

Autonomous and Robust Time Scale Algorithm for a Swarm of Nanosatellites

By PhD candidate Hamish McPhee

Supervisors: Jean-Yves Tourneret David Valat

Examiners: Invited: **Reviewers:** Frédéric Pascal Sébastien Trilles Audrey Giremus Esa Ollila Jérôme Delporte François Vernotte **Corinne Mailhes**

Université Fédérale Toulouse Midi-Pyrénées

What Time is it?

Intro

How can we track time?

Intro

- Counting:
 - -Sunrises (days)
 - -Grains of sand (seconds)
 - Oscillations of an excited atom (picoseconds)
 - –No two clocks will count the same time! – Time Scale

Questions Answered Content Why is timing important? Context 1.

- 2. **Contribution 1: ATST** How can we make a robust Time Scale? 2.
- 3. **Contribution 2: MCRB** How can we quantify the improvement? 3.
- Results How does the ATST perform? 4. 4.
- Conclusion 5.

What was achieved and how can it be 5. improved?

Intro

Why is timing important? And what problems need to be addressed?

Context

Satellite Swarm

Common radio source, equal speed

Small differences in Time of arrival

More anomalies in space

Robust time scale

Stable and continuous

Frequency Stability

- Overlapping Allan Deviation (OADEV)
- Stability constraint:

$$f_{obs} = 100 \text{ MHz}$$
$$\tau \sigma_y(\tau) \le \frac{1}{2\pi f_{obs}}$$

- CSAC provides larger operational range
- Time scale improves range

Context

Oven Controlled Crystal Oscillator (OCXO) Chip Scale Atomic Clock (CSAC)

Anomalies and Continuity

- Phase jumps
 - -Occur in timing devices
 - -Broken phase continuity
 - -Broken frequency continuity

Context

Anomalies and Continuity

Context

• Frequency jumps

-Occur in timing devices

-Increased phase errors

-Broken frequency continuity

Anomalies and Continuity

- Measurement Link anomalies
 –Jumps in time scale
- Changes in clock availability
 –Jumps in time scale

How can we generate a Time Scale?

Time Scales

Notations

$$V(t) = V_0(t) (1 + \alpha(t)) \cos(2\pi$$

• Absolute time:
$$x_{i,p}(t) = h_i(t) - h_p(t) = \frac{\phi(t)}{2\pi\nu_0}$$
 [s]

• Fractional Frequency:
$$y_{i,p}(t) = \frac{dx_{i,p}(t)}{dt}$$
 [s/s]

• Frequency Drift:
$$d_{i,p}(t) = \frac{dy_{i,p}(t)}{dt} [s/s^2]$$

• Phase measurements: $z_{j,i}(t) = x_{j,p}(t) - x_{i,p}(t) + n_{j,i}(t)$ [s] **Time Scales**

$\tau v_0 t + \phi(t) \big)$

Clock Predictions

• Clock *i* is predicted, assuming constant frequency:

$$\hat{x}_{i,E}(t) = x_{i,E}(t-\tau) + \tau y$$

$$\hat{y}_{i,E}(t) = y_{i,E}(t -$$

Frequency estimation: Smoothing function

Time Scales

 $y_{i,E}(t-\tau)$

 $\tau)$

Basic Time Scale Equation (BTSE)

• Time scale defined as a reference time: $h_E(t)$

$$x_{i,E}(t) = h_i(t) - h_E(t) = \sum_{j=1}^{N} w_j(t)$$
$$x_{i,E}(t) = \sum_{j=1}^{N} w_j(t)r_j$$
$$y_{j,E}(t) = x_{i,p}(t) + \sum_{j=1}^{N} w_j(t) \left(\hat{x}_{j,E}(t) - x_j\right)$$
Time Scales

