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and Jean-Yves Tourneret , Fellow, IEEE

Abstract— In the past years, one common way of enhancing
the spatial resolution of a hyperspectral (HS) image has been
to fuse it with complementary information coming from mul-
tispectral (MS) or panchromatic images. This paper proposes
a new method for reconstructing a high-spatial, high-spectral
image from measurements acquired after compressed sensing by
multiple sensors of different spectral ranges and spatial resolu-
tions, with specific attention to HS and MS compressed images.
To solve this problem, we introduce a fusion model based on the
linear spectral unmixing model classically used for HS images and
investigate an optimization algorithm based on a block coordinate
descent strategy. The nonnegative and sum-to-one constraints
resulting from the intrinsic physical properties of abundances
as well as a total variation penalization are used to regularize
this ill-posed inverse problem. Simulation results conducted on
realistic compressed HS and MS images show that the proposed
algorithm can provide fusion results that are very close to those
obtained with uncompressed images, with the advantage of using
a significantly reduced number of measurements.

Index Terms— Compressive sampling, data fusion, remote
sensing, spectral imaging.

I. INTRODUCTION

HYPERSPECTRAL (HS) sensors collect data that can
be represented by a 3-D data cube [1]. This data cube

referred to as HS image is a collection of 2-D images, each one
captured at a specific wavelength. HS images are characterized
by a high spectral resolution which allows accurate identifica-
tion of the different materials contained in the scene of interest.
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Analyzing the spectral information of HS images has allowed
the development of many applications in the fields of remote
sensing [2], medical imaging [3], or astronomy [4]. However,
due to technological reasons, HS images are limited by their
relatively low spatial resolution [5]. For instance, the Hyperion
imaging spectrometer has about 220 spectral bands, which
extend from the visible region (0.4–0.7 μm) through the SWIR
(about 2.5 μm), with a spatial resolution of 30 m by pixel [6]
that can be insufficient for some practical applications.

In addition to their reduced spatial resolution, conventional
spectral imaging devices have the drawback of requiring
to scan a number of zones that grow linearly in proportion
to the desired spatial or spectral resolutions. Finally, HS
images require acquiring a large amount of data that must
be stored and transmitted. To overcome these limitations,
motivated by the compressed sensing (CS) theory [7], several
compressive spectral imagers have been recently proposed
[8]–[10]. Compressive spectral imaging (CSI) techniques
[11], [12] exploit the fact that HS images are sparse in some
basis and can be efficiently compressed by using CS. As a
consequence, the images acquired with CSI have a reduced
number of measurements when compared to conventional
spectral imaging devices, which makes them attractive for
many practical applications.

To overcome the spatial resolution limitation, a common
trend is to fuse images with different spectral and spatial res-
olutions. A typical example studied in this paper is the fusion
of HS images (having high spectral resolution) with multispec-
tral (MS) images (having high spatial resolution) [13], [14].
Another example is HS pansharpening, which addresses the
fusion of panchromatic and HS images [15]. Many algo-
rithms have been proposed in the literature for image fusion
(see [15], [16] for recent reviews). Fast fusion algorithms
based on spectral mixture analysis have been developed to fuse
HS and MS images [17], [18]. The coupled nonnegative matrix
factorization has also been recently proposed to estimate
the endmember and abundance matrices using an alternating
optimization method [19].

This paper investigates a new algorithm allowing the fusion
of HS and MS images acquired with compressive spectral
imagers using a sparse representation of abundance maps.
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The sparsity of abundance maps has already been exploited
for image fusion. The compressive spectral fusion problem
was recently investigated in [20] where the image of interest
was decomposed in a fixed basis with a sparse representation.
A related compressive fusion method based on a multiresolu-
tion analysis and a simple maximum selection fusion rule was
previously proposed in [21], where the images to be fused
were acquired in a single band with the same size. In this
paper, we consider CSI devices such as the colored coded
aperture snapshot spectral imager (C-CASSI) and the multiple
snapshot spatial spectral coded compressive spectral imager
(SSCSI), which sense multiple 2-D coded projections of the
underlying scene. More formally, the projections measured in
C-CASSI and SSCSI systems can be written as y = Hf ,
where f ∈ R

N2 L is a vector representation of the spatio–
spectral 3-D source F ∈ R

N×N×L (N × N is used for the
spatial dimensions and L is the spectral dimension), and H is
a matrix that is associated with the optical architecture of
the spectral imagers. Note that the nonzero entries of H are
determined by the colored coded aperture in the C-CASSI
architecture [22] and by the coded mask in SSCSI [23]. Note
also that these optical filters or coded apertures can be either
randomly selected or designed as in [24] and [22], [25], [26].

