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Abstract—This paper presents a variational-based approach
for fusing hyperspectral and multispectral images. The fusion
problem is formulated as an inverse problem whose solution is
the target image assumed to live in a lower dimensional subspace.
A sparse regularization term is carefully designed, relying on a
decomposition of the scene on a set of dictionaries. The dictionary
atoms and the supports of the corresponding active coding coeffi-
cients are learned from the observed images. Then, conditionally
on these dictionaries and supports, the fusion problem is solved via
alternating optimization with respect to the target image (using
the alternating direction method of multipliers) and the coding
coefficients. Simulation results demonstrate the efficiency of the
proposed algorithm when compared with state-of-the-art fusion
methods.

Index Terms—Alternating direction method of multipliers
(ADMM), dictionary, hyperspectral (HS) image, image fusion,
multispectral (MS) image, sparse representation.

I. INTRODUCTION

FUSION of multisensor images has been explored during
recent years and is still a very active research area [2]. A

popular fusion problem in remote sensing consists of merging a
high spatial resolution panchromatic (PAN) image and a low
spatial resolution multispectral (MS) image. Many solutions
have been proposed in the literature to solve this problem,
which is known as pansharpening [2]–[5]. More recently, hy-
perspectral (HS) imaging acquiring a scene in several hundreds
of contiguous spectral bands has opened a new range of relevant
applications such as target detection [6] and spectral unmixing
[7]. However, while HS sensors provide abundant spectral
information, their spatial resolution is generally more limited
[8]. To obtain images with good spectral and spatial resolutions,
the remote sensing community has been devoting increasing
research efforts to the problem of fusing HS with MS or PAN

images [9], [10]. From an application point of view, this prob-
lem is also important, as motivated by recent national programs,
e.g., the Japanese next-generation spaceborne HS image suite,
which fuses coregistered MS and HS images acquired over the
same scene under the same conditions [11].

The fusion of HS and MS differs from pansharpening since
both spatial and spectral information is contained in multiband
images. Therefore, a lot of pansharpening methods, such as
component substitution [12] and relative spectral contribution
[13], are inapplicable or inefficient for the fusion of HS and
MS images. Since the fusion problem is generally ill posed,
Bayesian inference offers a convenient way to regularize the
problem by defining an appropriate generic prior for the scene
of interest. Following this strategy, Gaussian or �2-norm priors
have been considered to build various estimators, in the image
domain [14]–[16] or in a transformed domain [17]. Recently,
the fusion of HS and MS images based on spectral unmixing
has also been explored [18], [19].

Sparse representations have received a considerable interest
in recent years, exploiting the self-similarity properties of nat-
ural images [20]–[23]. Using this property, a sparse constraint
has been proposed in [24] and [25] to regularize various ill-
posed superresolution and/or fusion problems. The linear de-
composition of an image using a few atoms of a redundant
dictionary learned from this image (instead of a predefined
dictionary, e.g., of wavelets) has recently been used for several
problems related to low-level image processing tasks such as
denoising [26] and classification [27], demonstrating the ability
of sparse representations to model natural images. Learning
a dictionary from the image of interest is commonly referred
to as dictionary learning (DL). Liu and Boufounos recently
proposed to solve the pansharpening problem based on DL [5].
DL has also been investigated to restore HS images [28]. More
precisely, a Bayesian scheme was introduced in [28] to learn a
dictionary from an HS image, which imposes self-consistency
of the dictionary by using Beta-Bernoulli processes. This
method provided interesting results at the price of a high com-
putational complexity. Fusing multiple images using a sparse
regularization based on the decomposition of these images into
high- and low-frequency components was considered in [25].
However, the method developed in [25] required a training
data set to learn the dictionaries. The references previously
mentioned proposed to solve the corresponding sparse coding
problem either by using greedy algorithms such as matching
pursuit (MP) and orthogonal MP (OMP) [29] or by relaxing the
�0-norm to an �1-norm to take advantage of the last absolute
shrinkage and selection operator [30].



In this paper, we propose to fuse HS and MS images within a
constrained optimization framework, by incorporating a sparse
regularization using dictionaries learned from the observed
images. Knowing the trained dictionaries and the corresponding
supports of the codes circumvents the difficulties inherent to
the sparse coding step. The optimization problem can be then
solved by optimizing alternatively with respect to (w.r.t.) the
projected target image and the sparse code. The optimization
w.r.t. the image is achieved by the split augmented Lagrangian
shrinkage algorithm (SALSA) [31], which is an instance of
the alternating direction method of multipliers (ADMM). By
a suitable choice of variable splittings, SALSA enables a huge
nondiagonalizable quadratic problem to be decomposed into a
sequence of convolutions and pixel decoupled problems, which
can be solved efficiently. The coding step is performed using a
standard least square (LS) algorithm, which is possible because
the supports have been fixed a priori.

