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Fast Fusion of Multi-Band Images Based on
Solving a Sylvester Equation

Qi Wei, Student Member, IEEE, Nicolas Dobigeon, Senior Member, IEEE,
and Jean-Yves Tourneret, Senior Member, IEEE

Abstract— This paper proposes a fast multi-band image fusion
algorithm, which combines a high-spatial low-spectral resolution
image and a low-spatial high-spectral resolution image. The well
admitted forward model is explored to form the likelihoods of
the observations. Maximizing the likelihoods leads to solving a
Sylvester equation. By exploiting the properties of the circulant
and downsampling matrices associated with the fusion problem,
a closed-form solution for the corresponding Sylvester equation
is obtained explicitly, getting rid of any iterative update step.
Coupled with the alternating direction method of multipliers and
the block coordinate descent method, the proposed algorithm can
be easily generalized to incorporate prior information for the
fusion problem, allowing a Bayesian estimator. Simulation results
show that the proposed algorithm achieves the same performance
as the existing algorithms with the advantage of significantly
decreasing the computational complexity of these algorithms.

Index Terms— Multi-band image fusion, Bayesian estimation,
circulant matrix, Sylvester equation, alternating direction method
of multipliers, block coordinate descent.

I. INTRODUCTION

A. Background

IN GENERAL, a multi-band image can be represented as
a 3D data cube indexed by three exploratory vari-

ables (x, y, λ), where x and y are the two spatial dimensions
of the scene, and λ is the spectral dimension (covering a
range of wavelengths). Typical examples of multi-band images
include hyperspectral (HS) images [1], multi-spectral (MS)
images [2], integral field spectrographs [3], magnetic reso-
nance spectroscopy images etc. However, multi-band imaging
generally suffers from the limited spatial resolution of the data
acquisition devices, mainly due to an unsurpassable tradeoff
between spatial and spectral sensitivities [4]. For example,
HS images benefit from excellent spectroscopic properties
with hundreds of bands but are limited by their relatively low
spatial resolution compared with MS and panchromatic (PAN)
images (which are acquired in much fewer bands).
As a consequence, reconstructing a high-spatial and

high-spectral multi-band image from two degraded and com-
plementary observed images is a challenging but crucial
issue that has been addressed in various scenarios [5]–[8].
In particular, fusing a high-spatial low-spectral resolution
image and a low-spatial high-spectral image is an archetypal
instance of multi-band image reconstruction, such as pan-
sharpening (MS+PAN) [9] or hyperspectral pansharpen-
ing (HS+PAN) [10]. Generally, the linear degradations applied
to the observed images with respect to (w.r.t.) the target
high-spatial and high-spectral image reduce to spatial and
spectral transformations. Thus, the multi-band image fusion
problem can be interpreted as restoring a 3D data-cube
from two degraded data-cubes. A more precise description
of the problem formulation is provided in the following
paragraph.

B. Problem Statement

To better distinguish spectral and spatial degradations, the
pixels of the target multi-band image, which is of high-spatial
and high-spectral resolution, can be rearranged to build an
mλ × n matrix X, where mλ is the number of spectral bands
and n = nr × nc is the number of pixels in each band (nr and
nc represents the number of rows and columns respectively).
In other words, each column of the matrix X consists of a
mλ-valued pixel and each row gathers all the pixel values in
a given spectral band. Based on this pixel ordering, any linear
operation applied on the left (resp. right) side of X describes
a spectral (resp. spatial) degradation.

In this work, we assume that two complementary images
of high-spectral or high-spatial resolutions, respectively, are
available to reconstruct the target high-spectral and high-
spatial resolution target image. These images result from linear
spectral and spatial degradations of the full resolution image X,
according to the well-admitted model

YL = LX + NL

YR = XR + NR (1)

where

• X = [x1, . . . , xn] ∈ R
mλ×n is the full resolution target

image,
• YL ∈ R

nλ×n and YR ∈ R
mλ×m are the observed spectrally

degraded and spatially degraded images,
• m = mr ×mc is the number of pixels of the high-spectral

resolution image,



• nλ is the number of bands of the high-spatial resolution
image,

• NL and NR are additive terms that include both modeling
errors and sensor noises.

The noise matrices are assumed to be distributed according
to the following matrix normal distributions1

NL ∼ MNmλ,m(0mλ,m,�L, Im)
NR ∼ MN nλ,n(0nλ,n,�R, In).