The proposed fusion algorithm reconstructs the high-
resolution (HR) image represented by the vector f ∈ R

N2 L

from compressive measurements ym and yh , resulting from
MS and HS images associated with vectors fm ∈ R

N2 Lm and
fh ∈ R

N2
h L . Note that the unknown image of interest is stacked

into a column vector defined by f = [fT
1 , . . . , fT

L ]T ∈ R
N2 L ,

where fi ∈ R
N2

contains all the image intensities associated
with the i th spectral band. Furthermore, the target image
has the high-spatial resolution of fm and the high-spectral
resolution of fh . The proposed algorithm is based on the linear
mixture model (LMM), which assumes that each pixel of the
target image is a linear mixture of spectral signatures (referred
to as endmembers). Using the LMM, an observation pixel
f j ∈ R

L can be represented as f j = Mα j , where M ∈ R
L×p is

the endmember matrix whose columns are spectral signatures,
p is the number of materials in the image (supposed to
be known) and α j = [α j1, . . . , α j p]T ∈ R

p contains the
abundances of the j th pixel of the HS image (see [27] for
details). As a consequence, the target HS image can be written
as f = Mα, where M = M ⊗ IN2 , IN2 ∈ R

N2×N2
is the

N2 × N2 identity matrix, ⊗ is the Kronecker product, and
α = vec(AT ) ∈ R

N2 p is obtained by vectorizing the matrix
A = [α1, · · · ,αN2 ] ∈ R

p×N2
containing the abundances of all

the image pixels. The LMM was already used for image fusion
in recent works such as [18] and [19]. However, these works
did not take into account any CS operation (i.e., the matrices
Hm and Hh were equal to the identity matrix), which is the
main contribution of this paper.

This paper shows that acquiring images with CS and
exploiting the LMM for the unknown image of interest and
the sparsity of abundance maps leads to efficient image
fusion when compared to existing approaches [18], [20], [21],
even if the observed images have been compressed and
acquired with reduced acquisition time. Note that the standard

endmember extraction algorithms, such as vertex component
analysis (VCA) [28], SVMAX [29], or N-FINDR [30],
cannot be used directly when the observed images have been
compressed. This endmember extraction step is contained
within the proposed fusion algorithm.

The paper is organized as follows. Section II introduces
the observation models used for the HS and MS images. The
inverse problem considered for the proposed fusion method is
also defined. Section III describes the principles behind CASSI
and SSCSI used to sense spectral data. The optimization
algorithm proposed to solve this inverse problem is presented
in Section IV. Numerical results conducted on realistic HS and
MS images are presented in Section V. A numerical analysis
of the algorithm convergence is presented in Section VI.
Conclusions and future work are reported in Section VII.

II. PROBLEM STATEMENT

This section formulates the data fusion problem considered
in this paper to estimate a high-spatial / high-spectral resolu-
tion image from two compressed images with different spectral
and spatial resolutions.

A. Observation Models

It is very common to assume that HS and MS images
result from the application of linear spatial and linear spectral
degradations to a higher resolution image f = Mα [14],
[18], [31]. Moreover, as we mentioned before, we propose
to consider compressed spectral images that are modeled from
linear projections. Thus, we consider the following models for
the observed compressed MS and HS images

ym = HmRλf + Nm = HmRλMα + Nm

yh = HhSsf + Nh = HhSsMα + Nh (1)

where:

1) Rλ = R ⊗ IN2 models the linear spectral degradation,
and R ∈ R

Lm×L is the spectral response of the MS
sensor;

2) Ss = IL ⊗ SB models the spatial degradation,
B ∈ R

N2×N2
is a cyclic convolution operator acting on

the bands, and S ∈ R
N2

h ×N2
is a downsampling operator

(satisfying the condition SST = IN2
h
);

3) Hm ∈ R
nm×N2 Lm and Hh ∈ R

nh×N2
h L are the sensing

matrices for the MS and HS images, with nm and nh

the number of measurements used to sense the MS and
HS images. A more detailed description of the structure
of the sensing matrices will be presented later;

4) Nm ∈ R
nm , Nh ∈ R

nh are additive noise terms; and
5) ym ∈ R

nm and yh ∈ R
nh are the observed MS and HS

compressed images, respectively.

