
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/332790744

On Nonparametric Identification of Wiener Systems with Deterministic Inputs

Conference Paper · May 2019

DOI: 10.1109/ICASSP.2019.8683337

CITATION

1
READS

54

4 authors, including:

Some of the authors of this publication are also working on these related projects:

parallel MRI View project

Motion estimation View project

E. Chaumette

Institut Supérieur de l'Aéronautique et de l'Espace (ISAE)

138 PUBLICATIONS   782 CITATIONS   

SEE PROFILE

Philippe Goupil

Airbus

100 PUBLICATIONS   1,204 CITATIONS   

SEE PROFILE

Jean-Yves Tourneret

Telecommunications for Space and Aeronautics

285 PUBLICATIONS   5,488 CITATIONS   

SEE PROFILE

All content following this page was uploaded by E. Chaumette on 21 May 2019.

The user has requested enhancement of the downloaded file.



ON NONPARAMETRIC IDENTIFICATION OF WIENER SYSTEMS WITH DETERMINISTIC
INPUTS

Simone Urbano(1)(4), Eric Chaumette(2)(4), Philippe Goupil(1) and Jean-Yves Tourneret(3)(4)

(1) Airbus Flight Control System Department, Airbus, Toulouse, France ([simone.urbano,philippe.goupil]@airbus.com)
(2) University of Toulouse/Isae-Supaero, 10 av. Edouard Belin, Toulouse, France (eric.chaumette@isae.fr)

(3) University of Toulouse/INP-ENSEEIHT/IRIT, 2 Rue Charles Camichel, Toulouse, France (Jean-Yves.Tourneret@enseeiht.fr)
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ABSTRACT

The identification of nonlinear Wiener models (NWMs) for deter-
ministic inputs and Gaussian noise is studied. We show that the
nonparametric kernel regression estimation of the nonlinearity of
a NWM (based on the Nadaraya-Watson kernel estimator) can be
formulated as a parametric estimation problem leading to a Gaus-
sian conditional observation model. This property allows us to de-
rive the maximum likelihood estimators of the unknown parameters
of the NWM, as well as the associated Cramér-Rao (CR) bounds.
We finally derive a CR-like bound on the global mean squared error
(MSE) of the estimated nonlinearity of a NWM. Numerical results
obtained for a pulse wave input are presented and compared to the
ones based on the Nadaraya-Watson kernel estimator.

Index Terms— Wiener model, non-parametric identification,
Cramér-Rao bound, Maximum Likelihood Estimator, Mean Square
Error.

1. INTRODUCTION

Many nonlinear models such as Wiener and Hammerstein models
are composed by a combination of a linear filter and a static non-
linearity (see Fig. 1) . The combination of these very simple struc-
tures is known to approximate a wide range of nonlinear processes
[1, 2, 3, 4]. In particular, these models become particularly attractive
if one considers a general class of nonlinearities that are not assumed
to be parametric and smooth, providing better results than a simple
polynomial of finite order [5]. It is possible to extend even more
their applicability to nonlinear system identification if one assumes
a nonparametric model for the static nonlinearity, as introduced in
[3][6] for nonlinear Wiener models (NWMs) and extended in [3][7]
for noninvertible nonlinearities. A nonparametric identification al-
gorithm was proposed in [7] for NWMs. The convergence of this
algorithm relies on the following assumptions: (i) the input signal
{xn} is a sequence of i.i.d. random variables with known probability
density function (pdf) and finite first and second order moments, (ii)
the noise process {zn} is an i.i.d. sequence with zero mean and finite
but unknown variance σ2

z , (iii) the noise {zn} and the input signal
{xn} are mutually independent. The above basic assumptions im-
ply that both the interconnecting signal {ωn}1 and the output signal
{yn} are second-order stationary stochastic processes.

However in many applications, the input signal xn is not a se-
quence of i.i.d. random variables, but rather a deterministic time se-

1System identification algorithms assume that the input and output se-
quences {xn} and {yn} are available. However, the so-called interconnect-
ing signal {ωn} is not observed.

