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Abstract—A classical problem in hyperspectral imaging, referred to
as hyperspectral unmixing, consists in estimating spectra associated with
each material present in an image and their proportions in each pixel.
In practice, illumination variations (e.g., due to declivity or complex

interactions with the observed materials) and the possible presence of
outliers can result in significant changes in both the shape and the
amplitude of the measurements, thus modifying the extracted signatures.
In this context, sequences of hyperspectral images are expected to
be simultaneously affected by such phenomena when acquired on the
same area at different time instants. Thus, we propose a hierarchical
Bayesian model to simultaneously account for smooth and abrupt spectral
variations affecting a set of multitemporal hyperspectral images to be
jointly unmixed. This model assumes that smooth variations can be
interpreted as the result of endmember variability, whereas abrupt
variations are due to significant changes in the imaged scene (e.g.,
presence of outliers, additional endmembers, etc.). The parameters of
this Bayesian model are estimated using samples generated by a Gibbs

sampler according to its posterior. Performance assessment is conducted
on synthetic data in comparison with state-of-the-art unmixing methods.

I. INTRODUCTION

Spectral unmixing consists in extracting a set of signatures associ-

ated with different materials observed in a hyperspectral (HS) image

– referred to as endmembers – and their abundance fractions within

each pixel of the image. Depending on the context, different mixture

models allow specific environmental factors to be accounted for

(e.g, multiple reflections, declivity). A linear mixing model (LMM)

is usually considered when microscopic interactions between the

observed materials are negligible and the relief of the scene is flat

[1]. In practice, varying acquisition conditions (such as the natural

evolution of the scene or illumination variations) may significantly

affect the acquired signatures [2], leading to endmember variability.

Even if endmember spatial variability in a given HS image has

been extensively considered in the literature (using statistical [3]–[5]

and deterministic [6]–[12] approaches) fewer works have considered

temporal variability by exploiting multitemporal HS (MTHS) images.

However, MTHS images, which are composed of images successively

acquired over the same area, allow information redundancies between

consecutive images to be exploited (e.g, via features exhibiting

smooth temporal variations) [13]–[15]. While these approaches allow

smooth, moderate temporal variations of the mixture parameters

to be represented, they do not address abrupt spectral changes

affecting HS images, either resulting from the presence of outliers

or from significant time intervals between consecutive acquisitions.

This commonly encountered phenomenon (e.g., in real datasets when
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water, snow or vegetation is present within the sensor field of view)

has a major influence on the extracted endmembers, thus motivating

the following study. Inspired by [14], [16], [17], we propose to

simultaneously account for smooth endmember variations – in terms

of endmember variability – and abrupt spectral changes – in terms of

outlier contributions via a carefully designed hierarchical Bayesian

model. Starting from a reference image analyzed individually, the

proposed approach is intended to handle scenes in which most of the

materials are likely to be repeatedly observed over time. However,

materials not previously observed in the reference scene may later

appear in a few pixels of the remaining images. On the one hand, the

endmembers associated with repeatedly observed materials in each

HS image are interpreted as realizations of the signatures shared by

the different images, which allows information redundancies to be

exploited across time. On the other hand, endmembers appearing in

only a few images are considered as outliers with respect to the

commonly shared materials. Based on these observations, a new

instance of the perturbed linear mixing model (PLMM) [15] is

investigated to account for temporal variability and additive outliers.

The resulting problem is formulated within a Bayesian framework

and solved with an MCMC method.

The paper is organized as follows. The mixing model, its posterior

distribution and the MCMC method used to sample this posterior

are introduced in Sections II and III. Section IV presents some

simulation results obtained on synthetic data. The performance of the

proposed method is appreciated in comparison with the VCA/FCLS

algorithm [18], [19], the SISAL/FCLS algorithm [20], the robust

LMM (rLMM) described in [21] and the online unmixing (OU)

method of [15]. Conclusions and research perspectives are finally

reported in Section V.