The image restoration problem considered in this paper
consists on estimating the HR image f from the observed
compressed measurements ym and yh .



B. Problem Formulation

Based on the previous models (1), we propose to consider
the following optimization problem in order to estimate the
matrix M and the vector α from the observed compressive
images ym and yh

argmin
M,α

c(M,α) = f (M,α) + νϕ(α)

s.t. α ≥ 0, 1T
p A = 1T

N2 , 0 ≤ M ≤ 1 (2)

where ≥ means “elementwise greater than,” 1p is an all ones
p × 1 vector and

f (M,α) = 1

2
‖ym − HmRλMα‖2

2 + 1

2
‖yh − HhSsMα‖2

2

includes two data fidelity terms related to the MS and HS
images. Finally

ϕ(α) = β‖Gα‖1 + (1 − β)‖Dα‖1 (3)

is a regularization operator, where the first term enforces
sparsity of abundance maps in a wavelet representation and
the second one includes a form of total variation (TV) regu-
larizer preserving sharp edges or object boundaries [32]. The
construction of the dictionary G and the matrix D will be
detailed in the section devoted to numerical experiments. Note
that ‖·‖2 and ‖·‖1 are used for the l2- and l1- norms, and
that ν and β are the regularization parameters. Note also that
the constraints for α in (2) are the abundance nonnegativity
constraint and the abundance sum-to-one constraint, which are
classically used in HS imaging [27]. Moreover, the constraint
for the matrix M expresses the fact that each spectral signature
represents the reflectances of different materials that belong
to the interval [0, 1]. Finally, note that including different
weights for the two data fidelity terms as in [14] would
be possible with the proposed approach. Including different
weights in the fusion algorithm might be interesting when the
noises associated with the HS and MS sensors have different
variances.

III. COMPRESSIVE SPECTRAL IMAGERS

This section summarizes the principles behind two
representative CSI devices considered in this paper, i.e.,
C-CASSI and SSCSI. Note that these two architectures have
been implemented in practical applications (based on spatial
and spectral coding), which explains why they have been
considered in our work [33], [34]. Even though only two CSI
devices are considered, the techniques developed here might
be extended to other architectures such as those studied in
[9], [10], [26]. Note that the structure of the matrix H is
related to the optical architecture of each implementation.
Finally, it is worth noting that the matrices Hm and Hh are
instances of the matrices H presented in this section.

A. Colored CASSI

The CASSI is one of the most representative CSI archi-
tectures, which comprises a dispersive element and a coded
aperture [33]. The coded aperture is the spatial coding optical
element defined as a block-unblock lithographic mask or a

Fig. 1. Representation of the sensing phenomena behind CASSI system.

spatial light modulator [11]. The CASSI architecture encodes
the 3D data only in the spatial domain, i.e., each pixel of
the coded aperture blocks or let pass the entire spectral
information. The C-CASSI is a different variation of the
CASSI system, which replaces the binary masks by multiple-
patterned arrays of selectable optical filters or colored coded
apertures to provide a richer modulation in both spatial and
spectral domains [22]. C-CASSI reduces the number of 2-D
measurements required to recover the underlying image due to
the higher randomness of these 3-D coded aperture structures.
Note that the coded source is dispersed by a prism and that
the coded and dispersed source is captured by a focal plane
array. The sensing representation of the C-CASSI system is
depicted in Fig. 1. The �th snapshot intensity at the (i, j)th
pixel of the detector using a colored coded aperture T� is

Y �
i j =

L−1∑
k=0

Fi( j−k)k T �
i( j−k)k + ωi j (4)

where F is an N × N × L spectral data cube, T �
i j k ∈

{0, 1} is the discretization of the �th colored coded aperture,
ωi j is the white Gaussian noise of the sensing system, and
� = 0, . . . , K − 1 with K ∈ N representing the number of
snapshots. All along the paper, the word “snapshot” refers to
the energy captured by the 2-D sensor in a given integration
time. Vectorizing the measurements Y�

i j leads to

y� = H�f + ω (5)

where y� ∈ R
V is a vector representation of Y�

i j with
V = N(N + L − 1), f = vec([f0, . . . , fL−1]) is the vector
representation of the data cube F , fk is the vectorization of the
k-th spectral band, and H� ∈ R

V ×N2 L is the sensing matrix
of the �th snapshot. The set of measurements associated with
the K snapshots can be written as

y = Hf + ω (6)

where y = [yT
0 , . . . , yT

K−1]T contains all the measurements

and H = [HT
0 , . . . , HT

K−1]T ∈ R
K V×N2 L . An example of

matrix H for L = 3 and K = 2 is displayed in Fig. 2. Note
that the nonzero entries (indicated by white squares) of this
matrix are determined by the 3-D color coded aperture. More
precisely, the structure of the matrix H� consists of a set of
diagonal patterns determined by the �th colored coded aperture
T�, which are located along the horizontal direction, such that
one spatial dimension is shifted downward, as many times as



Fig. 2. Sensing matrix H of the CASSI architecture for L = 3 and K = 2.
The white squares represent the passing (unblocking) elements.