Note that no particular structure is assumed for the row
covariance matrices �L and �R except that they are both
positive definite, which allows for considering spectrally
colored noises. Conversely, the column covariance matrices
are assumed to be the identity matrix to reflect the fact that
the noise is pixel-independent. In practice, �L and �R depend
on the sensor characteristics and can be known or learnt using
cross-calibration. To simplify the problem, �L and �R are
often assumed to be diagonal matrices, where the i th diagonal
element is the noise variance in the i th band. Thus, the
number of variables in �L is decreased from nλ(nλ+1)

2 to nλ.
Similar results hold for �R. Furthermore, if we want to
ignore the noise terms NL and NR, which means the noises
of YL and YR are both trivial for fusion, we can simply set
�L and �R to identity matrices as in [10].

In most practical scenarios, the spectral degradation
L ∈ R

nλ×mλ only depends on the spectral response of the
sensor, which can be a priori known or estimated by cross-
calibration [11]. The spatial degradation R includes warp,
translation, blurring, decimation, etc. As the warp and transla-
tion can be attributed to the image co-registration problem
and mitigated by precorrection, only blurring and decima-
tion degradations, denoted B and S are considered in this
work. If the spatial blurring is assumed to be space-invariant,
B ∈ R

n×n owns the specific property of being a cyclic
convolution operator acting on the bands. The matrix
S ∈ R

n×m is a d = dr × dc uniform downsampling operator,
which has m = n/d ones on the block diagonal and zeros
elsewhere, and such that ST S = Im . Note that multiplying
by ST represents zero-interpolation to increase the number of
pixels from m to n. Therefore, assuming R can be decomposed
as R = BS ∈ R

n×m , the fusion model (1) can be rewritten as

YL = LX + NL
YR = XBS + NR (2)

where all matrix dimensions and their respective relations are
summarized in Table I.

This matrix equation (1) has been widely advocated
in the pansharpening and HS pansharpening problems,
which consist of fusing a PAN image with an MS or an
HS image [10], [12], [13]. Similarly, most of the techniques
developed to fuse MS and HS images also rely on a similar

1The probability density function p(X|M, �r ,�c) of a matrix normal
distribution MN r,c(M,�r ,�c) is defined by

p(X|M, �r ,�c) =
exp
(
− 1

2 tr
[
�−1

c (X − M)T �−1
r (X − M)

])

(2π)rc/2|�c|r/2|�r |c/2

where M ∈ R
r×c is the mean matrix, �r ∈ R

r×r is the row covariance
matrix and �c ∈ R

c×c is the column covariance matrix.

TABLE I

NOTATIONS

linear model [14]–[20]. From an application point of view,
this problem is also important as motivated by recent national
programs, e.g., the Japanese next-generation space-borne
HS image suite (HISUI), which fuses co-registered MS and
HS images acquired over the same scene under the same
conditions [21].

To summarize, the problem of fusing high-spectral and
high-spatial resolution images can be formulated as estimating
the unknown matrix X from (2). There are two main statistical
estimation methods that can be used to solve this problem.
These methods are based on maximum likelihood (ML) or
on Bayesian inference. ML estimation is purely data-driven
while Bayesian estimation relies on prior information, which
can be regarded as a regularization (or a penalization) for the
fusion problem. Various priors have been already advocated
to regularize the multi-band image fusion problem, such as
Gaussian priors [22], [23], sparse representations [20] or total
variation (TV) [24] priors. The choice of the prior usually
depends on the information resulting from previous experi-
ments or from a subjective view of constraints affecting the
unknown model parameters [25], [26].

Computing the ML or the Bayesian estimators (whatever
the form chosen for the prior) is a challenging task,
mainly due to the large size of X and to the presence of
the downsampling operator S, which prevents any direct
use of the Fourier transform to diagonalize the blurring
operator B. To overcome this difficulty, several computational
strategies have been designed to approximate the estimators.
Based on a Gaussian prior modeling, a Markov chain
Monte Carlo (MCMC) algorithm has been implemented
in [22] to generate a collection of samples asymptotically
distributed according to the posterior distribution of X. The
Bayesian estimators of X can then be approximated using
these samples. Despite this formal appeal, MCMC-based
methods have the major drawback of being computationally
expensive, which prevents their effective use when processing
images of large size. Relying on exactly the same prior
model, the strategy developed in [23] exploits an alternating
direction method of multipliers (ADMM) embedded in a block
coordinate descent method (BCD) to compute the maximum
a posterior (MAP) estimator of X. This optimization strategy
allows the numerical complexity to be greatly decreased when
compared to its MCMC counterpart. Based on a prior built
from a sparse representation, the fusion problem is solved
in [20] and [24] with the split augmented Lagrangian shrinkage
algorithm (SALSA) [27], which is an instance of ADMM.