II. PROBLEM STATEMENT

Consider a sequence of T HS images acquired over the same area,

having R endmembers in common (where R is known a priori). In

this work, we assume that an endmember estimated using a single

image can be reasonably interpreted as a smooth deviation of a

reference endmember described by a PLMM [10], thus allowing

information redundancies to be exploited across time. Reminiscent

of [22], the PLMM represents the measurement vector yn,t in

the nth pixel of the tth image by a linear combination of the R

endmembers corrupted by an additive term representing temporal

variability. This model will however show severe limitations when

the measurements are subject to abrupt spectral variations, e.g., due

to the presence of outliers. This paper consequently introduces a new

unmixing model addressing both endmember variability and abrupt

changes encountered in HS images. Inspired by [17], [21], this model
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considers an additive outlier term xn,t capturing deviations from the

LMM, leading to the following observation model

yn,t =

R∑

r=1

ar,n,t

(
mr + dmr,t

)
+ xn,t + bn,t (1)

for n ∈ {1, . . . , N}, t ∈ {1, . . . , T}, where N is the number of

pixels contained in each image, T denotes the number of HS images

and mr corresponds to the rth endmember. Considering the tth image

of the HS sequence, ar,n,t is the proportion of the rth endmember

in the nth pixel of the image, dmr,t is the corresponding variability

with respect to the rth endmember and xn,t represents the outlier

contribution in the pixel n. Moreover, bn,t is an additive noise

accounting for the modeling and acquisition errors. The model (1)

can be expressed in matrix form as

Yt = (M+ dMt)At +Xt +Bt (2)

where Yt ∈ R
L×N contains the pixels composing the image t,

M ∈ R
L×R contains the endmembers, At ∈ R

R×N contains

the abundance vectors an,t, dMt ∈ R
L×R, Xt ∈ R

L×N and

Bt ∈ R
L×N contain the variability, outliers and noise terms for the

tth image. The constraints related to the endmember and abundances

are

At � 0R,N , M � 0L,R, M+ dMt � 0L,R, Xt � 0L,N (3)

where � is to be understood as a component-wise inequality. In the

rest of this paper, the abundance sum-to-one constraint is relaxed

for pixels corrupted by outliers, and enforced for the others (see

Section III). Note that the outlier term Xt may result from the local

emergence of an endmember which was absent from the reference

image. Thus, it is subject to a non-negativity constraint as the other

endmembers, and its support is expected to be spatially sparse. The

next section introduces a Bayesian model allowing the parameters

of (1) (i.e., the matrices At, M, dMt and Xt) to be estimated

from the observations Yt, t = 1, . . . , T while reflecting the previous

observations and the constraints (3).

III. PROPOSED BAYESIAN MODEL

A. Bayesian model

Assuming the additive noise bn,t has a zero-mean multivariate

Gaussian distribution bn,t ∼ N (0L, σ
2
t IL) (where IL ∈ R

L×L is

the identity matrix and σ2
t is the variance of the noise in the tth

image) and assuming independence between the images and between

the pixels within each image, the likelihood of the observations in

(2) is

p(Y
¯
|Θ) ∝

T∏

t=1

(σ2
t )

−NL/2×

exp

(
−

1

2σ2
t

‖Yt − (M+ dMt)At −Xt‖
2
F

) (4)

where Θ = {M,dM
¯
,A

¯
,X

¯
,Z,σ2,Ψ2, s2} summarizes the param-

eters to be inferred, and the underline notation stands for the overall

set of the corresponding parameters. Priors specifically adapted to the

model parameters and hyperparameters are introduced hereafter.

Abundance prior: We propose to promote smooth temporal

variations of the abundances except when the corresponding pixel

contains outliers. We thus consider a new prior defined as follows

an,1 | xn,t = 0L ∼ USR
, an,t | xn,t 6= 0L ∼ US̃R

(5)

Y
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Fig. 1. Description of the proposed Bayesian model using a directed acyclic
graph (fixed parameters appear in boxes).

p
(
an,t | xn,t = 0L,A

¯
\{an,t}

)
∝

exp

{
−

1

2ε2n

(
ι[Tn,t 6=∅]‖an,t − an,τn,t‖

2
2

)}
1SR

(an,t)
(6)

where US is a uniform distribution on the set S, ι[P] = 1 if the

logical proposition P is true and 0 otherwise, SR denotes the unit

simplex of RR, S̃R = {x ∈ R
R | ∀i, xi ≥ 0 and xT1R ≤ 1} and

Tn,t = {τ < t | zn,τ = 0} , τn,t = max
τ∈Tn,t

τ. (7)

We also impose Tn,t = ∅ if t = 1. More explicitly, consider an

image at time t and a pixel n within this image such that xn,t = 0
(absence of outliers). When t = 1, the absence of specific prior

knowledge is ensured by a uniform distribution on the unit simplex to

account for the constraints (3). When t > 1, the proposed Markovian

prior promotes smooth variations of an,t by penalizing the Euclidean

distance between an,t and the corresponding abundance vector of

the last outlier-free pixel, i.e., at time instant τn,t. Note that the

usual abundance sum-to-one constraint is relaxed (aTn,t1R ≤ 1) when

outliers are present in the pixel (n, t) (xn,t 6= 0L), since the prior

is aimed at representing spectra which are not fully described by a

linear model.