Fig. 3. Representation of the sensing phenomena behind SSCSI system.

the number of spectral bands. Finally, note that the structure
of H is obtained by stacking the K matrices H�.

B. Spatio–Spectral Coded Compressive Spectral
Imager SSCSI

Similar to C-CASSI, SSCSI optically modulates the
3-D data cube in both spatial and spectral dimensions, and
acquires 2-D projections. The SSCSI proposed in [23] uses
a diffraction grating to disperse the light into the spectrum
plane and inserts a coding mask between the spectrum plane
and the sensor plane to achieve the desired spatial–spectral
modulation. A representation of the compression procedure
behind SSCSI is shown in Fig. 3. The intensity of the
�th snapshot at the (i, j)th pixel of the SSCSI detector is

Y �
i j =

L−1∑
k=0

Fi j k T �
i j k + ωi j . (7)

Note that SSCSI measurements are also defined as in
(5) and (6) with V = N2. However, the structure of the
matrix H slightly differs from the one used in C-CASSI.
It is also structured as a set of diagonal patterns without
the downward shifting. Moreover, the patterns do not repeat
horizontally, allowing spectral coding as shown in Fig. 4.

IV. OPTIMIZATION METHOD

This section studies the optimization algorithm that is
proposed to solve (2). Note that this problem is nonconvex

Fig. 4. Example of sensing matrix H in the SSCSI architecture for L = 3
and K = 1. White squares are used for ones (unblocking light).

with respect to (M,α) [35], making its resolution chal-
lenging. The strategy investigated here is a block coordi-
nate descent (BCD) approach, alternating optimizations with
respect to the matrix M and the vector α [35]. The two
resulting optimization problems are convex and can thus be
solved using the ADMM algorithm [36]. A sketch of the
proposed strategy is detailed in Algorithm 1. The initialization
of the algorithm and the optimization steps with respect to
α and M are detailed in the following sections.

Algorithm 1 Proposed Compressive Image Fusion

Input : ym ,yh ,R, B, S, Hm, Hh

Output: α(t) and M(t)

1: M(0) = EE(yh) %Endmember Extraction
2: for t = 1 to stopping rule do
3: α(t) = argmin

α∈A
f (M(t−1),α) + ϕ(α) % AL 2

4: M(t) = argmin
M∈M

f (M,α(t)) % AL 3

5: end for

A. Initialization

The endmember matrix is initialized with a fast estima-
tion approach based on the Rayleigh–Ritz (RR) theory [37].
The idea of this method is to estimate the signal subspace
from the compressive measurements using the RR theory and
to estimate the endmembers using the fact that the LMM
constrains the endmembers to be located at the vertices of
a simplex. More precisely, this approach first estimates a
subset of eigenvectors to approximate the signal subspace
via RR theory, and then searches the endmembers in the
approximated subspace using the VCA [37].

B. Optimization With Respect to the Abundance Matrix α

The first step of the minimization problem (2) optimizes
the cost function with respect to α for a fixed M using the
ADMM algorithm. An auxiliary variable is introduced to split



the objective function and the constraints leading to

argmin
α,vi

1

2
‖ym − Hmv1‖2

2 + 1

2
‖yh − HhSd v3‖2

2

+ λ‖v5‖1 + λT V ‖v6‖1 + iA(v7)

s.t. v1 = RλMv2 v5 = Gα

v2 = α v6 = Dα

v3 = Mv4 v7 = α

v4 = Bsα (8)

where i = 1, . . . , 7, Sd = IL ⊗ S, Bs = Ip ⊗ B, and the
function iA is defined on the set A = {α|α ≥ 0} by

iA(α) =
{

0, if α ∈ A
∞, if α �∈ A.