This paper is organized as follows. Section II formulates the
fusion problem within a constrained optimization framework.
Section III presents the proposed sparse regularization and the
method used to learn the dictionaries and the code support. The
strategy investigated to solve the resulting optimization prob-
lem is detailed in Section IV. Simulation results are presented
in Section V, whereas conclusions are reported in Section VI.

II. PROBLEM FORMULATION

A. Notations and Observation Model

This paper considers the fusion of HS and MS images. The
HS image is supposed to be a blurred and downsampled version
of the target image, whereas the MS image is a spectrally
degraded version of the target image. Both images are con-
taminated by white Gaussian noises. Instead of resorting to the
totally vectorized notations used in [14], [15], and [17], the HS
and MS images are reshaped band by band to build mλ ×m
and nλ × n matrices, respectively, where mλ is the number
of HS bands, nλ < mλ is the number of MS bands, n is the
number of pixels in each band of the MS image, and m is the
number of pixels in each band of the HS image. The resulting
observation models associated with the HS and MS images can
be written as follows [14], [32], [33]:

YH = XBS+NH

YM = RX+NM (1)

where

• X = [x1, . . . ,xn] ∈ R
mλ×n is the full resolution target

image with mλ bands and n pixels;
• YH ∈ R

mλ×m and YM ∈ R
nλ×n are the observed HS

and MS images, respectively;
• B ∈ R

n×n is a cyclic convolution operator acting on the
bands;

• S ∈ R
n×m is a downsampling matrix (with downsam-

pling factor denoted by d);
• R ∈ R

nλ×mλ is the spectral response of the MS sensor;
• NH and NM are the HS and MS noises, respectively.

Note that B is a sparse block Toeplitz matrix for a
symmetric convolution kernel, and m = n/d2, where d is
an integer standing for the downsampling factor. Each col-
umn of the noise matrices NH = [nH,1, . . .nH,m] and NM =
[nM,1, . . .nM,n] is assumed to be a band-dependent Gaussian
vector, i.e., nH,i ∼ N (0mλ

,ΛH)(i = 1, . . . ,m) and nM,i ∼
N (0nλ

,ΛM)(i = 1, . . . , n), where 0a is the a× 1 vector of ze-
ros, and ΛH = diag(s2H,1, . . . , s

2
H,mλ

) ∈ R
mλ×mλ and ΛM =

diag(s2M,1, . . . , s
2
M,nλ

) ∈ R
nλ×nλ are diagonal matrices. Note

that the Gaussian noise assumption used in this paper is quite
popular in image processing [34]–[36] as it facilitates the
formulation of the likelihood and the associated optimization
algorithms. By denoting the Frobenius norm as ‖ · ‖F , the
signal-to-noise ratios (SNRs) of each band in the two images
(expressed in decibels) are defined as

SNRH,i =10 log

(
‖(XBS)i‖2F

s2H,i

)
, i = 1, . . . ,mλ

SNRM,j =10 log

(
‖(RX)j‖2F

s2M,j

)
, j = 1, . . . , nλ.

B. Subspace Learning

The unknown image is X = [x1, . . . ,xn], where xi =
[xi,1, xi,2, . . . , xi,mλ

]T is the mλ × 1 vector corresponding to
the ith spatial location (with i = 1, . . . , n). As the bands of the
HS data are generally spectrally dependent, the HS vector xi

usually lives in a subspace whose dimension is much smaller
than the number of bands mλ [37], [38], i.e.,

xi = Hui (2)

where ui is the projection of the vector xi onto the subspace

spanned by the columns of H ∈ R
mλ× m̃λ (H is an orthogo-

nal matrix such that HTH = I m̃λ ). Using the notation U =

[u1, . . . ,un], we have X = HU, where U ∈ R
m̃λ ×n. More-

over, U = HTX since H is an orthogonal matrix. In this case,
the fusion problem (1) can be reformulated as estimating the
unknown matrix U from the following observation equations:

YH =HUBS+NH

YM =RHU+NM. (3)

The dimension of the subspace m̃λ is generally much smaller
than the number of HS bands, i.e., m̃λ � mλ. As a conse-
quence, inferring in the subspace R

m̃λ ×1 greatly decreases the
computational burden of the fusion algorithm. Another motiva-
tion for working in the subspace associated with U is to by-
pass the possible matrix singularity caused by the spectral
dependence of the HS data. Note that each column of the
matrix H can be interpreted as a basis of the subspace of
interest. In this paper, the matrix H has been determined from
a principal component analysis (PCA) of the HS data YH=
[yH,1, . . . ,yH,m] (see step 7 of Algorithm 1). Note that, in-
stead of modifying the principal components directly as in the
substitution-based method [39], [40], the PCA is only employed
to learn the subspace where the fusion problem is solved.