In this paper, contrary to the algorithms described above,
a much more efficient method is proposed to solve explicitly an
underlying Sylvester equation (SE) associated with the fusion
problem derived from (2), leading to an algorithm referred
to as Fast fUsion based on Sylvester Equation (FUSE). This
algorithm can be implemented per se to compute the ML
estimator in a computationally efficient manner. The proposed
FUSE algorithm has also the great advantage of being easily
generalizable within a Bayesian framework when considering
various priors. The MAP estimators associated with a Gaussian
prior similar to [22] and [23] can be directly computed thanks
to the proposed strategy. When handling more complex priors
such as those used in [20] and [24], the FUSE solution can
be conveniently embedded within a conventional ADMM or a
BCD algorithm.

C. Paper Organization
The remaining of this paper is organized as follows.

Section II studies the optimization problem to be addressed
in absence of any regularization, i.e., in an ML framework.
The proposed fast fusion method is presented in Section III
and generalized to Bayesian estimators associated with various
priors in Section IV. Section V presents experimental results
assessing the accuracy and the numerical efficiency of the
proposed fusion method. Conclusions are finally reported in
Section VI.

II. PROBLEM FORMULATION

Using the statistical properties of the noise matrices NL and
NR, YL and YR have matrix Gaussian distributions, i.e.,

p (YL|X) = MN nλ,n(LX,�L, In)

p (YR|X) = MNmλ,m(XBS,�R, Im). (3)

As the collected measurements YL and YR have been
acquired by different (possibly heterogeneous) sensors, the
noise matrices NL and NR are sensor-dependent and can be
generally assumed to be statistically independent. Therefore,
YL and YR are independent conditionally upon the unobserved
scene X = [x1, · · · , xn]. As a consequence, the joint likeli-
hood function of the observed data is

p (YL, YR|X) = p (YL|X) p (YR|X) . (4)

Since adjacent HS bands are known to be highly correlated,
the HS vector xi usually lives in a subspace whose dimension
is much smaller than the number of bands mλ [28], [29],
i.e., X = HU where H is a full column rank matrix and
U ∈ R

m̃λ×n is the projection of X onto the subspace spanned
by the columns of H ∈ R

mλ×m̃λ .
Defining � = {YL, YR} as the set of the observed images,

the negative logarithm of the likelihood is

− log p (�|U) = − log p (YL|U) − log p (YR|U) + C

= 1

2
tr
(
(YR − HUBS)T �−1

R (YR − HUBS)
)

+ 1

2
tr
(
(YL − LHU)T �−1

L (YL − LHU)
)

+ C

where C is a constant. Thus, calculating the ML estimator of
U from the observed images �, i.e., maximizing the likelihood

can be achieved by solving the following problem

arg min
U

L(U) (5)

where

L(U) = tr
(
(YR − HUBS)T �−1

R (YR − HUBS)
)

+ tr
(
(YL − LHU)T �−1

L (YL − LHU)
)
.

Note that it is also obvious to formulate the optimization
problem (5) from the linear model (2) directly in the least-
squares (LS) sense [30]. However, specifying the distributions
of the noises NL and NR allows us to consider the case of
colored noises (band-dependent) more easily by introducing
the covariance matrices �R and �L, leading to the weighted
LS problem (5).

In this paper, we prove that the minimization of (5) w.r.t. the
target image U can be solved analytically, without any iterative
optimization scheme or Monte Carlo based method. The
resulting closed-form solution to the optimization problem is
presented in Section III. Furthermore, it is shown in Section IV
that the proposed method can be easily generalized to Bayesian
fusion methods with appropriate prior distributions.

III. FAST FUSION SCHEME

A. Sylvester Equation

Minimizing (5) w.r.t. U is equivalent to force the derivative
of L(U) to be zero, i.e., dL(U)/dU = 0, leading to the
following matrix equation

HH�−1
R HUBS (BS)H +

(
(LH)H�−1

L LH
)

U

= HH�−1
R YR (BS)H + (LH)H�−1

L YL. (6)

As mentioned in Section I-B, the difficulty for solving (6)
results from the high dimensionality of U and the presence
of the downsampling matrix S. In this work, we will show
that Eq. (6) can be solved analytically with two assumptions
summarized below.

Assumption 1: The blurring matrix B is a block circulant
matrix with circulant blocks.

The physical meaning of this assumption is that the matrix B
stands for a convolution operator by a space-invariant blur-
ring kernel. This assumption has been currently used in the
image processing literature, e.g., [24], [31]–[33]. Moreover,
the blurring matrix B is assumed to be known in this work.
In practice, it can be learnt by cross-calibration [11] or
estimated from the data directly [24]. A consequence of this
assumption is that B can be decomposed as B = FDFH and
BH = FD∗FH , where F ∈ R

n×n is the discrete Fourier
transform (DFT) matrix (FFH = FH F = In), D ∈ R

n×n is
a diagonal matrix and ∗ represents the conjugate operator.