 χ_i

 $t)\left(\widehat{x}_{j,E}(t)-z_{j,i}(t)\right)$

 $\dot{t}_{i,i}(t)$

 $(j,p(t)) + \sum_{j=1}^{\infty} w_j(t) n_{j,i}(t)$

Weights

Inverse of prediction error (AT1/AT2)

$$w_j(t) = \frac{1}{\left(x_{j,E}(t) - \hat{x}_{j,E}(t) - \hat{x}_{j,E}(t)\right)}$$
$$\epsilon_j(t) = |x_{j,E}(t) - \hat{x}_{j,E}(t)|, \quad w_j(t) = 1$$
$$x_{i,E}(t) = \sum_{j=1}^N w_j(t-\tau) \left(\hat{x}_{j,E}(t) - \hat{x}_{j,E}(t)\right)$$

Time Scales

 $(t)\Big)^2$ $\min\left(\frac{4}{N}, \frac{\epsilon_j^2(t)}{\sum_{l=1}^N \epsilon_j^2(t)}\right)$

15

 $(t)-z_{j,i}(t)\Big)$

How to update the weights?				
Anomaly Time Scale	Phase jump	Frequency jump	Link Anomaly	Missing Data
AT1/AT2	$w_j(t)$ adapted when $\epsilon_j(t) > S_1$ Recompute $x_{i,E}(t)$	$x_{i,E}(t - L\tau)$ recomputed if $ y_{j,E}(t) - \overline{y}_j(t) > S_2$	Undefined	Not found
Proposed	Automatically update: $w_j(t)$, $x_{j,E}(t)$	Automatically update: $w_j(t), x_{j,E}(t)$	Automatically update: $w_j(t), x_{j,E}(t)$	Set relevant weights to zero [1]

[1] McPhee, Hamish, et al. 'Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites'. Proceedings of the 37th Annual European Frequency and Time Forum (EFTF), Neuchâtel, Switzerland, 2024.

Time Scales

First Contribution: An Autonomous Time scale using the Student's T-distribution (ATST)

ATST

$x_{i,E}(t) = \sum_{i=1}^{N} w_{j}(t) (\hat{x}_{j,E}(t) - z_{j,i}(t)) = \sum_{i=1}^{N} w_{j}(t) r_{j,i}(t)$ j=1

AIST

j=1

Student's t-distribution $r_{j,i}(t) \sim N\left(x_{i,p}(t), \sigma^2(t)\right)$ $r_{j,i}(t) \sim T\left(x_{i,p}(t), \sigma^2(t), \nu(t)\right)$

Student's t-distribution $r_{j,i}(t) \sim N\left(x_{i,p}(t), \sigma^{2}(t)\right)$ $r_{j,i}(t) \sim T\left(x_{i,p}(t), \sigma^{2}(t), v(t)\right)$

ATST

Student's t-distribution $r_{j,i}(t) \sim N\left(x_{i,p}(t), \sigma^2(t)\right)$ $r_{j,i}(t) \sim T\left(x_{i,p}(t), \sigma^2(t), \nu(t)\right)$

ATST

Parameter Estimation

Gaussian data, Maximum Likelihood Estimator (MLE):

$$\hat{\mu}(t) = \frac{1}{N} \sum_{j=1}^{N} r_{j,i}(t) = x$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{j=1}^{N} \left(r_{j,i}(t) - x_{i,j} \right)$$

Student t-distributed data, no closed form MLE

 $x_{i,E}(t)$

Expectation-Maximization (EM) • Initialize $\hat{\mu}_0(t)$, $\hat{\sigma}_0^2(t)$, $\hat{\nu}_0(t)$ with Gaussian MLE, then use EM algorithm

AIS

Expectation-Maximization (EM) • Initialize $\hat{\mu}_0(t)$, $\hat{\sigma}_0^2(t)$, $\hat{\nu}_0(t)$ with Gaussian MLE, then use EM algorithm