(9)

Note that the number of splitting variables could have been
reduced, e.g., by eliminating v2. However, the proposed
algorithm separates the spatial and spectral operations leading
to subproblems which are simpler to solve. For convenience,
we introduce the following notations:

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6
v7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
I
0

Bs

G
D
I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −RλM 0 0 0 0 0
0 I 0 0 0 0 0
0 0 I −M 0 0 0
0 0 0 I 0 0 0
0 0 0 0 I 0 0
0 0 0 0 0 I 0
0 0 0 0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the cost function

h(v) = 1

2
‖ym − Hmv1‖2

2 + 1

2
‖yh − HhSd v3‖2

2

+ λ‖v5‖1 + λTV‖v6‖1 + iA(v7)

with Ev = Cα. Using these notations, (8) reduces to

argmin
α,v

h(v) s.t. Ev = Cα. (10)

The augmented Lagrangian associated with (10) is

L(α, v, g) = h(v) + ρ

2
‖Ev − Cα + g‖2

2, (11)

where g is the scaled dual variable and ρ ≥ 0 is weighting
the augmented Lagrangian term. The exact procedure used
for estimating α is summarized in Algorithm 2, whereas more
details are available in the separated technical report [38]. The
total complexity of the Algorithm 2 is dominated by the update
steps of v1 and v3 being O(Kh Nh (Nh + L − 1) + Km N(N +
Lm − 1)) for C-CASSI and O(Kh N2

h + Km N2) for SSCSI.

Algorithm 2 ADMM Algorithm to Estimate α

Input : ym ,yh ,R, B, S, Hm, Hh, M, ρ ≥ 0
Output: α(k+1)

1: v(0), g(0)

2: for k = 1 to stopping rule do
3: α(k+1) = argmin

α
L(α, v(k), g(k))

4: v(k+1) = argmin
v

L(α(k+1), v, g(k))

5: g(k+1) = g(k) + v(k+1) − Cα(k+1)

6: end for

Convergence: In order to guarantee the convergence of
Algorithm 2, we need to ensure that the augmented Lagrangian
in (11) is a proper convex and closed function, according to
the ADMM algorithm. This condition is satisfied since (11)
is the sum of nonnegative convex functions [36]. Moreover,
since the proper convex optimization function is continuous,
it is closed, ensuring the convergence of Algorithm 2 [39].

C. Optimization With Respect to the Endmember Matrix M

The optimization of the cost function (2) with respect to M
for a fixed α can be solved by using the ADMM algorithm.
To facilitate the solution of this problem, we first rewrite the
HS image as f = Am, where m = vec(MT ), A = IL ⊗ AT ,
and A = [α1, . . . ,αN2 ] contains the abundances of all the
image pixels. This reparameterization leads to

argmin
m

1

2
‖ym − HmRλAm‖2

2 + 1

2
‖yh − HhSsAm‖2

2 + iM(m)

(12)

where the function iM(m) is a function defined in the set
M = {m|0 ≤ m ≤ 1} as in (9). To solve this problem,
we split the vector m into three auxiliary variables w1, w2,
w3 in order to obtain the following problem

argmin
m,wi

1

2
‖ym − Hmw1‖2

2 + 1

2
‖yh − HhSd w2‖2

2 + iM(w3)

s.t. w1 = RλAm, w3 = m, w2 = Âm. (13)

where j = 1, . . . , 3, and Â = IL ⊗ BA. For notational
convenience, we introduce the following quantities:

w =
⎡
⎣

w1
w2
w3

⎤
⎦, E =

⎡
⎣

RλA
Â
I

⎤
⎦

and the cost function

l(w) = 1

2
‖ym − HmRλw1‖2

2 + 1

2
‖yh − HhSd w2‖2

2 + g(w3).

As a consequence, (13) reduces to

argmin
m,w

l(w) s.t. w = Em (14)

with the following augmented Lagrangian:

L(m, w, d) = l(w) + ρ

2
‖w − Em + d‖2

2 (15)



where d is the scaled dual variables and ρ ≥ 0 is weighting the
augmented Lagrangian term. The ADMM algorithm for m is
summarized in Algorithm 3 with more details in [38]. The
complexity of Algorithm 3 is dominated by the update steps
of w1 and w2 being O(Kh Nh(Nh +L−1)+Km N(N+Lm −1))
for C-CASSI and O(Kh N2

h + Km N2) for SSCSI.