Fig. 1. Nonlinear Wiener model.

ries, and the noise sequence {zn} is simply an additive i.i.d. Gaus-
sian noise with zero mean and finite but unknown variance σ2

z . In
this setting, we show that the nonparametric kernel regression es-
timation of the nonlinear function g (.) proposed in [7], i.e., the
Nadaraya-Watson kernel estimator [10], can also be regarded as a
parametric estimation problem, which belongs to the Gaussian con-
ditional observation model [8][9]. Indeed, it amounts to estimating a
parameter vector γ associated with a given nonparametric kernel es-
timator of the nonlinearity g (.), as well as the weights λ associated
with the filter relating xn and ωn and the unknown noise variance
σ2
z . By using the well-known Slepian-Bangs formula [16], the first

contribution of this paper is to derive the deterministic Cramér-Rao
(CR) bound (CRB) for the NWM parameters, i.e., γ, λ and σ2

z . Fur-
thermore, we also derive an asymptotic CR-like bound on the global
mean squared error (MSE) of the estimated nonlinearity g (.;γ) for
consistent and locally unbiased estimators of γ. An interesting prop-
erty of this bound is its relation with the mean integrated squared
error (MISE) criterion introduced in [7]. Since we consider a con-
ditional signal model, the maximum likelihood estimators (MLEs)
of the NWM parameters converge to their associated CRBs at high
signal-to-noise-ratio (SNR) [17]. Therefore we derive the associated
MLEs and compare their performance with the estimators proposed
in [7] (based on the Nadaraya-Watson kernel estimator), which are
shown to be sub-optimal when the input signal xn is not stationary.

2. OBSERVATION MODEL FOR NONPARAMETRIC
WIENER SYSTEM

The nonlinear Wiener model shown in Fig. 1 is defined as

yn = g (ωn) + zn, ωn =
P∑
p=0

λpxn−p, 1 ≤ n ≤ N (1a)

where g (.) is an unknown deterministic function of Ω→ R, Ω ⊂ R,
and λ = (λ0, λ1, . . . , λP ) ∈ RP+1 is an unknown determinis-
tic vector. It is important to observe that the pairs (g (ω) ,λ) and
(g (λ0ω) ,λ/λ0) generate the same observations. Indeed, the pair



(g (ω) ,λ) can be identified up to an homothetic transformation af-
fecting g (.). This identifiability problem can be bypassed by assum-
ing λ0 = 1, leading to

yn = g (ωn) + zn, ωn = xn +
P∑
p=1

λpxn−p, 1 ≤ n ≤ N (1b)

where λ = (λ1, . . . , λP ) ∈ RP . We introduce the following
notations: y = (y1, . . . , yN )T , ω = (ω1, . . . , ωN )T , g (ω) =

(g (ω1) , . . . , g (ωN ))T , z = (z1, . . . , zN )T , x = (x1, . . . , xN )T ,
x =

(
(x1−P , . . . , x0) ,xT

)T
, and

Tx =

 x0 . . . x1−P
...

...
...

xN−1 . . . xN−P


where y,ω,g (ω), z,x ∈ RN , x ∈ RN+P , Tx ∈ RN×P . The
nonparametric kernel regression estimation proposed in [7], based
on the Nadaraya-Watson kernel estimator of the nonlinearity g (.)
[10], is defined as

ĝ (ω) = ĝ
(
ω; λ̂

)
, ĝ (ω;λ) =

∑
i∈I1

yiKh (ω − ωi (λ))∑
i∈I1

Kh (ω − ωi (λ))
, (2a)

Kh (ω) =
K(ω

h
)

h
, λ̂ = arg min

λ

{ ∑
n∈I2

(yn − ĝ (ωn (λ) ;λ))2

}
,

where ωj (λ) = xj+
∑P
p=1 λpxj−p,N = card (I1)+card (I2)+

2P and K(ω) is a positive symmetric function (kernel) such that

∞∫
−∞

Kh (ω) dω =
∞∫
−∞

K (u) du = 1. (2b)

Let GI (γ) be the set of parametric functions g (.;γ) defined as

g (ω;γ) =

I∑
i=1

αiKh (ω − βi)

I∑
i=1

Kh (ω − βi)
, γ =

(
α
β

)
∈ R2I . (3)

From a broader perspective, (2a) can also be regarded as an estimator
of g (.;γ) defined in (3) where I = card (I1), α̂i = yi, β̂i =

ωi
(
λ̂
)

. Therefore the nonparametric kernel regression estimation

of the nonlinearity g (.) defined in (2a) can be recast as a parametric
estimation problem.