Assumption 2: The decimation matrix S corresponds to
downsampling the original image and its conjugate trans-
pose SH interpolates the decimated image with zeros.

Again, this assumption has been widely admitted in
various image processing applications, such as super-
resolution [32], [34] and fusion [14], [24]. Moreover,
a decimation matrix satisfies the property SH S = Im and the



matrix S � SSH ∈ R
n×n is symmetric and idempotent, i.e.,

S = SH and SSH = S2 = S. For a practical implementation,
multiplying an image by S can be achieved by doing entry-
wise multiplication with an n × n mask matrix with ones in
the sampled position and zeros elsewhere.

After multiplying (6) on both sides by
(
HH�−1

R H
)−1

, we
obtain2

C1U + UC2 = C3 (7)

where

C1 = (HH�−1
R H
)−1(

(LH)H�−1
L LH
)

C2 = BSBH

C3 = (HH�−1
R H
)−1(HH�−1

R YR (BS)H + (LH)H�−1
L YL
)
.

Eq. (7) is a Sylvester matrix equation [35]. It is well known
that an SE has a unique solution if and only if an arbitrary
sum of the eigenvalues of C1 and C2 is not equal to zero [35].

B. Existence of a Solution

In this section, we study the eigenvalues of C1 and C2 to
check if (7) has a unique solution. As the matrix C2 = BSBH

is positive semi-definite, its eigenvalues include positive values
and zeros [36]. In order to study the eigenvalues of C1,
Lemma 1 is introduced below.

Lemma 1: If the matrix A1 ∈ R
n×n is symmetric (resp.

Hermitian) positive definite and the matrix A2 ∈ R
n×n is

symmetric (resp. Hermitian) positive semi-definite, the product
A1A2 is diagonalizable and all the eigenvalues of A1A2 are
non-negative.

Proof: See Appendix A. �
According to Lemma 1, since the matrix C1 is the product

of a symmetric positive definite matrix
(
HH�−1

R H
)−1

and a symmetric semi-definite matrix (LH)H�−1
L LH, it is

diagonalizable and all its eigenvalues are non-negative. As a
consequence, the eigen-decomposition of C1 can be expressed
as C1 = Q�CQ−1, where �C = diag

(
λ1

C , · · · , λm̃λ
C

)

(diag
(
λ1

C , · · · , λ
m̃λ
C

)
is a diagonal matrix whose elements

are λ1
C , · · · , λm̃λ

C ) and λi
C ≥ 0, ∀i . Therefore, as long as zero

is not an eigenvalue of C1 (or equivalently C1 is invertible),
any sum of eigenvalues of C1 and C2 is different from zero
(more accurately, this sum is greater than 0), leading to the
existence of a unique solution of (7).

However, the invertibility of C1 is not always guaranteed
depending on the forms and dimensions of H and L.
For example, if nλ < m̃λ, meaning that the number of
MS bands is smaller than the subspace dimension, the
matrix (LH)H �−1

L LH is rank deficient and thus (7) has no
unique solution. In cases where C1 is singular, a regularization
or prior information is necessary to be introduced to ensure
(7) has a unique solution. In this section, we focus on the
case when C1 is non-singular. The generalization to Bayesian
estimators based on specific priors already considered in the
literature will be elaborated in Section IV.

2The invertibility of the matrix HH �−1
R H is guaranteed since H has full

column rank and �R is positive definite.

C. A Classical Algorithm for the Sylvester Matrix Equation

A classical algorithm for obtaining a solution of the SE is
the Bartels-Stewart algorithm [35]. This algorithm decomposes
C1 and C2 into Schur forms using a QR algorithm and solves
the resulting triangular system via back-substitution. However,
as the matrix C2 = BSBH is very large for our application
(n×n, where n is the number of image pixels), it is unfeasible
to construct the matrix C2, let alone use the QR algorithm
to compute its Schur form (which has the computational
cost O(n3) arithmetical operations). The next section pro-
poses an innovative strategy to obtain an analytical expression
of the SE (7) by exploiting the specific properties of the
matrices C1 and C2 associated with the fusion problem.

D. Proposed Closed-Form Solution

Using the decomposition C1 = Q�CQ−1 and multiplying
both sides of (7) by Q−1 leads to

�CQ−1U + Q−1UC2 = Q−1C3. (8)

Right multiplying (8) by FD on both sides and using the
definitions of matrices C2 and B yields

�CQ−1UFD + Q−1UFD
(
FH SFD

) = Q−1C3FD (9)

where D = (D∗) D is a real diagonal matrix. Note that
UFD = UBF ∈ R

m̃λ×n can be interpreted as the Fourier
transform of the blurred target image, which is a complex
matrix. Eq. (9) can be regarded as an SE w.r.t. Q−1UFD, which
has a simpler form compared to (7) as �C is a diagonal matrix.
The next step in our analysis is to simplify the matrix FH SFD
appearing on the left hand side of (9). First, we introduce the
following lemma.