III. PROPOSED FUSION RULE FOR MS AND HS IMAGES

A. Ill-Posed Inverse Problem

As shown in (3), recovering the projected high spectral and
high spatial resolution image U from the observations YH and
YM is a linear inverse problem (LIP) [31]. In most single-
image restoration problems (using either YH or YM), this
inverse problem is ill posed or underconstrained [24], which
requires regularization or prior information (in the Bayesian
terminology). However, for multisource image fusion, the in-
verse problem can be ill posed or well posed, depending on the
dimension of the subspace and the number of spectral bands. If
the matrix RH has full column rank and is well conditioned,
which is seldom the case, the estimation of U according to (3)
is an overdetermined problem instead of an underdetermined
problem [41]. In this case, it is redundant to introduce regu-
larizations. Conversely, if there are fewer MS bands than the
subspace dimension m̃λ (e.g., the MS image degrades to a PAN
image), the matrix RH cannot have full column rank, which
means that the fusion problem is an ill-posed LIP. In this paper,
we focus on the underdetermined case. Note, however, that the
overdetermined problem can be viewed as a special case with a
regularization term set to zero. Another motivation for studying
the underdetermined problem is that it includes an archetypal
fusion task referred to as pansharpening [2].

Using (3), the distributions of YH and YM are

YH|U ∼MNmλ,m(HUBS,ΛH, Im)

YM|U ∼MN nλ,n(RHU,ΛM, In) (4)

where MN represents the matrix normal distribution. The
probability density function of a matrix normal distribution

MN (M,Σr,Σc) is defined by

p(X|M,Σr,Σc)

=
exp

(
− 1

2 tr
[
Σ−1

c (X−M)TΣ−1
r (X−M)

])
(2π)np/2|Σc|n/2|Σr|p/2

where M denotes the mean matrix; and Σr and Σc are two
matrices denoting row and column covariance matrices.

According to Bayes theorem and using the fact that the noises
NH and NM are independent, the posterior distribution of U
can be written as

p (U|YH,YM) ∝ p (YH|U) p (YM|U) p (U) . (5)

In this paper, we want to compute the maximum a posteriori
(MAP) estimator of U using an optimization framework to
solve the fusion problem. Taking the negative logarithm of
the posterior distribution, maximizing the posterior distribution
w.r.t. U is equivalent to solving the following minimization
problem:

min
U

1

2

∥∥∥Λ− 1
2

H (YH −HUBS)
∥∥∥2
F︸ ︷︷ ︸

HS data term
∝ lnp(YH|U)

+
1

2

∥∥∥Λ− 1
2

M (YM −RHU)
∥∥∥2
F︸ ︷︷ ︸

MS data term
∝ lnp(YM|U)

+ λφ(U)︸ ︷︷ ︸
regularizer
∝ lnp(U)

(6)

where the first two terms are associated with the MS and HS
images (data fidelity terms), and the last term is a penalty
ensuring appropriate regularization. Note that λ is a parameter
adjusting the importance of regularization w.r.t. the data fidelity
terms. It is also noteworthy that the MAP estimator is equivalent
to the minimum mean square error (MMSE) estimator when
φ(U) has a quadratic form, which is the case in our approach.

B. Sparse Regularization

Based on the self-similarity property of natural images,
modeling image patches with a sparse representation has been
shown to be very effective in many signal processing ap-
plications [24], [42], [43]. Instead of incorporating a simple
Gaussian prior or smooth regularization for the fusion of HS
and MS images [14], [16], [17], a sparse representation is
introduced to regularize the fusion problem. More specifically,
image patches of the target image projected into a subspace
are represented as a sparse linear combination of elements
from an appropriately chosen overcomplete dictionary with
columns referred to as atoms. In this paper, the atoms of the
dictionary are tuned to the input images, leading to much better
results than predefined dictionaries. More specifically, the goal
of sparse regularization is to represent the patches of the target
image as a weighted linear combination of a few elementary
basis vectors or atoms, chosen from a learned overcomplete
dictionary. The proposed sparse regularization is defined as

φ(U) =
1

2

m̃λ∑
i=1

∥∥Ui − P(D̄iĀi)
∥∥2
F

(7)



where

• Ui ∈ R
n is the ith band (or row) of U ∈ R

m̃λ×n, with
i = 1, . . . , m̃λ;

• P(·) : Rnp×npat �→ R
n×1 is a linear operator that averages

the overlapping patches1 of each band;
• D̄i ∈ R

np×nat is an overcomplete dictionary whose
columns are basis elements of size np (corresponding to
the size of a patch);

• Āi ∈ R
nat×npat is the ith band code (nat is the number of

atoms, and npat is the number of patches associated with
the ith band).

Note that there are m̃λ vectors Ui ∈ R
n since the dimension

of the HS subspace in which the observed vectors xi have been
projected is m̃λ. The operation decomposing each band into
overlapping patches of size

√
np ×√

np is denoted by P∗(·) :
R

n×1 �→ R
np×npat , which is the adjoint operation of P(·), i.e.,

P [P∗(X)] = X.