2.1. Gaussian Conditional Observation Model

The observation model (1b) can be rewritten as follows

zn = yn − g

(
xn +

P∑
p=1

λpxn−p

)
, 1 ≤ n ≤ N.

If x is a known deterministic vector, the pdf of y conditionally on x
with parameters λ ∈ RP is

p (y|x;λ) = pz (y − g (x + Txλ)) . (4a)

If pz (z) depends on a vector of unknown deterministic parameters
µ, then pz (z) , pz (z;µ) and (4a) becomes

p (y|x;λ,µ) = pz (y − g (x + Txλ) ;µ) . (4b)

At this point, if g (.) , g (.;γ) ∈ GI (γ) and if we consider θT =(
µT ,λT ,γT

)
, then (4b) becomes

p (y|x;θ) = pz (y − g (x + Txλ;γ) ;µ) (4c)

where g (.;γ) is an unknown parametric deterministic function.
Finally, if z ∼ N

(
0, σ2

zIN
)

then (4c) is a Gaussian pdf as well and
thus (1b) defines a Gaussian conditional observation model.

3. DETERMINISTIC CRAMÉR-RAO BOUNDS FOR A
NONPARAMETRIC WIENER SYSTEM

The general theory about lower bounds on the MSE of estimators
of deterministic parameters is detailed in [12, Section II & III][13]
(and summarized in [14, Section II]). In particular, if x is a known
deterministic vector, the inverse CRB of θ is [16]

CRB−1
θ (x) = Fθ (x) = −Ey|x;θ

[
∂2 ln p (y|x;θ)

∂θ∂θT

]
(5a)

where Fθ (x) is the Fisher information matrix (FIM). Under the hy-
pothesis that y , y|x ∼ N (m (θ) ,C (θ)), the FIM (5a) is ob-
tained from the Slepian-Bangs formula [16, (3.31)]

(Fθ)i,j =
∂m (θ)T

∂θi
C (θ)−1 ∂m (θ)

∂θj

+
1

2
tr

(
C (θ)−1 ∂C (θ)

∂θi
C (θ)−1 ∂C (θ)

∂θj

)
. (6)

In the Gaussian case considered in this work, θT =
(
σ2
z,λ

T ,γT
)
,

C (θ) = σ2
zIN and m (θ) = g (x + Txλ;γ). As a consequence,

the FIM of θ is

Fθ (x) =

 1
2
N
σ4
z

0 0

0 Fλ (x) Fλ,γ (x)
0 FTλ,γ (x) Fγ (x)


Fλ (x) =

1

σ2
z

(
∂g (x + Txλ;γ)

∂λT

)T
∂g (x + Txλ;γ)

∂λT

Fγ (x) =
1

σ2
z

(
∂g (x + Txλ;γ)

∂γT

)T
∂g (x + Txλ;γ)

∂γT

Fλ,γ (x) =
1

σ2
z

(
∂g (x + Txλ;γ)

∂λT

)T
∂g (x + Txλ;γ)

∂γT

which leads to

CRB−1
λ (x) = Fλ (x)− Fλ,γ (x) F−1

γ (x) FTλ,γ (x)

CRB−1
γ (x) = Fγ (x)− FTλ,γ (x) F−1

λ (x) Fλ,γ (x) .
(7)

With a few additional computations, it is easy to show that

∂g (x + Txλ;γ)

∂λT
=

(
∂g (x + Txλ;γ)

∂ω
1TP

)
�Tx

∂g (ω;γ)

∂αi′
=

Kh (ω − βi′)∑I
i=1 Kh (ω − βi)

∂g (ω;γ)

∂βi′
= K

(1)
h (ω − βi′)

∑I
i=1 (αi − αi′)Kh (ω − βi)(∑I

i=1 Kh (ω − βi)
)2



where � denotes the Hadamard product, 1TP = (1, . . . , 1) ∈ RP ,
K

(1)
h (ω) = ∂Kh (ω) /∂ω and

∂g (ω;γ)

∂ω
=
(∑I

i=1 αiK
(1)
h (ω − βi)

)
/
(∑I

i=1 Kh (ω − βi)
)

−
(∑I

i=1 K
(1)
h (ω − βi)

)
/
(∑I

i=1 Kh (ω − βi)
)
g (ω;γ) .

