 2 bits/pixel), the proposed architectures Ballé(2018)–laplacian-
N192-M320 (with the simplified entropy model) and Ballé(2018)-s-laplacian-N64-M320
(combining the reduction of the number of filters to N = 64 and the simplified Laplacian



Remote Sens. 2021, 13, 447 23 of 27

entropy model) are compared with the non-variational reference method Ballé(2017)–non-
parametric-N256 [13], with the variational reference method Ballé(2018)–hyperprior-
N192-M320 [16], with its version after reduction of the number of filters Ballé(2018)-
s-hyperprior-N64-M320, with the architecture denoted as Ballé(2018)-nonparametric-
N192-M320 (combining the main auto-encoder in [16] and the non-parametric entropy
model in [13]) and its version after reduction of the number of filters Ballé(2018)-s-non-
parametric-N64-M320. Figure 11 displays the rate-distortion averaged over the validation
dataset for the trained models in terms of MSE. The proposed simplified entropy method
Ballé(2018)-s-laplacian-N64-M320 achieves an intermediate performance between the
variational model (Ballé(2018)-s-hyperprior-N64-M320) and the non-variational model
Ballé(2018)-s-non-parametric-N64-M320, similarly to the models targeting lower rates
in Figure 10. Table 5 shows that the coding part complexity of Ballé(2018)-s-laplacian-
N64-M320 is around 16% lower than the one of Ballé(2018)-s-hyperprior-N64-M320.

Table 5. Reduction of the encoder complexity induced by simplified entropy model on the coding
part-Cas of rates above 2 bits/pixel.

Method Parameters FLOPp Relative

Ballé(2018)-s-hyperprior-N64-M320 1,715,008 1.3979× 104 1

Ballé(2018)-s-laplacian-N64-M320 731,392 1.1787× 104 0.8432

4.7.3. Summary

For either low or high bit rates, the proposed entropy model simplication leads to
intermediary performance when compared to the reference architectures [13,16], both in
MSE and in MS-SSIM, while it leads to a coding part complexity decrease of more than
10% with respect to [16].

4.8. Discussion About Complexity

According to the previous performance analysis, the computational time complexity
of the proposed method is significantly lower than the one of the reference learned com-
pression architecture [16]. However, around 10 kFLOPs/pixel, the attained complexity is
at least 2 orders of magnitude higher than the ones of the CCSDS and JPEG2000 [5] stan-
dards. Indeed, the complexity of CCSDS 122.0 is around 140 operations per pixel (without
optimizations), or 70 MAC (Multiplication Accumulation). The JPEG2000 is 2 to 3 times
more complex depending on the optimizations. Note however that the CCSDS 122.0 dates
back to 2008 when onboard technologies were limited to radiation-hardened (Rad-Hard)
components dedicated to space, with the objectives of 1 Msample/s/W (as specified in the
CCSDS 122.0 green book [29]), to process around 50 Mpixels/s. Space technologies, cur-
rently developed for the next generation of CNES Earth observation satellites, rather target
5–10 Msample/s/W. Nowadays, the use of commercial off-the-shelf (COTS) components
or of dedicated hardware accelerators is envisioned: based on a thinner silicon technology
node, they allow higher processing frequencies with consistently lower consumption. For
instance, the Movidius Myriade 2 announces 1 TFLOP/s/W. The 10 kFLOP/pixels of the
current network would lead to 100 Mpixels/s/W on this component. Therefore, the order
of magnitude of the proposed method complexity is not incompatible with an embedded
implementation, taking into account the technological leap from the component point of
view. Consequently, the complexity increase with respect to the CCSDS one, which we
limited as far as possible, is expected to be affordable after computation device upgrading.
Please note that, in addition, manufacturers of components dedicated to neural networks
provide software suites (for example Xilinx) to optimize the portings. Finally, before on
board implementation, a network compression (including pruning, quantization, or ten-
sor decomposition for instance) can be envisioned. However, this is out of the scope of
this paper.
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5. Conclusions