C. Dictionary Learning

The DL strategy advocated in this paper consists of learning
the dictionaries D̄i and an associated sparse code Āi for each
band of a rough estimation of U using the observed HS and MS
images. A rough estimation of U, referred as Ũ, is constructed
using the MS image YM and the HS image YH, following the
strategy initially studied in [14] (see [45] for more details). Note
that other estimation methods might also be used to compute a
rough estimation of U (see step 1 in Algorithm 1). Then, each
band Ũi of Ũ is decomposed into npat overlapping patches of
size

√
np ×√

np forming a patch matrix P∗(Ũi) ∈ R
np×npat .

Many DL methods have been studied in the recent literature.
These methods are, for instance, based on K-SVD [46], online
DL (ODL) [22], or Bayesian learning [28]. In this paper, we
propose to learn the set D̄ � [D̄1, . . . , D̄m̃λ

] of overcomplete
dictionaries using ODL since it is effective from a compu-
tational point of view and has empirically demonstrated to
provide more relevant representations. More specifically, the
dictionary Di associated with the band Ui is trained by solving
the following optimization problem (see step 3 in Algorithm 1):

{D̄i, Ãi} = argmin
Di,Ai

1

2

[∥∥∥P∗(Ũi)−DiAi

∥∥∥2
F
+ μ‖Ai‖1

]
.

(8)

Then, to provide a more compact representation, we propose to
reestimate the sparse code

Āi = argmin
Ai

1

2

∥∥∥P∗(Ũi)− D̄iAi

∥∥∥2
F
, s.t. ‖Ai‖0 ≤ K (9)

where s.t. stands for “subject to” and K is a given maximum
number of atoms, for each patch of Ui. This �0-norm con-
strained regression problem can be addressed using greedy
algorithms, e.g., OMP. Generally, the maximum number of
atoms K is set much smaller than the number of atoms in
the dictionary, i.e., K � nat. The positions of the nonzero

1Note that the overlapping decomposition adopted here is to prevent block
artifacts [44].

Fig. 1. Directed acyclic graph for the data, parameters, and hyperparameters
(the fixed parameters appear in boxes).

elements of the code Āi, namely, the supports denoted by
Ω̄i � {(j, k)|Āi(j, k) �= 0}, are also identified (see steps 4 and
5 in Algorithm 1).

D. Including the Sparse Code Into the Estimation Framework

Since the regularization term (7) exhibits separable terms
w.r.t. each image Ui in band i, it can be easily interpreted in a
Bayesian framework as the joint prior distribution of the images
Ui (i = 1, . . . , m̃λ) assumed to be a priori independent, where
each marginal prior p (Ui) is a Gaussian distribution with mean
P(D̄iĀi). More formally, by denoting Ā � [Ā1, . . . , Ām̃λ

],
the prior distribution for U associated with the regularization
(7) can be written as

p
(
U|D̄, Ā

)
=

m̃λ∏
i=1

p
(
Ui|D̄i, Āi

)
. (10)

In a standard approach, the hyperparameters D̄ and Ā can
be a priori fixed, e.g., based on the DL step detailed in the
previous section. However, this choice can drastically impact
the accuracy of the representation and therefore the relevance
of the regularization term. Inspired by hierarchical models
frequently encountered in Bayesian inference [47], we propose
to add a second level in the Bayesian paradigm by fixing the
dictionaries D̄ and the set of supports Ω̄ � {Ω̄1, . . . , Ω̄m̃λ

},
but by including the code A within the estimation process. The
associated joint prior can be written as follows:

p
(
U,A|D̄, Ā

)
=

m̃λ∏
i=1

p
(
Ui|D̄i,Ai

)
p
(
Ai|Āi

)
(11)

where Ω̄ is derived from Ā. Therefore, the regularization term
(7) reduces to

φ(U,A) =
1

2

m̃λ∑
i=1

∥∥Ui − P(D̄iAi)
∥∥2
F
=

1

2
‖U− Ū‖2F

s.t. {Ai,\Ω̄i
= 0}m̃λ

i=1 (12)

where Ū � [P(D̄1A1), . . . ,P(D̄m̃λ
Am̃λ

)], and Ai,\Ω̄i
=

{Ai(j, k) | (j, k) �∈ Ω̄i}. It is worthy to note that 1) the reg-
ularization term in (12) is still separable w.r.t. each band Ui

and 2) the optimization of (12) w.r.t. Ai reduces to an �2-norm
optimization task w.r.t. the nonzero elements in Ai, which can
be solved easily. The hierarchical structure of the observed data,
parameters, and hyperparameters is summarized in Fig. 1.



Finally, substituting (12) into (6), the optimization problem
to be solved can be expressed as follows:

min
U,A

L(U,A) � 1

2

∥∥∥Λ− 1
2

H (YH−HUBS)
∥∥∥2
F

+
1

2

∥∥∥Λ− 1
2

M (YM−RHU)
∥∥∥2
F
+
λ

2
‖U−Ū‖2F

s.t.
{
Ai,\Ω̄i

= 0
}m̃λ

i=1 . (13)

Note that the set of constraints {Ai,\Ω̄i
= 0}m̃λ

i=1 could have
been removed. In this case, to ensure a sparse representation
of Ui (i = 1, . . . , m̃λ), sparse constraints on the codes Ai (i =

1, . . . , m̃λ), such as {‖Ai‖0 < K}m̃λ

i=1 or sparsity promoting

penalties, e.g.,
∑m̃λ

i=1 ‖Ai‖1, should have been included into
the object function (13). This would have resulted in a much
more computationally intensive algorithm.