AIS

Expectation-Maximization (EM) • Initialize $\hat{\mu}_0(t)$, $\hat{\sigma}_0^2(t)$, $\hat{\nu}_0(t)$ with Gaussian MLE, then use EM algorithm

while
$$\hat{\mu}_{k} - \hat{\mu}_{k-1} > S$$

 $u_{j}(t) = \frac{\hat{\nu}_{k-1} + 1}{\hat{\nu}_{k-1} + \frac{\left(r_{j,i}(t) - \hat{\mu}_{k-1}(t)\right)^{2}}{\hat{\sigma}_{k-1}^{2}}},$
 $\hat{\mu}_{k}(t) = \sum_{j=1}^{N} w_{j}(t)r_{j,i}(t) = \frac{1}{2}$

AISI

 $w_j(t) = \frac{u_j(t)}{\sum_{l=1}^N u_l(t)}$

 $x_{i.E}(t)$

ATST algorithm

At each time *t*, the ATST steps include [2]:

- 1. Predict clock phase and frequency
- 2. Obtain measurements BTSE residuals
- 3. Recursive EM algorithm Equivalent to BTSE
 - Weights adapted for anomalous clocks
- 4. Frequency estimation Equivalent to AT1 (tuning)

[2] McPhee, Hamish, et al. 'A Robust Time Scale for Space Applications Using the Student's t-Distribution'. *Metrologia*, vol. 61, no. 5, Sept. 2024, p. 055010.

ATST

How good is ATST in theory?

Second Contribution: Misspecified Cramér-Rao Bounds applied to a Robust Time Scale

MCRB

Heavy-tailed distributions

MCRB

- Student's t-distribution

 Number of degrees of freedom: v
- Bimodal Gaussian Mixture (BGM)
 - Proportion of anomalous data: ε
 - Anomalies with inflated variance: $k\sigma^2$

What is a Cramér-Rao Bound?

• Theoretical lower limit of estimation error for parameter vector $oldsymbol{ heta}$

$$\mathbf{CRB}_{\boldsymbol{\theta}} = -\frac{1}{N} E_p \left[\frac{\partial^2 \log(p(\mathbf{z}_i; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \right] = \frac{1}{N} E_p \left[\frac{\partial \log(p(\mathbf{z}_i; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \right]$$

- MSE of the MLE is known to asymptotically approach the CRB
- Closed-form expressions for Gaussian and Student's t-distributions

$$CRB_{\mu} = \frac{\sigma^2}{N}, \qquad CRB_{\mu_T} = \left(\frac{\nu+3}{\nu+1}\right) \left(\frac{\nu-2}{\nu}\right) \frac{\sigma^2}{N}$$

 $\mathbf{C}\mathbf{R}\mathbf{R}$

Misspecified Cramér-Rao Bound

 Misspecified = Incorrect assumption on statistical model $\mathbf{MCRB}_{\theta}(\mathbf{p}||\mathbf{q}) = \frac{1}{N} \mathbf{A}(\boldsymbol{\theta}_{p})^{-1} \mathbf{B}(\boldsymbol{\theta}_{p}) \mathbf{A}(\boldsymbol{\theta}_{p})^{-1}, \qquad \mathbf{A}(\boldsymbol{\theta}_{p}) = E_{p} \left[\frac{\partial^{2} \log(q(\mathbf{z}_{i}; \boldsymbol{\theta}))}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{T}} \right]_{\boldsymbol{\theta}},$

	Student's t
′*	MCRB √*
	MCRB ?
>	CRB √

Results – Derived Bounds

General derivation of
$$\boldsymbol{\theta}_p = \left[\mu_p, \sigma_p^2\right]^T = \left[E_p[z_i], \operatorname{var}_p[z_i]\right]^T$$

$$\mathbf{MCRB}_{\theta}(p_T || p_G) = \begin{bmatrix} \frac{\sigma_{p_T}^2}{N} & 0\\ 0 & \left(\frac{\nu - 1}{\nu - 4}\right) \frac{2\sigma_{p_T}^4}{N} \end{bmatrix}$$
$$\mathbf{MCRB}_{\theta}(p_{GM} || p_G) = \begin{bmatrix} \frac{\sigma_{p_{GM}}^2}{N} & 0\\ 0 & \left(\frac{Q(\varepsilon(k - 1))}{2(\varepsilon(k - 1) + 1)^2}\right) \frac{2\sigma_{p_{GM}}^4}{N} \end{bmatrix}$$

MCRB

MCRB Student's t-distribution

MCRB

• Presented at EUSIPCO 2024 [3]

[2] McPhee, Hamish, et al. 'Misspecified Cramér-Rao Bounds for Anomalous Clock Data in Satellite Constellations'. *Proceedings of the 32nd Annual European Signal Processing Conference (EUSIPCO)*, Lyon, France, 2024.