Algorithm 3 ADMM Algorithm to Estimate m

Input : ym ,yh ,R, B, S, Hm, Hh ,α, ρ ≥ 0
Output: m(k+1)

1: w(0), d(0)

2: for k = 1 to stopping rule do
3: m(k+1) = argmin

m
L(m, w(k), d(k))

4: w(k+1) = argmin
w

L(m(k+1), w, d(k))

5: d(k+1) = d(k) + w(k+1) − Em(k+1)

6: end for

Convergence: The energy function (15) is proper convex as
the sum of nonnegative convex functions. Moreover, since the
proper convex optimization function is continuous, it is closed
guaranteeing the convergence of Algorithm 3 [39].

D. Global Algorithm Convergence

The optimization problem in (2) viewed as a function of α

for a given value of M (i.e., problem (8)) is convex. A similar
comment can be made for problem (13), which optimizes the
cost function with respect to M for a given value of α. The
cost function c in (2) is continuous and has compact level
sets. Moreover, the function f is differentiable ensuring that
the function c is regular in the sense of [40]. As a consequence,
from [40, Th. 4.1(b)], we know that every limit point of the
sequence {α(t), M(t)} generated by Algorithm 1 is a stationary
point of the considered optimization problem. Finally, note
that the BCD algorithm requires the exact solution of each
subproblem and that these solutions are reached asymptotically
with the ADMM algorithm.

V. SIMULATION RESULTS

This section studies the fusion results for HS and MS
compressed images obtained using the proposed algorithm for
three different data sets with available ground truth. Following
Wald’s protocol [15], each reference image was degraded to
generate the MS and HS images to be fused. The HS image
was generated by applying a spatial blur to the reference
image with a 7 × 7 Gaussian filter with standard deviation
σ = 1.5 and by downsampling the result by a factor of 4 in
each direction. The MS image was generated by uniformly
downsampling the spectral dimension of the reference image
resulting in an M-band MS image, with M ∈ {6, 9, 10}, for
data sets 1, 2, and 3, respectively. The observed HS and MS
images were finally compressed using C-CASSI or SSCSI
systems with sensing matrices whose nonzero entries were
generated using a Bernoulli distribution. Indeed, the optical fil-
ters can be modeled as realizations of a Bernoulli random vari-
able where the value “1” corresponds to a light-transmissive

TABLE I

PERFORMANCE OF MS + HS FUSION METHODS (JASPER DATA SET):
PSNR (IN DECIBELS), UIQI, SAM (IN DEGREES), ERGAS,

DD (×10−2), TIME (IN SECONDS) AND THE DATA (%)

element and the value “0” to a blocking element [22], [24].
The compression ratio was fixed to 0.5. Except where it is
mentioned, the HS and MS compressed images were both
contaminated by the additive white Gaussian noise, with a
signal to noise ratio equal to SNR = 30 dB for every snapshot.

Before running the proposed algorithm, we need to define
the matrices G, D and the different hyperparameters in (3).
Following [22], the dictionary G was selected as the Kronecker
product Ip ⊗ � , where � is a symmlet wavelet kernel. The
operator D was decoupled in two operators acting on the rows
and columns of each abundance map, as explained in [41].
The regularization hyperparameters ν and β were chosen by
cross validation for each data set in order to obtain the best
performance in terms of the PSNR metric (as classically done
for this kind of problems).

The results obtained with the proposed fusion strategy are
compared with the FUMI method of [18] (that does not use
compressive measurements) and with the compressive fusion
strategy proposed in [20] (that does not use spectral unmixing).
We also consider the method studied in [21] for the first data
set (Jasper).1 Since the approach in [21] processes the images
with the same spatial and spectral resolutions, we upsampled
the HS image to the spatial resolution of the MS image and
the MS image to the spectral resolution of the MS image by
bicubic interpolation. The approach in [21] was then applied
band per band to the two interpolated images.

A. Jasper Data Set

The Jasper Ridge HS image is of size 128 × 128 × 66
[42], [43] and contains p = 4 endmembers. The quantitative
fusion results are reported in Table I, whereas the qualitative
fusion results are displayed in Figs. 5 and 6. The reader is
invited to consult the references [13], [18], [20] for definitions
of the metrics considered in the different tables. The recon-
structed images using the proposed algorithm are displayed
in Fig. 5(f) and (g). They are visually very close to the
results obtained with FUMI, which is based on the full data
set without CS. The FUMI method provides a reference in
terms of PSNR, which is understandable since it processes
images without CS, while the methods in [20] and [21] provide
poor results. Fig. 6 displays examples of reconstructed pixel
reflectances obtained with the proposed method that can be
compared with the method in [29] and FUMI. The advantage

1The authors are very grateful to T. Wan and A. Achim for sharing their
codes allowing a fair comparison.