IV. ALTERNATE OPTIMIZATION

Once D̄, Ω̄, and H have been learned from the observed data,
(13) reduces to a standard constrained quadratic optimization
problem w.r.t. U and A. However, this problem is difficult to
solve due to its large dimension and the fact that the operators
H(·)BD and P(·) cannot be easily diagonalized. To cope with
this difficulty, we propose an optimization technique that alter-
nates optimization w.r.t. U and A, which is a simple version of
a block coordinate descent algorithm.

The optimization w.r.t. U conditional on A (or equivalent
on Ū) can be achieved efficiently with the ADMM [48] whose
convergence has been proved in the convex case. The opti-
mization w.r.t. A with the support constraint Ai,\Ω̄i

= 0 (i =
1, 2, . . . , m̃λ) conditional on U is an LS regression problem for
the nonzero elements of A, which can be solved easily. The
resulting scheme, including learning D̄, Ω̄, and H, is detailed in
Algorithm 1. The alternating ADMM and LS steps are detailed
in what follows.

A. ADMM Step

The function to be minimized w.r.t. U conditionally on A
(or Ū) is

1

2

∥∥∥Λ− 1
2

H (YH −HUBS)
∥∥∥2
F

+
1

2

∥∥∥Λ− 1
2

M (YM −RHU)
∥∥∥2
F
+

λ

2

∥∥U− Ū
∥∥2
F
. (14)

By introducing the splittings V1 = UB, V2 = U, and V3 =
U and the respective scaled Lagrange multipliers G1,G2, and
G3, the augmented Lagrangian associated with the optimiza-
tion of U can be written as

L(U,V1,V2,V3,G1,G2,G3)

=
1

2

∥∥∥Λ− 1
2

H (YH −HV1S)
∥∥∥2
F
+

μ

2
‖UB−V1 −G1‖2F

+
1

2

∥∥∥Λ− 1
2

M (YM −RHV2)
∥∥∥2
F
+

μ

2
‖U−V2 −G2‖2F

+
1

2
‖Ū−V3‖2F +

μ

2
‖U−V3 −G3‖2F .

The updates of U,V1,V2,V3,G1,G2, and G3 are ob-
tained with the SALSA algorithm [31], [49], which is an
instance of the ADMM algorithm with guaranteed convergence.
The SALSA scheme is summarized in Algorithm 2. Note that
the optimization w.r.t. U (step 5) can be efficiently solved in the
Fourier domain.

B. Patchwise Sparse Coding

The optimization w.r.t. A conditional on U is

Âi = argmin
Ai

∥∥Ui − P(D̄iAi)
∥∥2
F
, s.t. Ai,\Ω̄i

= 0 (15)

where i = 1, . . . , m̃λ. Since the operator P(·) is a linear map-
ping from patches to images and P[P∗(X)] = X, the problem
(15) can be rewritten as

Âi = argmin
Ai

∥∥P (
P∗(Ui)− D̄iAi

)∥∥2
F
, s.t. Ai,\Ω̄i

= 0.

(16)
The solution of (16) can be approximated by solving

Âi = argmin
Ai

∥∥P∗(Ui)− D̄iAi

∥∥2
F
, s.t. Ai,\Ω̄i

= 0. (17)

Note that using the suboptimal solution instead of the optimal
solution does not affect the convergence of the alternating
optimization. Tackling the support constraint consists of only
updating the nonzero elements of each column of Ai. The jth



vectorized column of P∗(Ui) is denoted by pi,j , the vector
composed of the K nonzero elements of the jth column of
Ai is denoted by aΩ̄j

i
, and the corresponding column of D̄i

is denoted by D̄Ω̄j
i
. Then, the m̃λ problems in (17) reduce to

m̃λ × npat subproblems

âΩ̄j
i
= argmin

a
Ω̄

j
i

∥∥∥pi,j − D̄Ω̄j
i
aΩ̄j

i

∥∥∥2
F

= (D̄T
Ω̄j

i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

pi,j

for i = 1, . . . , m̃λ; j = 1, . . . , npat (18)

which can be computed in parallel. The corresponding patch
estimate is

p̂i,j �Ti,jpi,j

Ti,j = D̄Ω̄j
i
(D̄T

Ω̄j
i

D̄Ω̄j
i
)−1D̄T

Ω̄j
i

.

These patches are used to build Ū (i.e., equivalently,
P
(
D̄iAi

)
) required in the optimization w.r.t. U (see

Section IV-A). Note that Ti,j is a projection operator, and hence
is symmetric (TT

i,j = Ti,j) and idempotent (T2
i,j = Ti,j). Note

also that Ti,j needs to be calculated only once, given the
learned dictionaries and associated supports.