MCRB – Bimodal Gaussian Mixture

• Yet to be published

How does the ATST perform?

Results

Simulation Setup

- Swarm of 50 satellites
- Homogeneous clock types
- 6 hours of simulation
- 10 second minimum interval
- Anomalies occur once on each clock

- Baseline AT1 oracle
 - -Perfect detection of anomalies
 - -Weights forced to zero
 - -Recomputation of $x_{i,E}(t)$
- Performance Metrics -Phase continuity in $h_E(t) = x_{i,E}(t)$
 - $x_{i,p}(t)$
 - -Frequency continuity
 - -OADEV
 - -Weights

Results
Nominal

Results

Nominal

Results

Phase jumps

Results

Phase jumps

Results

Frequency jumps

Results

Frequency jumps

Results

Measurement anomalies

Results

Measurement anomalies

Results

A new method to tell the time?

Conclusion

Conclusions

ATST Robust time scale algorithm

-Same weighting method for many anomalies -Restricted by number and type of clocks

- MCRB to assess performance of robust estimation
 - –Defines required number of clocks
 - -Equivalence of Heavy-tailed distributions
 - -Not universal

Conclusion

Combine AT1 and ATST

Conclusion

Combine AT1 and ATST

Machine Learning

Conclusion

Combine AT1 and ATST

Machine Learning

Transient Anomalies

Conclusion

Combine AT1 and ATST

Machine Learning

Transient Anomalies

Real data

Conclusion

Collecting Real Data

Real Data

Real Data

Thank you for

your time!

Real Data

List of Publications

- 1. McPhee, Hamish, et al. 'Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites'. Proceedings of the 37th Annual European Frequency and Time Forum (EFTF), Neuchâtel, Switzerland, 2024.
- 2. McPhee, Hamish, et al. 'A Robust Time Scale for Space Applications Using the Student's t-Distribution'. *Metrologia*, vol. 61, no. 5, Sept. 2024, p. 055010.
- 3. McPhee, Hamish, et al. 'Misspecified Cramér-Rao Bounds for Anomalous Clock Data in Satellite Constellations'. Proceedings of the 32nd Annual European Signal Processing *Conference (EUSIPCO)*, Lyon, France, 2024.
- McPhee, Hamish, et al. 'A Robust Time Scale Based on Maximum Likelihood Estimation'. 4. Proceedings of the 54th Annual Precise Time and Time Interval Systems and Applications *Meeting*, Institute of Navigation (IoN), Long Beach, California, 2023.

Real Data

Backup Slides

Clocks in space Oven Controlled Crystal Oscillator (OCXO)

- Important constraints for nanosatellites:
 - -Size (volume)
 - -Weight
 - -Power

• Mission requirements: -Frequency Stability -Continuity

- Chip Scale Atomic Clock (CSAC)

Clock noises

Noise Types	α	AVAR
White Phase	2	$\frac{3f_H}{4\pi^2}\frac{h_2}{\tau^2}$
Flicker Phase	1	$\frac{1.731 - \log(2) + 3\log(2\pi f_H \tau)}{4\pi^2} \frac{h_1}{\tau^2}$
White Frequency	0	$\frac{1}{2}\frac{h_0}{\tau}$
Flicker Frequency	-1	$2\log(2)h_{-1}$
Random Walk Frequency	-2	$\frac{2\pi^2}{3}h_{-2}\tau$