4. A LOWER BOUND ON THE GLOBAL ESTIMATION
ERROR

The quality of the estimation of g (.;γ) ∈ GI (γ) based on the esti-
mator g (.; γ̂) can be measured via the global estimation error

‖g (.;γ)− g (.; γ̂)‖2 =
∫
Ω

(g (ω;γ)− g (ω; γ̂))2 dω. (8)

From a theoretical point of view, (8) is a random variable whose
distribution is difficult to determine in the general case. As a conse-
quence, we consider a simpler performance criterion, i.e., its mean
value which equals the global MSE defined as

C (γ,γ̂) = Ey|x;θ

[
‖g (.;γ)− g (.; γ̂)‖2

]
=
∫
Ω

Ey|x;θ

[
(g (ω;γ)− g (ω; γ̂))2] dω. (9)

It is interesting to note that C (γ,γ̂) in (9) is the limiting value for
T,L → ∞ of the MISE performance criterion [7, (28)] (weak law
of large numbers)

MISE (ĝ (.)) =
1

LT

L∑
l=1

‖g (ωT ;γ)− g (ωT ; γ̂l)‖
2 (10)

where L is the number of independent observations, Ω = [a, b],
ωt = a + b−a

T
(t− 1) is the compact interval containing the pos-

sible values of ω, and g (ωT ;γ′) = (g (ω1;γ′) , . . . , g (ωT ;γ′))
T .

Under the assumption that γ̂ , γ̂ (y|x) is a consistent estimator of
γ, i.e., provided that γ̂ = γ + dγ̂ with dγ̂T dγ̂ → 0 when σ2

z → 0,
then g (ω; γ̂)− g (ω;γ)→ ∂g(ω;γ)

∂γT dγ̂ when σ2
z → 0 leading to:

C (γ,γ̂) −→
σ2
z→0

∫
Ω

∂g (ω;γ)

∂γT
Cdγ̂ (x)

∂g (ω;γ)

∂γ
dω

= tr

(
Cdγ̂ (x)

∫
Ω

∂g (ω;γ)

∂γ

∂g (ω;γ)

∂γT
dω

)
.

Moreover, if γ̂ is a locally unbiased estimator of γ, then Cdγ̂ (x) ≥
CRBγ (x) [16] (in the sense that the difference between the two
matrices is positive) and

∂g (ω;γ)

∂γT
Cdγ̂ (x)

∂g (ω;γ)

∂γ
≥ ∂g (ω;γ)

∂γT
CRBγ (x)

∂g (ω;γ)

∂γ

which allows us to define the following CR-like bound

C (γ,γ̂) ≥ tr
(

CRBγ (x)
∫
Ω

∂g (ω;γ)

∂γ

∂g (ω;γ)

∂γT
dω

)
. (11)

5. AN MLE FOR NONPARAMETRIC WIENER SYSTEMS

When g (.) is an unknown parametric deterministic function, i.e.,
g (.) , g (.;γ) ∈ GI (γ), the analysis can be conducted by rewriting
(1b) as

yn =
I∑

i′=1

Kh (ωn (λ)− βi′)
I∑
i=1

Kh (ωn (λ)− βi)
αi′ + zn

which leads to the well known conditional Gaussian linear model
[8][9][16]

y = Hx (β,λ)α+ z, Hx (β,λ) =
∂g (x + Txλ;γ)

∂αT
, (12)

for which the MLE of θT =
(
σ2
z,λ

T ,γT
)

is

σ̂2
z (y|x) =

1

N

∥∥∥y −Hx

(
β̂, λ̂

)
α̂
∥∥∥2

(
α̂, β̂, λ̂

)
(y|x) = arg min

α,β,λ

{
1

N
‖y −Hx (β,λ)α‖2

}
.