C. Complexity Analysis

The SALSA algorithm has the order of complexity
O (nitm̃λn log(m̃λn)) [31], where nit is the number of
SALSA iterations. The computational complexity of the patch-
wise sparse coding is O (Knpnpatm̃λ). Conducting the fusion
in a subspace of dimension m̃λ instead of working with the
initial space of dimension mλ greatly decreases the complexity
of both SALSA and sparse coding steps.

V. SIMULATION RESULTS ON SYNTHETIC DATA

This section studies the performance of the proposed sparse
representation-based fusion algorithm. The reference image
considered here as the high spatial and high spectral image is
a 128× 128× 93 HS image with a spatial resolution of 1.3 m
acquired by the reflective optics system imaging spectrometer
optical sensor over the urban area of the University of Pavia,
Italy. The flight was operated by the Deutsches Zentrum für
Luft- und Raumfahrt (DLR, the German Aerospace Agency) in
the framework of the HySens project, managed and sponsored
by the European Union. This image was initially composed of
115 bands, which have been reduced to 93 bands after removing
the water vapor absorption bands (with spectral range from
0.43 to 0.86 m). It has received a lot of attention in the remote
sensing literature [50]–[52]. A composite color image, formed
by selecting the red, green, and blue bands of the reference
image, is shown in the left panel of Fig. 2.

A. Simulation Scenario

We propose to reconstruct the reference HS image from two
lower resolved images. A high spectral low spatial resolution
HS image has been constructed by applying a 5× 5 Gaussian
spatial filter on each band of the reference image and down-

Fig. 2. (Left) Reference image. (Middle) HS image. (Right) MS image.

Fig. 3. IKONOS-like spectral responses.

sampling every four pixels in both horizontal and vertical
directions. In a second step, we have generated a four-band
MS image by filtering the reference image with the IKONOS-
like reflectance spectral responses depicted in Fig. 3. The HS
and MS images are both contaminated by zero-mean additive
Gaussian noises. Our simulations have been conducted with
SNR1,· = 35 dB for the first 43 bands and SNR1,· = 30 dB for
the remaining 50 bands of the HS image. For the MS image,
SNR2,· is 30 dB for all bands. The noise-contaminated HS and
MS images are depicted in the middle and right panels in Fig. 2
(the HS image has been interpolated for better visualization).

B. Learning the Subspace, Dictionaries, and Code Supports

1) Subspace: To learn the transform matrix H, we used
the PCA as in [16]. Note that PCA is a classical dimension-
ality reduction technique used in HS imagery. The empirical
correlation matrix Υ = E[xix

T
i ] of the HS pixel vectors is

diagonalized, leading to

WTΥW = Γ (19)

where W is an mλ ×mλ unitary matrix (WT = W−1), and Γ
is a diagonal matrix whose diagonal elements are the ordered
eigenvalues of Υ denoted by d1 ≥ d2 ≥ · · · ≥ dmλ

. The top
m̃λ components are selected, and the matrix H is constructed
as the eigenvectors associated with the m̃λ largest eigenvalues
of Υ. In practice, the selection of the number of principal com-
ponents m̃λ depends on how many materials (or endmembers)
the target image contains. If the number of truncated principal
components is smaller than the dimension of the subspace
spanned by the target image vectors, the projection will lead
to a loss of information. On the contrary, if the number of
principal components is larger than the real dimension, the
overfitting problem may arise, leading to a degradation of the
fusion performance. As an illustration, the eigenvalues of Υ
for the Pavia image are displayed in Fig. 4. For this example,
the m̃λ = 5 eigenvectors contain 99.9% of the information and
have been chosen to build the subspace of interest. A more
detailed discussion can be found in [45] with regard to the
choice of parameter m̃λ.



Fig. 4. Eigenvalues of Υ for the Pavia HS image.

2) Dictionaries: As explained before, the target high-
resolution image is assumed to live in a lower dimensional
subspace. First, a rough estimation of the projected image is
obtained with the method proposed in [14]. In a second step,
m̃λ = 5 dictionaries are learned from the rough estimation of
the projected image using the ODL method. As nat � np, the
dictionary is overcomplete. There is no unique rule to select the
dictionary size np and the number of atoms nat. However, two
limiting cases can be identified.

• The patch reduces to a single pixel, which means np = 1.
In this case, the sparsity is not necessary to be introduced
since only one 1-D dictionary atom (which is a constant)
is enough to represent any target patch.

• The patch is as large as the whole image, which means
that only one atom is needed to represent the image. In
this case, the atom is too “specialized” to describe any
other image.

More generally, the smaller the patches, the more objects
the atoms can approximate. However, too small patches are not
efficient to properly capture the textures, edges, etc. With larger
patch size, a larger number of atoms are required to guarantee
the overcompleteness (which requires larger computation cost).
In general, the size of patches is empirically selected. For the
ODL algorithm used in this paper, this size has been fixed to
np = 6× 6, and the number of atoms is nat = 256. The learned
dictionaries for the first three bands of Ũ are displayed in Fig. 5.
This figure shows that the spatial properties of the target image
have been captured by the atoms of the dictionaries.