Backup

Clock Simulation

From AVAR, get h_{α} then generate random noise according to associated variances $Q_d(\beta)$

$$S_{y}(f) = \sum_{\alpha=-2}^{2} h_{\alpha} f^{\alpha}, \qquad S_{x}(f) = \frac{S_{y}}{(2\pi)^{2}}$$
$$Q_{d}(\beta) = \frac{g_{\beta}}{2(2\pi)^{\beta}\tau_{0}^{\beta}}$$

Note: $Q_d(\beta)$ is multiplied by a randomly generated real number to simulate uniqueness of independent clock behaviours

Backup

'+1

Calculating OADEV

Backup

5/

Weights

Kalman Filter (GPS Composite clock)

 $\mathbf{x}(t) = \mathbf{K}(\mathbf{z}(t) - \mathbf{H}\widehat{\mathbf{x}}(t))$ $\begin{bmatrix} x_{1,E}(t) \\ \vdots \\ x_{N,E}(t) \end{bmatrix} = \begin{bmatrix} K_{1,1} & \cdots & K_{1,N-1} \\ \vdots & \ddots & \vdots \\ K_{N-1,1} & \cdots & K_{N-1,N-1} \end{bmatrix} \left(\begin{bmatrix} z_{1,1}(t) \\ \vdots \\ z_{N,1}(t) \end{bmatrix} - \left(\begin{bmatrix} \hat{x}_{1,E}(t) - \hat{x}_{1,E}(t) \\ \vdots \\ \hat{x}_{N,E}(t) - \hat{x}_{1,E}(t) \end{bmatrix} \right) \right)$ $x_{i,E}(t) = \sum_{j=1}^{N} w_j(?) \left(\hat{x}_{j,E}(t) - z_{j,i}(t) \right)$ $\boldsymbol{K} = \boldsymbol{P}_{k|k-1} \boldsymbol{H}^T (\boldsymbol{H} \boldsymbol{P}_{k|k-1} \boldsymbol{H}^T + \boldsymbol{R})^{-1}$

Weights

 Inverse of frequency variance (ALGOS), expanded in [PTTI 23] $w_i(t) = \frac{1}{\hat{\sigma}_{\gamma_i}^2(t)}$ $\hat{\sigma}_{y_i}^2(t) = \frac{1}{L} \sum_{i=1}^{L-1} p_m \left(y_{i,s}(t - m\tau) - \bar{y}_i(t) \right)^2$ m=0 $\bar{y}_{i}(t) = \frac{1}{L} \sum_{m=0}^{L-1} p_{m} y_{i,s}(t - m\tau)$ $y_{i,s}(t) = \frac{x_{i,E}(t) - x_{i,E}(t - \tau)}{\tau}$ Backup

Time Accuracy

- Time Deviation (TDEV)
- Max. for coherent networks [ITU] $\sigma_{\chi}(\tau) \leq 10 \text{ ns}$
- Synchronization metric
- CSAC provides larger operational range
- Time scale improves range

Continuity Measure

- Maximum Time Interval Error (MTIE) $MTIE(\tau) = \max_{t>0} \{ x_i(t) - x_i(t-\tau) \}$
- Max. for coherent networks [ITU] $MTIE \leq 30 ns$
- Frequency continuity equally important
- CSAC provides larger operational range
- Time scale improves range

Continuity Measure

- Maximum Time Interval Error (MTIE) $MTIE(\tau) = \max_{t>0} \{ x_i(t) - x_i(t-\tau) \}$
- Max. for coherent networks [ITU] $MTIE \leq 30 ns$
- Frequency continuity equally important
- CSAC provides larger operational range
- Time scale improves range

Equivalence of Heavy-tailed distributions

Equating CRBs:

Backup

MCRB – Estimating Sigma

Yet to be published

Significance for a Time Scale

 Time Scale phase is related to estimation error $E_p[(x_{i,E}(t) - x_{i,p}(t))^2] = E_p[x_{E,p}^2(t)] \ge MCRB_\mu(t) \ge CRB_\mu(t)$