This paper proposed different solutions to adapt the reference learned image com-
pression models [13,16] to on board satellite image compression, taking into account their
computational complexity. We first performed a reduction of the number of filters compos-
ing the convolutional layers of the analysis and synthesis transforms, applying a special
treatment to the bottleneck. The impact of the bottleneck size, under a drastic reduction
of the overall number of filters, was investigated. This study allowed identifying the
lowest global number of filters for each rate. For the sake of completeness, we also called
into question the other design options of the reference architectures, and especially the
parametric activation functions. Second, in order to simplify the entropy model, we also
performed a statistical analysis of the learned representation. This analysis showed that
most features follow a Laplacian distribution. We thus proposed a simplified parametric
entropy model, involving a single parameter. To preserve the adaptivity and thus the
performance, this parameter is estimated in the operational phase for each feature of the
input image. This entropy model, although far simpler than non-parametric or hyperprior
models, brings comparable performance. In a nutshell, by combining the reduction of
the global number of filters, and the simplification of the entropy model, we developed
a reduced-complexity compression architecture for satellite images that outperforms the
CCSDS 122.0-B [6], in terms of rate-distortion trade-off, while maintaining a competitive
performance for medium to high rates in comparison with the reference learned image
compression models [13,16]. Thereupon, while more complex than traditional CCSDS 122.0
and JPEG 2000 standards, the proposed solutions offer a good compromise between com-
plexity and performance. Thus, we can recommend their use, subject to the availability of
suitable on board devices. Besides, future work will be devoted to hardware considerations
regarding the on board implementation.
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Abbreviations
The following abbreviations are used in this manuscript:

CCSDS Consultative committee for space data systems
CNN Convolutional neural networks
DCT Discrete cosine transform
GDN Generalized divisive normalization
IGDN Inverse generalized divisive normalization
JPEG Joint photographic experts group
MSE Mean square error
MS-SSIM Multi-scale structural similarity index
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PCA Principal component analysis
ReLU Rectified Linear Unit

Appendix A. Table of Symbols Used

This annex tabulates symbols used in this article.

Table A1. Quantities.

Symbol Meaning Reference

x original image Section 2.1

Ga(x) analysis transform Section 2.1

y learned representation Section 2.1

ŷ quantized learned representation Section 2.1

Gs(ŷ) synthesis transform Section 2.1

x̂ reconstructed image Section 2.1

GDN generalized divisive normalizations Section 2.1

IGDN inverse generalized divisive normalizations Section 2.1

N filters composing the convolutional layers Section 2.1

n× n kernel support Section 2.1

M filters composing the last layer of Ga Section 2.1

k, l coordinate indexes of the output of the ith filter Section 2.1

vi(k, l) value indexed by (k, l) of the output of the ith filter Section 2.1

Q(y) quantizer Section 2.2

J rate-distortion loss function Section 2.3.1

R(ŷ) rate Section 2.3.1

D(x, x̂) distortion between the original image x and the reconstructed image x̂ Section 2.3.1

λ parameter that tunes the rate-distortion trade-off Section 2.3.1

m(ŷ) actual discrete probability distribution Section 2.3.1

pŷ(ŷ) probability model assigned to the quantized representation Section 2.3.1

H(ŷ) bit-rate given by the Shannon cross entropy Section 2.3.1

ψ(i) distribution model parameter vector associated with each element Section 2.3.2

∆y i.i.d uniform noise Section 2.3.2

ỹ continuous approximated quantized learned representation Section 2.3.2

z set of auxiliary random variables Section 2.3.2

Ha(y) hyperprior analysis transform Section 2.3.2

Hs(ẑ) hyperprior synthesis transform Section 2.3.2

σi standard deviation of a zero-mean Gaussian distribution Section 2.3.2

Nin number of features at the considered layer input Section 3.1.1

Nout number of features at the considered layer output Section 3.1.1

Param f number of parameters associated with the filtering part of the considered layer Section 3.1.1

δ term accounting for the bias Section 3.1.1
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Table A1. Cont.

Symbol Meaning Reference

D downsampling factor Section 3.1.1

sin channel input size Section 3.1.1

sout downsampled input channel size Section 3.1.1

Operation f number of floating points operations Section 3.1.1

Paramg number of parameters associated with each IGDN/GDN Section 3.1.1
Operationg number of floating points operations of each GDN/IGDN Section 3.1.1

ζ random variable that follows a Laplacian distribution Section 3.2.1

µ mean value of a Laplacian distribution Section 3.2.1

b scale parameter of a Laplacian distribution Section 3.2.1

Var(ζ) variance of a laplacian distributed random variable Section 3.2.1

yi feature map elements Section 3.2.2

Ij set of indexes covering the jth feature Section 3.2.2
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