Fig. 5. Fusion results (Jasper data set): (a) MS image. (b) HS image.
(c) FUMI (no compression). (d) [21]. (e) Method of [20] using the C-CASSI
system. (f) Proposed method with 50% compression using the C-CASSI
system. (g) Proposed method with 50% compression using the SSCSI system.

Fig. 6. Reconstructed reflectance of the pixel (54, 45) using the proposed
approach, the methods of [20] and [21] and FUMI, compared to the Jasper
ground truth.

of using the LMM can be clearly observed on this example
since the reconstructed reflectance obtained with the method
in [29] deviates more significantly from the ground truth.
On the other hand, the numerical results illustrated in Table I
indicate that the proposed method slightly outperforms FUMI
even if it uses a reduced amount of data and requires less
execution time.

Fig. 7. Four unmixed endmembers for the Jasper data set obtained using
FUMI and the proposed method with the C-CASSI and SSCSI systems, which
are compared to the ground truth.

TABLE II

UNMIXING PERFORMANCE (JASPER DATA SET). SAM (IN DEGREES),
NMSEM (IN DECIBELS), AND NMSEA (IN DECIBELS)

Since the proposed fusion method allows spectral unmixing,
it is interesting to analyze the quality of the abundance
and endmember estimates. The estimated endmembers are
displayed in Fig. 7, whereas quantitative results related to
unmixing are provided in Table II. The quality of the unmixing
results is evaluated using the normalized mean square error
of the abundance and endmember matrices (referred to as
NMSEA and NMSEM). The spectral distortion of the endmem-
bers is also computed using the spectral angle mapper (SAM)
denoted as SAMM [44]. These results show that the estimated
endmembers are very close to the ground truth even if the
fusion has been performed using images with a significantly
reduced number of measurements. Table II confirms that
the proposed method provides competitive quantitative results
with respect to FUMI.

B. Urban Data Set

In this experiment, the reference image is a section of
256 × 256 pixels of the Urban HS image [42], [43], whose
spectral dimension was subsampled by a factor of 2 resulting
in a reference image of size 256 × 256 × 81. The compressed
images were both contaminated by additive white Gaussian
noise, with a signal to noise ratio equal to SNR = 30 dB for
the HS image and SNR = 40 dB for the MS image for every
snapshot. The number of endmembers present in this scene is
p = 6. Quantitative and qualitative fusion results are presented
in Table III and in Figs. 8 and 9. Quantitative unmixing
results are also reported in Table IV, whereas the estimated
endmembers are shown in Fig. 10. Visual results in Fig. 8



TABLE III

PERFORMANCE OF MS + HS FUSION METHODS (URBAN DATA SET).
PSNR (IN DECIBELS), UIQI, SAM (IN DEGREES), ERGAS,

DD (×10−2), TIME (IN SECONDS) AND THE DATA (%)

Fig. 8. Fusion results (Urban data set). (a) MS image. (b) HS image.
(c) FUMI method without compression. (d) Method proposed in [20] using
C-CASSI. (e) Proposed method with 50% compression using C-CASSI.
(f) Proposed method with 50% compression using SSCSI.

Fig. 9. Reflectance of the pixel (45, 54) using the proposed approach,
the method proposed in [20], and FUMI compared to the Urban ground truth.

show that the estimated image is very close to the ground
truth. Figs. 9 and 10 show that the estimated signatures can
follow the spectral variations of the ground truth. Moreover,
quantitative results reported in Tables III and IV indicate
that all performance measures used to evaluate the fusion
and unmixing are very satisfactory even if the fusion has
been performed using CS images with a significantly reduced
number of measurements.

C. Pavia Data Set

The reference image used in this last experiment is the scene
acquired over Pavia (Northern Italy) by the reflective optics

TABLE IV

UNMIXING PERFORMANCE (URBAN DATA SET). SAM (IN DEGREES),
NMSEM (IN DECIBELS), AND NMSEA (IN DECIBELS)

Fig. 10. Six unmixed endmembers for the Urban data set obtained using
FUMI and the proposed method with C-CASSI and SSCSI systems with a
comparison to the ground truth.