True Assumed	Gaussian $(t_a - \tau)$	BGM (t _a)	Student's t (<i>t</i> _a)		
Gaussian	$\frac{\sigma^2}{N}$	$(\varepsilon(k-1)+1)\frac{\sigma^2}{N}$	$\left(\frac{\nu}{\nu-2}\right)\frac{\sigma^2}{N}$		
BGM	$\approx \frac{\sigma^2}{N}$	$\left(\frac{k}{k-\varepsilon(k-1)}\right)\frac{\sigma^2}{N}$	Equivalent $(k, \varepsilon), v$		
Student's t	$\approx \frac{\sigma^2}{N}$	Equivalent $(k, \varepsilon), v$	$\left(\frac{\nu+3}{\nu+1}\right)\frac{\sigma^2}{N}$		
Backun					

Significance for a Time Scale

Change in bounds relates to possible change in Time Scale phase

Backup

Expectation-Maximization: Student's t-distribution

while
$$\widehat{\boldsymbol{\theta}}_{k} - \widehat{\boldsymbol{\theta}}_{k-1} > S$$

$$u_{j,k}(t) = \frac{\widehat{v}_{k-1} + 1}{\widehat{v}_{k-1} + \frac{\left(r_{j,i}(t) - \widehat{\mu}_{k-1}(t)\right)^{2}}{\widehat{\sigma}_{k-1}^{2}}},$$

$$\hat{\mu}_k(t) = \sum_{j=1}^N w_{j,k}(t) r_{j,i}(t)$$

Backup

 $w_{j,k}(t) = \frac{u_{j,k}(t)}{\sum_{l=1}^{N} u_{l,k}(t)},$

 $= x_{i,E}(t)$

Expectation-Maximization: Student's t-distribution

 $\hat{\nu}_k(t)$, solve:

$$\phi\left(\frac{\hat{\nu}_{k}(t)}{2}\right) + \sum_{l=1}^{N} u_{j,k}(t) - \psi\left(\frac{\hat{\nu}_{k-1}+1}{2}\right) + \frac{1}{2} \left(\frac{\hat{\nu}_{k-1}+1}{2}\right) + \frac{1}{2} \left(\frac{\hat{\nu}_{k-1$$

 $+ \log\left(\frac{\widehat{v}_{k-1}+1}{2u_{i\,k}(t)}\right) - 1 = 0$

Expectation-Maximization: BGM

while $\widehat{\boldsymbol{\theta}}_{l} - \widehat{\boldsymbol{\theta}}_{l-1} > S$

$$u_{j,l}(t) = \frac{\hat{\epsilon}_{l-1}g_1(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2,\hat{k}_{l-1})}{(1-\hat{\epsilon}_{l-1})g_0(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2) + \hat{\epsilon}_{l-1}g_1(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2,\hat{k}_{l-1})},$$

$$y_{j,i}(t);\mu,\sigma^2) = \exp\left(-\frac{\left(r_{j,i}(t)-\mu\right)^2}{2\sigma^2}\right),g_1(r_{j,i}(t);\mu,\sigma^2,k) = \exp\left(-\frac{\left(r_{j,i}(t)-\mu\right)^2}{2k\sigma^2}\right)$$

$$u_{j,l}(t) = \frac{\hat{\epsilon}_{l-1}g_1(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2,k_{l-1})}{(1-\hat{\epsilon}_{l-1})g_0(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2) + \hat{\epsilon}_{l-1}g_1(r_{j,i}(t);\hat{\mu}_{l-1},\hat{\sigma}_{l-1}^2,\hat{k}_{l-1})},$$

$$g_0(r_{j,i}(t);\mu,\sigma^2) = \exp\left(-\frac{\left(r_{j,i}(t)-\mu\right)^2}{2\sigma^2}\right), g_1(r_{j,i}(t);\mu,\sigma^2,k) = \exp\left(-\frac{\left(r_{j,i}(t)-\mu\right)^2}{2k\sigma^2}\right)$$