Outlier and label priors: We assume a priori that outliers

are spatially (but not necessarily spectrally) sparse [17]. Different

approaches have been proposed in the literature to promote sparsity,

either relying on the use of the ℓ1 penalty (e.g., the LASSO [23])

or on mixture probability distributions composed of a Dirac mass

at zero and a continuous probability distribution [24] (e.g., the

Bernoulli-Laplace [25] and Bernoulli-Gaussian distributions [26],

[27], extensively used in the literature [28], [29]). To promote spatial

sparsity of the outliers xn,t, we propose to consider the following

prior

p(xn,t | zn,t, s
2
t ) = (1− zn,t)δ(xn,t) + zn,tNR

L
+
(0L, s

2
t ). (8)

The binary variable zn,t reflects the absence of outliers (i.e., xn,t =
0L) when zn,t = 0, and describes outliers a priori via a truncated

Gaussian distribution when zn,t = 1. Indeed, the outlier term xn,t
results from the emergence of an endmember which was absent from

the reference image, thus justifying the use of a truncated Gaussian

distribution. In addition, we propose to take advantage of any possible

spatial correlations between these outliers by modeling the binary

label maps zt ∈ R
N as Ising-Markov random fields as in [30].

This correlation is natural since the apparition of a new endmember

(e.g., snow or ice in winter) will be generally observed in several

neighboring pixels.

To complete our model, we have to assign priors to the remaining

parameters M, dM
¯

, σ2, and hyperparameters Ψ2, s2. Our choices

are mainly driven by previous studies related to hyperspectral unmix-

ing, and are briefly summarized below.



Endmember prior: The endmembers can be a priori considered

to live in a subspace of dimension K ≪ L (K = 2(R − 1) in the

experiments presented in Section IV) [31] which can be estimated in

practice by a principal component analysis (PCA) or a robust PCA

(rPCA) [32]. We consider the decomposition used in [31], from which

straightforward computations lead to

mr = (IL −UU
T)ȳ +Uer, U

T
U = IK (9)

where U represents a basis of the subspace and ȳ corresponds to the

sample mean of Y
¯

. The projected endmembers er are then assigned

a truncated multivariate Gaussian prior

er ∼ NEr (0K , ξIK), for r = 1, . . . , R (10)

where Er reflects the non-negativity of the endmembers mr [31],

and ξ = 1 ensures a non-informative prior [5], [17]. This prior is

in agreement with the non-negativity constraint for the endmembers,

and its conjugacy simplifies the analysis.

Variability prior: We consider a prior promoting smooth tem-

poral variations [13], [14] while respecting the constraints (3). It is

expressed as

dmℓ,r,1 | mℓ,r ∼ NIℓ,r
(0, ν), Iℓ,r = [−mℓ,r,+∞) (11)

dmℓ,r,t|mℓ,r, dmℓ,r,(t−1), ψ
2
ℓ,r ∼ NIℓ,r

(
dmℓ,r,(t−1), ψ

2
ℓ,r

)
(12)

Note that ν penalizes the variability energy in the first image, and

that the parameters ψ2
ℓ,r of the random walk (12) control the temporal

variations of the variability from an image to another.

Hyperparameter priors: Finally, we consider the following

conjugate inverse-gamma priors for the variances associated with the

noise (σ2), the variability (Ψ2) and the outlier (s2) respectively, i.e.,

for ℓ = 1, . . . , L, r = 1, . . . , R and t = 1, . . . , T

σ
2
t ∼ IG(aσ, bσ), ψ

2
ℓ,r ∼ IG(aΨ, bΨ), s

2
t ∼ IG(as, bs) (13)

where IG denotes the inverse-gamma distribution, and aσ = bσ =
aΨ = bΨ = as = bs = 10−3 ensures non-informative priors.