TABLE V

PERFORMANCE OF MS + HS FUSION METHODS (PAVIA DATA SET).
PSNR (IN DECIBELS), UIQI, SAM (IN DEGREES), ERGAS,

DD (×10−2), TIME (IN SECONDS), AND THE DATA (%)

system imaging spectrometer. We worked with a section of
the image containing 128 × 128 pixels leading to a reference
image of size 128 × 128 × 103. Quantitative and qualitative
fusion results are reported in Table V and Fig. 11. The
results in Table V indicate that the proposed approach yields a
competitive performance when compared to the FUMI method
run on the full data set. The reader is invited to consult
the technical report [38] for additional experiments associated
with the full data set and with a more realistic simulation of
the MS image.

D. Impact of the Compressive Ratio

The last experiments analyze the performance of the
proposed algorithm for different numbers of measurements



Fig. 11. Fusion results (Pavia Data Set). (a) MS image. (b) HS image.
(c) FUMI method with no compression. (d) Method proposed in [20] using
C-CASSI. (e) Proposed method with 50% compression using C-CASSI.
(f) Proposed method with 50% compression using SSCSI.

Fig. 12. PSNRs obtained with the proposed compressive fusion method for
different amounts of data for CASSI and SSCSI systems.

extracted from the Pavia data set. The PSNRs of the recon-
structed images for CASSI and SSCSI as function of the
compressive ratio are depicted in Fig. 12. They indicate that
the accuracy of the recovered images is directly proportional
to the amount of data, as expected.

E. Sensitivity of the Algorithm to the Parameters ν and β

The performance of the proposed algorithm is sensitive to
the values of the regularization parameters β and ν. In order
to analyze this sensitivity, we varied the hyperparameters in
appropriate intervals and evaluated the fusion results in terms
of PSNR for all the parameter values. Fig. 13 displays the
obtained PSNRs as functions of β and ν. As we can see,
the parameter ν plays a dominant role in the proposed method
since the results are less sensitive to the value of β.

VI. ALGORITHM CONVERGENCE

In order to illustrate the good convergence of Algorithm 1,
a typical evolution of the cost function (2) as a function
of the iteration number is displayed in Fig. 14. The Jasper
data set was used for this experiment and the compressive
measurements were simulated with the C-CASSI system with
an SNR equal to 30 dB. Fig. 14 confirms the fast convergence
of the algorithm to a critical point of the objective function,

Fig. 13. Variations of PSNR as functions of parameters ν and β.

Fig. 14. Typical evolution of the objective function c(M, α) defined
in (2) during the optimization using Algorithm 1.

Fig. 15. Histogram of the final values of the objective function c(M, α)
in (2) obtained after 200 different endmember initializations.

which is here close to 27.73. Note that one iteration of
Algorithm 1 includes one iteration of Algorithms 2 and 3.
In order to analyze the sensitivity to initialization, we ran the
proposed algorithm with 200 different initializations. These
initializations were obtained by computing different noisy
versions of the endmembers estimated with the method pre-
sented in [37]. More precisely, the endmembers resulting
from [37] were corrupted by different white Gaussian noise
sequences with the same SNR equal to 30 dB. The histogram
of the corresponding values of the objective function is plotted
in Fig. 15 showing two different modes, confirming the non-
convexity of the fusion problem (2). Table VI shows the



TABLE VI

COMPARISON OF THE TWO MODES IN JASPER DATA SET. OBJECTIVE
FUNCTION VALUE, PSNR (IN DECIBELS), UIQI,

SAM (IN DEGREES), ERGAS, DD (×10−2)

Fig. 16. Reconstructed images with two different values of the objective
function, namely (a) c(M, α) = 27.73 and (b) c(M, α) = 28.20.

quantitative results associated with images corresponding to
the two modes shown in Fig. 15, whereas reconstructed images
corresponding to these two modes are displayed in Fig. 16.
These results show that the reconstructed images are visually
almost indistinguishable and that the quantitative results are
very similar, confirming the good performance of the proposed
fusion algorithm.

VII. CONCLUSION

This paper studied a new fusion algorithm based on spectral
unmixing for reconstructing a high-spatial high-spectral image
from two compressed MS and HS images. Our results showed
that it is possible to recover an HR HS image from compres-
sive spectral imagers, using fewer data samples than using con-
ventional techniques. Future work includes the development
of a new method for endmember extraction from compressed
HS images to find a better initialization step for endmembers.
Regularization parameters were estimated by cross validation
in this paper. It would be also interesting to study methods
allowing these parameters to be estimated directly from the
data such as the methods investigated in [45].
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