Straightforward computations lead to [8][9][16]:

α̂ (y|x) =
(
Hx (β,λ)T Hx (β,λ)

)−1

Hx (β,λ)T y (13a)(
β̂, λ̂

)
(y|x) = arg max

β,λ

{
yTΠHx(β,λ)y

}
(13b)

where ΠA = A
(
ATA

)−1
AT . We can observe that the MLE of

α (13a) is different from the “Nadaraya-Watson kernel estimator”
(2a) [7, (11)]. In [17] it is shown that when σ2

z → 0, the MLEs(
α̂, β̂, λ̂

)
(y|x) (13a-13b) are consistent, Gaussian, locally unbi-

ased and efficient (minimum variance). As a consequence, when
σ2
z → 0, for a given pair

(
β̂, λ̂

)
(y|x), (2a)[7, (11)] leads likely

to a biased estimator and sub-optimal (in the MSE sense) com-
pared to the MLE (13a). In a nutshell, the following results can be
obtained asymptotically (when σ2

z → 0): (i) the proposed MLEs(
α̂, β̂, λ̂

)
(y|x) are efficient; (ii) g (.; γ̂ (y|x)) reaches (11).

6. RESULTS

We consider a synthetic scenario based on a pulse wave input x as
displayed in Fig. 2 (N = 100), and a dynamical system defined
by λ = (1/2, 1/2)T , α = (6,−2)T , β = (−1/4, 1/4)T . A
Gaussian kernel with bandwidth h = 1 is considered. The non-
linearity g (.) resulting from this choice is shown in Fig. 2, where
Ω = [a, b] = [−20, 20] and T = 800. Note that all the results
presented in this paper have been obtained by averaging L = 5000
Monte Carlo runs. In Fig. 3 and 4 we compare the MSE of the
MLEs (13a-13b) to the CRBs (7) as a function of the SNR defined
as SNR =

(
1
N
‖g (x + Txλ;γ)‖2

)
/σ2

z . Fig. 3 also compares the
performance of two estimators of λ, i.e., the MLE defined in (13b)
and Pawlak’s estimator defined in (2a) where card (I1) = 51 and
card (I2) = 47. We can observe that the MLEs (13a-13b) converge
to the CRBs (7) when the SNR increases, as expected [17]. More-
over, we can note that the MLE outperforms the kernel estimator of
g (.) proposed in [7]. Fig. 5 displays the estimated global estimation
error, i.e. MISE(ĝ (.)), of the two estimators versus SNR, which is
compared with the proposed CR-like bound (11). As already men-
tioned for the estimation ofλ, the global estimation error of the MLE
converges to the bound and outperforms the kernel estimator(2a)[7],
which can also be observed in Fig. 6 showing the estimator of the
nonlinearity g (.) in both cases (for a given SNR), with a biased ker-
nel estimator, as anticipated.

7. CONCLUSIONS

This paper addressed the nonlinear system identification problem for
nonparametric Wiener models. The deterministic CRBs, the MLE



Fig. 2. Input signal x (left) and non linearity g(.) (right)

Fig. 3. MSEs of the MLE (13b) and of Pawlak’s estimator (2a) for
λ versus SNR, and the corresponding CRB(λ) (7).

Fig. 4. MSE of the MLEs of (α,β) (13a-13b) versus SNR, and the
corresponding CRB (α,β) (7).

Fig. 5. MISE(ĝ (.)) (10) of the MLE (13a-13b) and of Pawlak’s
estimator (2a) versus SNR, compared with the lower bound (11).

Fig. 6. Estimated nonlinearity ĝ (.) obtained with the MLEs (13a-
13b, in black) and Pawlak’s estimators (2a, in red) of (λ,α,β),
compared to the ground truth g (.) (in blue) at SNR = 52dB.

and an asymptotic CR-like bound for the global estimation error
of the estimated nonlinearity were derived for this problem. Some
simulation results confirmed that the maximum likelihood estima-
tor of the nonlinearity has a global estimation error closer to the
corresponding Cramér-Rao bound than an existing kernel estimator,
which was designed for i.i.d. random input signals [7]. Based on the
obtained results, further studies can be carried out to evaluate the op-
timal input signal for Wiener system identification and the influence
of the bandwidth parameter h and/or the kernel type on the MLE
performance.
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