B. Gibbs sampler

By the Bayes’ theorem, the posterior distribution of the unknown

parameters Θ is given by p(Θ | Y
¯
) ∝ p(Y

¯
| Θ)p(Θ). However, the

complexity of the model summarized in Fig. 1 does not allow the

maximum a posteriori (MAP) or the minimum mean square error

(MMSE) estimator to be easily computed from this posterior. For

instance, the presence of both continuous and discrete variables leads

to a complex inference problem, for which deterministic optimization

techniques are poorly adapted. Our strategy consists in sampling

p(Θ | Y
¯
) using a Gibbs sampler to approximate the MMSE and

marginal MAP (mMAP) estimators as follows

M̂
MMSE ≃

1

Ñ

NMC∑

q=Nbi+1

M
(q)
, Â

MMSE
t ≃

1

Ñ

NMC∑

q=Nbi+1

A
(q)
t

d̂M
MMSE

t ≃
1

Ñ

NMC∑

q=Nbi+1

dM
(q)
t , X̂

MMSE
t ≃

1

Ñ

NMC∑

q=Nbi+1

X
(q)
t

ẑ
mMAP
n,t ≃

{
0, if ♯{q > Nbi : z

(q)
n,t = 0} ≤ Ñ

2

1, otherwise
, Ñ = NMC −Nbi

where NMC denotes the number of Monte-Carlo iterations and Nbi is

the number of burn-in iterations. Further details on the conditional

distributions of all the parameters can be found in the extended paper

[33]. The proposed Gibbs sampler is summarized in Algo. 1.

Algorithm 1: Proposed Gibbs sampler.

Input: Nbi, NMC, Θ(0), β, ξ, aΨ, bΨ, as, bs, aσ , bσ , ν, ε2.
for q = 1 to NMC do

for (n, t) = (1, 1) to (N, T ) do

Draw a
(q)
n,t ∼ p

(

an,t | yn,t,Θ\{an,t}

)

;

for r = 1 to R do

Draw e
(q)
r ∼ p

(

er | Y
¯
,Θ\{er}

)

;

for t = 1 to T do

Draw dM
(q)
t ∼ p

(

dMt | Yt,Θ\{dMt}

)

;

for (n, t) = (1, 1) to (N, T ) do

Draw z
(q)
n,t ∼ P

[

zn,t | yn,t,Θ\{zn,t}

]

;

Draw x
(q)
n,t ∼ p

(

xn,t | Θ\{xn,t}

)

;

for t = 1 to T do

Draw s
2(q)
t ∼ p

(

s2t | Θ\{s2t}

)

;

for t = 1 to T do

Draw σ
2(q)
t ∼ p

(

σ2
t | Θ\{σ2

t }

)

;

for (ℓ, r) = (1, 1) to (L,R) do

Draw ψ
2(q)
ℓ,r ∼ p

(

ψ2
ℓ,r | Θ\{ψ2

ℓ,r
}

)

;

Result:
{

Θ(q)
}NMC

q=1
.

IV. EXPERIMENTS WITH SYNTHETIC DATA

Performance assessment has been conducted on a synthetic MTHS

image composed of 20 images of size 30 × 30 with L = 212
bands. The proposed scenario mimics the emergence of a previously

undetected material in specific images, thus interpreted as an outlier.

To this end, 9 out of the 20 images have been corrupted by spatially

sparse outliers. Moreover, each HS image has been generated as the

linear mixture of 3 endmembers affected by smooth time-varying

variability – generated as in [10] – whose abundances vary smoothly

over time except for the corrupted pixels. An additive white Gaussian

noise (ensuring a signal-to-noise ratio between 25 and 30 dB) has

been finally added to the mixtures.