$$w_{j,l}(t) = 1 - u_{j,l}(t) + \frac{u_{j,l}}{\hat{k}}$$

Backup

l-1

Expectation-Maximization: BGM

while
$$\widehat{\theta}_l - \widehat{\theta}_{k-1} > S$$

 $\widehat{\mu}_l(t) = \frac{\sum_{j=1}^N w_{j,l}(t)r_{j,i}(t)}{\sum_{j=1}^N w_{j,l}(t)}$
 $\widehat{\sigma}_l^2(t) = \frac{1}{N} \sum_{j=1}^N w_{j,l}(t) \left(r_{j,i}(t)\right)$
 $\widehat{\epsilon}_l(t) = \frac{\sum_{j=1}^N u_{j,l}(t)}{N}$, $\widehat{k}_l(t) = \frac{\sum_{j=1}^N u_{j,l}(t)}{N}$

Backup

 $= x_{i,E}(t)$

 $)-\hat{\mu}_l(t)\Big)^2$

 $\frac{u_{j,l}(t)(r_{j,i}(t) - \hat{\mu}_l(t))^2}{\hat{\sigma}_k^2(t)\sum_{j=1}^N u_{j,l}(t)}$
Treating Missing Links

• Redundant measurements [3]

 $Z_{2,1}$ Z_{3,1} 0 Z4,1 0 Z_{3,2} *Z*_{4,2} $[Z_{4,3}]'$

[3] McPhee, Hamish, et al. 'Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites'. *Proceedings of the 37th* Annual European Frequency and Time Forum, EFTF, Neuchâtel, Switzerland, 2024.

Treating Missing Clocks

• Maintaining continuity in the Time Scale [3]

• N_m clocks lost at time t_m : set weights to zero and renormalize

• N_m clocks returning at time t_r : set weights to zero

Weights must gradually increase after reintroduction

[3] McPhee, Hamish, et al. 'Exploiting Redundant Measurements for Time Scale Generation in a Swarm of Nanosatellites'. Proceedings of the 37th Annual European Frequency and *Time Forum*, EFTF, Neuchâtel, Switzerland, 2024.

Treating Missing Clocks

• Maintaining Continuity in the Time Scale [3]

$$C_{N_m}(t_m) = x_{i,E}(t_m) \Big|_{N_m=0} - x_{i,E}(t_m) \Big|_{N_m=0}$$

$$x_{i,E}(t_m)\Big|_{N_a < N} = \sum_{j=1}^{N_a = N - N_m} p_j(t_m - \tau) r_{j,i}(t_m), \qquad p_j(t_m - \tau) r_{j,i}(t_m) = \sum_{j=1}^{N_a = N - N_m} p_j(t_m - \tau) r_{j,i}(t_m) + \sum_{j=1}^{N_a < N} p_j(t_m - \tau) r_{j,i}(t_m - \tau) r_{j,i}(t_m) + \sum_{j=1}^{N_a < N} p_j(t_m -$$

$$C_{N_m}(t_m) = \sum_{j=1}^{N_a} \left(w_j(t_m - \tau) - p_j(t_m - \tau) \right) r_{j,i}(t_m)$$

Backup

 $(t_m)\Big|_{N_m>0}$

 $-\tau) = w_j(t_m - \tau) / \sum_{i=1}^{N_a} w_j(t_m - \tau)$

 $(1) + \sum_{j=N_a+1}^{N} w_j(t_m - \tau) r_{j,i}(t_m)$

Missing Data

Missing Data

Missing Data

Future work – Joint AT1+ATST

Backup

Frequency Jump

Future work – Machine Learning

Outlier Scores

 Detection
 Weights

- Isolation
 Forest
- Local Outlier
 Factor
- And more

Examples

Temporary Frequency Jumps

Examples

- Temporary Frequency Jumps
- Periodic effects

Examples

- Temporary Frequency Jumps
- Periodic effects
- Frequency Drift

Solutions?

- Machine Learning lacksquare
- **Robust Frequency Estimation**