Lemma 2: The following equality holds

FH SF = 1

d
Jd ⊗ Im (10)

where F and S are defined as in Section III-A, Jd is the
d × d matrix of ones and Im is the m × m identity matrix.

Proof: See Appendix B. �
This lemma shows that the spectral aliasing resulting from

a downsampling operator applied to a multi-band image in
the spatial domain can be easily formulated as a Kronecker
product in the frequency domain.

Then, let introduce the following md × md matrix

P =

⎡
⎢⎢⎣

Im 0 · · · 0
−Im Im · · · 0

...
...

. . .
...

−Im 0 · · · Im

⎤
⎥⎥⎦

︸ ︷︷ ︸
d

(11)

whose inverse3 can be easily computed

P−1 =

⎡
⎢⎢⎣

Im 0 · · · 0
Im Im · · · 0
...

...
. . .

...
Im 0 · · · Im

⎤
⎥⎥⎦.

3Note that left multiplying a matrix by P corresponds to subtracting the
first row blocks from all the other row blocks. Conversely, right multiplying
by the matrix P−1 means replacing the first (block) column by the sum of
all the other (block) columns.



Right multiplying both sides of (9) by P−1 leads to

�CŪ + ŪM = C̄3 (12)

where Ū = Q−1UFDP−1, M = P
(
FH SFD

)
P−1 and

C̄3 = Q−1C3FDP−1. Eq. (12) is a Sylvester matrix equation
w.r.t. Ū whose solution is significantly easier than for (8),
thanks to the simple structure of the matrix M outlined in the
following lemma.

Lemma 3: The following equality holds

M = 1

d

⎡
⎢⎢⎢⎢⎢⎣

d∑
i=1

Di D2 · · · Dd

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

(13)

where the matrix D has been partitioned as follows

D =

⎡
⎢⎢⎢⎣

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dd

⎤
⎥⎥⎥⎦

with Di m × m real diagonal matrices.
Proof: See Appendix C. �

This lemma, which exploits the equality (10) and the
resulting specific structure of the matrix FH SFD, allows the
matrix M to be written block-by-block, with nonzero blocks
only located in its first (block) row (see (13)). Finally, using
this simple form of M, the solution Ū of the SE (12) can be
computed block-by-block as stated in the following theorem.

Theorem 1: Let (C̄3)l, j denotes the j th block of the
lth band of C̄3 for any l = 1, · · · , m̃λ. Then, the solution
Ū of the SE (12) can be decomposed as

Ū =

⎡
⎢⎢⎢⎣

ū1,1 ū1,2 · · · ū1,d

ū2,1 ū2,2 · · · ū2,d
...

...
. . .

...
ūm̃λ,1 ūm̃λ,2 · · · ūm̃λ,d

⎤
⎥⎥⎥⎦ (14)

with

ūl, j =

⎧⎪⎪⎨
⎪⎪⎩

(C̄3)l, j

(
1
d

d∑
i=1

Di + λl
C Im

)−1

, j = 1,

1
λl

C

[
(C̄3)l, j − 1

d ūl,1D j

]
, j = 2, · · · , d.

(15)

Proof: See Appendix D. �
Note that ul, j ∈ R

1×m denotes the j th block of the lth band.

Note also that the matrix 1
d

d∑
i=1

Di + λl
C In appearing in the

expression of ūl,1 is an n × n real diagonal matrix whose
inversion is trivial. The final estimator of X is obtained as
follows4

X̂ = HQŪPD−1FH. (16)

4It may happen that the diagonal matrix D does not have full rank
(containing zeros in diagonal) or is ill-conditioned (having very small numbers
in diagonal), resulting from the property of blurring kernel. In this case,
D−1 can be replaced by (D + τ Im )−1 for regularization purpose, where τ is
a small penalty parameter [31].

Algorithm 1 Fast Fusion of Multi-Band Images Based on
Solving a Sylvester Equation (FUSE)

Algorithm 1 summarizes the derived FUSE steps required to
calculate the estimated image X̂.

E. Complexity Analysis

The most computationally expensive part of the pro-
posed algorithm is the computation of matrices D and C̄3
because of the FFT and iFFT operations. Using the notation
C4 = Q−1

(
HH�−1

R H
)−1

, the matrix C̄3 can be rewritten

C̄3 = C4
(
HH�−1

R YR
(
BS
)H + (LH

)H
�−1

L YL
)
BFP−1

= C4
(
HH�−1

R YRSH FD∗ + (LH
)H

�−1
L YLF

)
DP−1.