3) Code Supports: Based on the dictionaries learned follow-
ing the strategy presented in Section V-B2, the codes are re
estimated by solving (9) with OMP. Note that the target sparsity
K represents the maximum number of atoms used to represent
one patch, which also determines the number of nonzero ele-
ments of A estimated jointly with the projected image U. If K
is too large, the optimization w.r.t. U and A leads to overfitting,
which means there are too many parameters to estimate while
the sample size is too small. The training supports for the first
three bands are displayed in the right column in Fig. 5. The
number of rows is 256, which represents the number of atoms
in each dictionary D̄i (i = 1, . . . , m̃λ). The white dots in the jth
column indicate which atoms are used for reconstructing the jth
patch (j = 1, . . . , npat). The sparsity is clearly observed in this
figure. Note that some atoms are frequently used whereas some
others are not. The most popular atoms represent spatial details
that are quite common in images. The other atoms represent
details that are characteristics of specific patches.

Fig. 5. (Left) Learned dictionaries and (right) corresponding supports.
(a) Dictionary for band 1. (b) Support for band 1 (for some patches). (c) Diction-
ary for band 2. (d) Support for band 2 (for some patches). (e) Dictionary for
band 3. (f) Support for band 3 (for some patches).

C. Fusion Quality Metrics

To evaluate the quality of the proposed fusion strategy,
several image quality measures have been employed. Referring
to [17], we propose to use RMSE, SAM, UIQI, ERGAS, and
DD that are defined below.

1) RMSE: The root-mean-square error (RMSE) is a similar-
ity measure between the target image X and the fused image X̂
defined as

RMSE(X, X̂) =
1

nmλ
‖X− X̂‖2F .

The smaller the RMSE, the better the fusion quality.
2) SAM: The spectral angle mapper (SAM) measures the

spectral distortion between the actual and estimated images.
The SAM of two spectral vectors xn and x̂n is defined as

SAM(xn, x̂n) = arccos

(
〈xn, x̂n〉

‖xn‖2‖x̂n‖2

)
.

The overall SAM is finally obtained by averaging the SAMs
computed for all image pixels. Note that the value of SAM is
expressed in degrees and thus belongs to (−90, 90]. The smaller
the absolute value of SAM, the less important the spectral
distortion.

3) UIQI: The universal image quality index (UIQI) was
proposed in [53] for evaluating the similarity between two
single-band images. It is related to the correlation, luminance
distortion, and contrast distortion of the estimated image w.r.t.



Fig. 6. Pavia data set. (Top 1) Reference. (Top 2) HS. (Top 3) MS. (Top 4)
MAP [14]. (Bottom 1) Wavelet MAP [17]. (Bottom 2) Coupled nonnegative
matrix factorization (CNMF) fusion [18]. (Bottom 3) MMSE estimator [16].
(Bottom 4) Proposed method.

the reference image. The UIQI between two single-band images
a = [a1, a2, . . . , aN ] and â = [â1, â2, . . . , âN ] is defined as

UIQI(a, â) =
4σ2

aâμaμâ

(σ2
a + σ2

â) (μ
2
a + μ2

â)

where (μa, μâ, σ
2
a, σ

2
â) are the sample means and variances

of a and â, and σ2
aâ is the sample covariance of (a, â). The

range of UIQI is [−1, 1], and UIQI(a, â) = 1 when a = â.
For multiband images, the overall UIQI can be computed by
averaging the UIQI computed band by band.

4) ERGAS: The relative dimensionless global error in syn-
thesis (ERGAS) calculates the amount of spectral distortion in
the image [54]. This measure of fusion quality is defined as

ERGAS = 100× m

n

√√√√ 1

mλ

mλ∑
i=1

(
RMSE(i)

μi

)2

where m/n is the ratio between the pixel sizes of the MS and
HS images, μi is the mean of the ith band of the HS image, and
mλ is the number of HS bands. The smaller the ERGAS, the
smaller the spectral distortion.

5) DD: The degree of distortion (DD) between two images
X and X̂ is defined as

DD(X, X̂) =
1

nmλ

∥∥∥vec(X)− vec(X̂)
∥∥∥
1
.

Note that vec(X) represents the vectorization of matrix X. The
smaller the DD, the better the fusion.

D. Comparison With Other Fusion Methods

This section compares the proposed fusion method with four
other state-of-the-art fusion algorithms for MS and HS images
[14], [16]–[18]. The parameters used for the proposed fusion
algorithm have been specified as follows.