A. Compared methods

The proposed algorithm has been compared to VCA/FCLS [18],

[19], SISAL/FCLS [20], the robust LMM (rLMM) [21] applied

to each HS image independently, and the online unmixing (OU)

described in [15] (in the setting [15, Table I]). The endmembers and

abundances of OU and the proposed algorithm have been initialized

with the results of VCA/FCLS obtained from the first image. For

the initialization, we assume that the observations are not affected

by outliers or variability, leading to: Xt = 0L,N , dMt = 0L,R,

zn,t = 0. Moreover, based on the values of the initial endmembers

and abundances, the hyperparameters have been initialized with the

following typical orders of magnitude: σ2
t = 10−4, ψ2

ℓ,r = 10−6,

ν = 10−5, βt = 1.9, s2t = 5×10−3, ǫn = 10−4. Finally, the number

of Monte-Carlo iterations has been set to NMC = 400, with Nbi = 350
burn-in iterations. The performance of the different algorithms has

been evaluated in terms of average spectral angle mapper (aSAM),

abundance and variability global mean square errors (GMSEs) and
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Fig. 2. Comparison of the abundance maps estimated for the third endmember
by different unmixing strategies (in column) at t = 1 to 6 (in row). The areas
corrupted by outliers are delineated in red.

quadratic reconstruction error (RE), respectively defined as

aSAM(M) =
1

R

R∑

r=1

arccos

(
mT
rm̂r

‖mr‖2‖m̂r‖2

)

GMSE(A) =

T∑

t=1

‖At − Ât‖
2
F

TRN

GMSE(dM) =

T∑

t=1

‖dMt − d̂Mt‖
2
F

TLR

RE =

T∑

t=1

‖Yt − Ŷt‖
2
F

TLN

where Ŷt is composed of the pixels reconstructed with the parameters

estimated for the image t.

B. Results

A comparison between the abundance maps recovered by the

different methods is given in Fig. 21, while the estimated endmembers

are reported in Fig. 5. The estimated label maps are depicted with

the ground truth in Fig. 3. The unmixing performance reported in

Table I shows that the proposed method yields lower estimation

errors, and presents an appreciable robustness to spatially sparse

outliers. Indeed, the presence of outliers has significantly affected

some of the endmembers estimated by VCA and SISAL, and altered

the shape of the variability extracted by OU (see Figs. 5f, 5i and 5o

respectively). The abundance maps recovered by VCA/FCLS and OU

exhibit a notable sensitivity to the presence of outliers (see Fig. 2),

since the abundance coefficients of the third endmember do not

reflect the disappearance of the third endmember in the pixels where

outliers have appeared instead (see Fig. 4 to appreciate the resulting

abundance errors). The price to pay with the proposed algorithm is

its computational complexity (significantly larger than those of the

other algorithms, see Table I), which is dominated by the sampling

of the variability terms.

1Only the abundance maps associated with the 3rd endmembers have been
depicted for brevity.

E
s
ti
m

a
te

d
 l
a
b
e
ls

t = 1

G
ro

u
n
d
 t
ru

th

t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

Fig. 3. Ground truth (first row) and estimated labels (second row) obtained
with the proposed method for t = 1 to 10, where each column corresponds
to a time instant [0 in black, 1 in white].
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Fig. 4. Map of the re-scaled abundance estimation errors for the third
endmember at time t = 2 (from left to right: true abundances, estimation
error of VCA/FCLS, SISAL/FCLS, rLMM, OU and the proposed method).
Except for the proposed method, the results exhibit notable errors in pixels
corrupted by outliers (area in red).

TABLE I
SIMULATION RESULTS OBTAINED ON SYNTHETIC DATA

(GMSE(A)×10−2 , GMSE(dM)×10−3 , RE ×10−3).

aSAM(M) (°) GMSE(A) GMSE(dM) RE time (s)
R

=
3

VCA/FCLS 14.0 1.23 / 3.20 1

SISAL/FCLS 11.9 2.40 / 0.47 2
rLMM 14.5 1.52 / 0.04 238
OU 12.9 0.30 1.64 0.26 58
Proposed (MCMC) 8.03 0.17 0.20 0.11 1590

V. CONCLUSION AND FUTURE WORK

A Bayesian model has been introduced to simultaneously represent

smooth and abrupt variations possibly affecting multitemporal hyper-

spectral (MTHS) images. The proposed unmixing strategy is intended

to address datasets in which the same materials are repeatedly ob-

served, except in a few pixels of the time series. An MCMC algorithm

was investigated to generate samples from the posterior distribution

of the proposed Bayesian model, thus allowing estimators of its

unknown parameters to be constructed. The unmixing performance

of the proposed approach was assessed on synthetic data and is quite

promising. Future work includes applications of the proposed method

to real datasets, and the study of distributed unmixing algorithms to

analyze larger sequences of HS images.
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