(17)

The most heavy step in computing (17) is the decomposition
B = FDFH (or equivalently the FFT of the blurring kernel),
which has a complexity of order O(n log n). The calculations
of HH�−1

R YRSH FD∗ and (LH)H �−1
L YLF require one FFT

operation each. All the other computations are made in the
frequency domain. Note that the multiplication by DP−1

has a cost of O(n) operations as D is diagonal, and P−1

reduces to block shifting and addition. The left multipli-
cation with Q−1

(
HH�−1

R H
)−1 is of order O(m̃2

λn). Thus,
the calculation of C3BFP−1 has a total complexity of order
O(n · max

{
log n, m̃2

λ

}
).



IV. GENERALIZATION TO BAYESIAN ESTIMATORS

As mentioned in Section III-B, if the matrix (LH)H �−1
L LH

is singular or ill-conditioned (e.g., when the number of
MS bands is smaller than the dimension of the subspace
spanned by the pixel vectors, i.e., nλ < m̃λ), a regularization
or prior information p (U) has to be introduced to ensure the
Sylvester matrix equation (12) has a unique solution. The
resulting estimator U can then be interpreted as a Bayesian
estimator. Combining the likelihood (4) and the prior p (U),
the posterior distribution of U can be written as

p (U|�) ∝ p (�|U) p (U)

∝ p (YL|U) p (YR|U) p (U)

where ∝ means “proportional to” and where we have used the
independence between the observation vectors YL and YR.

The mode of the posterior distribution p (U|�) is the
so-called MAP estimator, which can be obtained by solving
the following optimization problem

arg min
U

L(U) (18)

where

L(U) = 1

2
tr
((

YR − HUBS
)T

�−1
R

(
YR − HUBS

))

+ 1

2
tr
((

YL − LHU
)T

�−1
L

(
YL − LHU

))−log p(U).

(19)

Different Bayesian estimators corresponding to different
choices of p(U) have been considered in the literature. These
estimators are first recalled in the next sections. We will then
show that the explicit solution of the SE derived in Section III
can be used to compute the MAP estimator of U for these
prior distributions.

A. Gaussian Prior

Gaussian priors have been used widely in image process-
ing [37]–[39], and can be interpreted as a Tikhonov regulariza-
tion [40]. Assume that a matrix normal distribution is assigned
a priori to the projected target image U

p(U) = MN m̃λ,n(μ,�, In) (20)

where μ and � are the mean and covariance matrix of the
matrix normal distribution. Note that the covariance matrix �

explores the correlations between HS band and controls the
distance between U and its mean μ. Forcing the derivative of
L(U) in (18) to be zero leads to the following SE

C1U + UC2 = C3 (21)

where

C1 = (HH�−1
R H
)−1(

(LH)H�−1
L LH + �−1)

C2 = BSBH

C3 = (HH�−1
R H
)−1

(HH�−1
R YR (BS)H

+ (LH)H �−1
L YL + �−1μ). (22)

The matrix C1 is positive definite as long as the covariance
matrix �−1 is positive definite. Algorithm 1 can thus be

adapted to a matrix normal prior case by simply replacing
C1 and C3 by their new expressions defined in (22).

B. Non-Gaussian Prior

When the projected image U is assigned a non-Gaussian
prior, the objective function L(U) in (18) can be split into
a data term f (U) corresponding to the likelihood and a
regularization term φ(U) corresponding to the prior in a
Bayesian framework as

L(U) = f (U) + φ(U) (23)

where

f (U) = 1

2
tr
(
(YR − HUBS)T �−1

R (YR − HUBS)
)

+ 1

2
tr
(
(YL − LHU)T �−1

L (YL − LHU)
)

and

φ(U) = − log p (U) .

The optimization of (23) w.r.t. U can be solved efficiently
by using an ADMM that consists of two steps: 1) solving
a surrogate optimization problem associated with a Gaussian
prior and 2) applying a proximity operator [41]. This strategy
can be implemented in the image domain or in the frequency
domain. The resulting algorithms, referred to as FUSE-within-
ADMM (FUSE-ADMM) are described below.

1) Solution in Image Domain: Eq. (23) can be rewritten as

L(U, V) = f (U) + φ(V) s.t. U = V.

The augmented Lagrangian associated with this problem is

Lμ(U, V,λ) = f (U) + φ(V) + λT (U − V) + μ

2
‖U − V‖2

F

(24)

or equivalently

Lμ(U, V, W) = f (U) + φ(V) + μ

2
‖U − V − W‖2

F (25)

where W is the scaled dual variable. This optimization
problem can be solved by an ADMM as follows

(Uk+1, Vk+1) = arg min
U,V

f (U) + φ(V) + μ

2
‖U − V − Wk‖2

F

Wk+1 = Wk − (Uk+1 − Vk+1).