• The regularization parameter used in the SALSA method
is μ = 0.05/‖NH‖F . The selection of this parameter μ is
still an open issue even if there are some strategies to tune
it to accelerate convergence [31]. According to the conver-
gence theory [55], for any μ > 0, if the minimization of
(14) has a solution, for example, U�, then the sequence
{U(t,k)}∞k=1 converges to U�. If the minimization of

TABLE I
PERFORMANCE OF DIFFERENT MS + HS FUSION METHODS (PAVIA

DATA SET): RMSE (IN 10–2), UIQI, SAM (IN DEGREES),
ERGAS, DD (IN 10–3), AND TIME (IN SECONDS)

Fig. 7. Performance of the proposed fusion algorithm versus λ. (a) RMSE.
(b) UIQI. (c) SAM. (d) DD.

(14) has no solution, then at least one of the sequences
{U(t,k)}∞k=1 or {G(t,k)}∞k=1 diverges. Simulations have
shown that the choice of μ does not significantly affect
the fusion performance as long as μ is positive.

• The regularization coefficient is λ = 25. The choice of
this parameter will be discussed in Section V-E.

All the algorithms have been implemented using MATLAB
R2013A on a computer with an Intel Core i7-2600 central
processing unit at 3.40 GHz and 8-GB random access memory.
The fusion results obtained with the different algorithms are
depicted in Fig. 6. Visually, the proposed method performs
competitively with other state-of-the-art methods. To better
illustrate the difference of the fusion results, quantitative results
are reported in Table I, which shows the RMSE, UIQI, SAM,
ERGAS, and DD for all methods. It can be seen that the
proposed method always provides the best results.

E. Selection of the Regularization Parameter λ

To select an appropriate value of λ, the performance of the
proposed algorithm has been evaluated as a function of λ. The
results are displayed in Fig. 7, showing that there is no optimal
value of λ for all the quality measures. In the simulation in
Section V-D, we have chosen λ = 25, which provides the best
fusion results in terms of RMSE. Note that for a wide range



Fig. 8. LANDSAT spectral responses.

Fig. 9. Moffett data set. (Top 1) Reference. (Top 2) HS. (Top 3) MS. (Top 4)
MAP [14]. (Bottom 1) Wavelet MAP [17]. (Bottom 2) CNMF fusion [18].
(Bottom 3) MMSE estimator [16]. (Bottom 4) Proposed method.

of λ, the proposed method always outperforms the other four
methods.

F. Test With Other Data Sets

1) Fusion of AVIRIS Data and MS Data: The proposed fu-
sion method has been tested with another data set. The reference
image is a 128× 128× 176 HS image acquired over Moffett
Field, CA, USA, in 1994 by the Jet Propulsion Laboratory/
National Aeronautics and Space Administration Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) [56]. The
blurring kernel B, downsampling operator S, and SNRs for
the two images are the same as in Section V-B. The reference
image is filtered using the LANDSAT-like spectral responses
depicted in Fig. 8, to obtain a four-band MS image. For the
dictionaries and supports, the number and size of atoms and
the sparsity of the code are the same as in Section V-B. The
proposed fusion method has been applied to the observed HS
and MS images with a subspace of dimension m̃λ = 10. The
regularization parameter has been selected by cross-validation
to get the best performance in terms of RMSE. The images
(reference, HS, and MS) and the fusion results obtained with the
different methods are shown in Fig. 9. More quantitative results
are reported in Table II. These results are in good agreement
with those we obtained with the previous image, proving that
the proposed sparse-representation-based fusion algorithms im-
prove the fusion quality. Note that other simulation results are
available in [45] and confirm this improvement.

2) Pansharpening of AVIRIS Data: The only difference with
Section V-F1 is that the MS image is replaced with a PAN
image obtained by averaging all the bands of the reference
image (contaminated by Gaussian noise with SNR = 30 dB).
The quantitative results are given in Table III and are again in
favor of the proposed fusion method.

TABLE II
PERFORMANCE OF DIFFERENT MS + HS FUSION METHODS (MOFFETT

FIELD): RMSE (IN 10–2), UIQI, SAM (IN DEGREES), ERGAS,
DD (IN 10–2), AND TIME (IN SECONDS)

TABLE III
PERFORMANCE OF DIFFERENT PANSHARPENING (HS + PAN) METHODS

(MOFFETT FIELD): RMSE (IN 10–2), UIQI, SAM (IN DEGREES),
DD (IN 10–2), AND TIME (IN SECONDS)

VI. CONCLUSION

In this paper, we proposed a novel method for HS and MS
image fusion based on a sparse representation. The sparse
representation ensured that the target image was well rep-
resented by atoms of dictionaries a priori learned from the
observations. Identifying the supports jointly with the dictio-
naries circumvented the difficulty inherent to sparse coding. An
alternate optimization algorithm, consisting of an ADMM and
an LS regression, was designed to minimize the target function.
Compared with other state-of-the-art fusion methods, the pro-
posed fusion method offered smaller spatial error and smaller
spectral distortion with a reasonable computation complexity.
This improvement was attributed to the specific sparse prior
designed to regularize the resulting inverse problem. Future
works include the estimation of the regularization parameter λ
within the fusion scheme. Updating the dictionary jointly with
the target image would also deserve some attention.
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