The updates of the derived ADMM algorithm are

Uk+1 = arg min
U

f (U) + μ

2
‖U − Vk − Wk‖2

F

Vk+1 = proxφ,μ(Uk+1 − Wk)

Wk+1 = Wk − (Uk+1 − Vk+1). (26)

• Update U: Instead of using any iterative update method,
the optimization w.r.t. U can be solved analytically by
using Algorithm 1 as for the Gaussian prior investigated
in Section IV-A. For this, we can set μ = Vk + Wk

and �−1 = μIm̃λ in (22). However, the computational
complexity of updating U in each iteration is O(n log n)



because of the FFT and iFFT steps required for comput-
ing C̄3 and U from Ū.

• Update V: The update of V requires computing a
proximity operator, which depends on the form of φ(V).
When the regularizer φ(V) is simple enough, the
proximity operator can be evaluated analytically. For
example, if φ(V) ≡ ‖V‖1, then

proxφ,μ(Uk+1 − Wk) = soft

(
Uk+1 − Wk,

1

μ

)

where soft is the soft-thresholding function defined as

soft(g, τ ) = sign(g) max(|g| − τ, 0).

More examples of proximity computations can be found
in [41].

• Update W: The update of W is simply a matrix addition
whose implementation has a small computational cost.

2) Solution in Frequency Domain: Recalling that
B = FDFH , a less computationally expensive solution
is obtained by rewriting L(U) in (23) as

L(U,V) = f (U) + φ(V) s.t. U = V
where U = UF is the Fourier transform of U, V = VF is the
Fourier transform of V, and

f (U) = 1

2
tr
(
(YR − HUDFH S)T �−1

R (YR − HUDFH S)
)

+ 1

2
tr

((
YL − LHUFH

)T
�−1

L

(
YL − LHUFH

))

and

φ(V) = − log p (V) .

Thus, the ADMM updates, defined in the image domain
by (26), can be rewritten in the frequency domain as

Uk+1 = arg min
U

f (U) + μ

2
‖U − Vk − Wk‖2

F

Vk+1 = proxφ,μ(Uk+1 − Wk)

Wk+1 = Wk − (Uk+1 − Vk+1). (27)

where W is the dual variable in frequency domain. At the
(k + 1)th ADMM iteration, updating U can be efficiently
conducted thanks to an SE solver similar to Algorithm 1,
where the matrix C̄3 is defined by

C̄3 = Cs + Cc

(
Vk + Wk

)
DP−1 (28)

with

Cs = Q−1(HH�−1
R H
)−1

(
HH�−1

R YRSH FDH + (LH)H �−1
L YLF

)
DP−1

Cc = Q−1(HH�−1
R H
)−1

�−1.

Note that the update of C̄3 does not require any FFT
computation since Cs and Cc can be calculated once and are
not updated in the ADMM iterations.

C. Hierarchical Bayesian Framework

When using a Gaussian prior, a hierarchical Bayesian
framework can be constructed by introducing a hyperprior
to the hyperparameter vector � = {μ,�}. Several priors
have been investigated in the literature based on generalized
Gaussian distributions, sparsity-promoted �1 or �0 regulariza-
tions, �2 smooth regularization, or TV regularization. Denoting
as p(�) the prior of �, the optimization w.r.t. U can be
replaced by an optimization w.r.t. (U,�) as follows

(U,�) = arg max
U,�

p (U,�|�)

= arg max
U,�

p (YL|U) p (YR|U) p (U|�) p (�) .

A standard way of solving this problem is to optimize
alternatively between U and � using the following updates

Uk+1 = arg max
U

p (YL|U) p (YR|U) p
(

U|�k
)

�k+1 = arg max
�

p
(

Uk+1|�
)

p (�) .

The update of Uk+1 can be solved using Algorithm 1
whereas the update of � depends on the form of the hyper-
prior p (�). The derived optimization method is referred to as
FUSE-within-BCD (FUSE-BCD).

It is interesting to note that the strategy of Section IV-B
proposed to handle the case of a non-Gaussian prior can
be interpreted as a special case of a hierarchical updating.
Indeed, if we interpret V + d and 1

μ Im̃λ in (25) as the mean

μ and covariance matrix �, the ADMM update (26) can be
considered as the iterative updates of U and μ = V + d with
fixed � = 1

μ Im̃λ .

V. EXPERIMENTAL RESULTS

This section applies the proposed fusion method
to three kinds of priors that have been investigated
in [20], [23], and [24] for the fusion of multi-band
images. Note that these three methods require to solve a
minimization problem similar to (18). All the algorithms
have been implemented using MATLAB R2013A on a
computer with Intel(R) Core(TM) i7-2600 CPU@3.40GHz
and 8GB RAM. The MATLAB codes and all the simulation
results are available in the first author’s homepage.5

A. Fusion Quality Metrics

To evaluate the quality of the proposed fusion strategy,
five image quality measures have been investigated. Referring
to [20] and [42], we propose to use the restored signal to noise
ratio (RSNR), the averaged spectral angle mapper (SAM),
the universal image quality index (UIQI), the relative dimen-
sionless global error in synthesis (ERGAS) and the degree
of distortion (DD) as quantitative measures. The RSNR is
defined by the negative logarithm of the distance between the
estimated and reference images. The larger RSNR, the better
the fusion. The definition of SAM, UIQI, ERGAS and DD
can be found in [20]. The smaller SAM, ERGAS and DD,

5http://wei.perso.enseeiht.fr/



TABLE II

PERFORMANCE OF HS+MS FUSION METHODS: RSNR (IN dB), UIQI, SAM (IN DEGREE), ERGAS, DD (IN 10−3) AND TIME (IN SECOND)

the better the fusion. The larger UIQI, the better the fusion.
The maps of the residual errors, computed in terms of root
mean square errors averaged over the bands, are also available
in the associated technical report [43].

B. Fusion of HS and MS Images

The reference image considered here as the high-spatial and
high-spectral image is a 512 × 256 × 93 HS image acquired
over Pavia, Italy, by the reflective optics system imaging
spectrometer (ROSIS). This image was initially composed of
115 bands that have been reduced to 93 bands after removing
the water vapor absorption bands. A composite color image
of the scene of interest is shown in Fig. 1 (right).

Our objective is to reconstruct the high-spatial high-
spectral image X from a low-spatial high-spectral HS image
YR and a high-spatial low-spectral MS image YL. First,
YR has been generated by applying a 5 × 5 Gaussian filter
and by down-sampling every dr = dc = 4 pixels in both
vertical and horizontal directions for each band of the
reference image. Second, a 4-band MS image YL has been
obtained by filtering X with the LANDSAT-like reflectance
spectral responses [44]. The HS and MS images are both
contaminated by zero-mean additive Gaussian noises. Our
simulations have been conducted with SNRH,i = 35dB for
the first 43 bands of the HS image and SNRH,i = 30dB for
the remaining 50 bands, with

SNRH,i = 10 log

(
‖ (XBS)i ‖2

F

s2
H,i

)
.

For the MS image

SNRM, j = 10 log

(‖ (LX) j ‖2
F

s2
M, j

)
= 30dB

for all spectral bands.
The observed HS and MS images are shown in

Fig. 1 (left and middle). Note that the HS image has been
scaled for better visualization (i.e., the HS image contains
d = 16 times fewer pixels than the MS image) and that
the MS image has been displayed using an arbitrary color
composition. The subspace transformation matrix H has been
defined as the PCA following the strategy of [20].

Fig. 1. Pavia dataset: HS image (left), MS image (middle) and reference
image (right).

1) Example 1 (HS+MS Fusion With a Naive Gaussian
Prior): We first consider the Bayesian fusion model initially
proposed in [22]. This method assumed a naive Gaussian
prior for the target image, leading to an �2-regularization of
the fusion problem. The mean of this Gaussian prior was
fixed to an interpolated HS image. The covariance matrix
of the Gaussian prior can be fixed a priori (supervised
fusion) or estimated jointly with the unknown image within
a hierarchical Bayesian method (unsupervised fusion). Recall
that the estimator studied in [22] was based on a hybrid
Gibbs sampler generating samples distributed according to the
posterior of interest. An ADMM step embedded in a BCD
method (ADMM-BCD) was also proposed in [23] providing
a significant computational cost reduction. This section com-
pares the performance of this ADMM-BCD algorithm with the
performances of the proposed FUSE-based methods for these
fusion problems.

For the supervised case, the explicit solution of the SE can
be constructed directly following the Gaussian prior-based
generalization in Section IV-A. Conversely, for the unsu-
pervised case, the generalized version denoted FUSE-BCD
and described in Section IV-C is exploited, which requires
embedding the closed-form solution into a BCD algorithm
(refer [23] for more details). The estimated images obtained
with the different algorithms are depicted in Fig. 2 and are
visually very similar. More quantitative results are reported
in the first four lines of Table II and confirm the similar



Fig. 2. HS+MS fusion results. Row 1 and 2: state-of-the-art-methods and corresponding proposed fast fusion methods (FUSE), respectively, with various
regularizations: supervised naive Gaussian prior (1st column), unsupervised naive Gaussian prior (2nd column), sparse representation (3rd column) and
TV (4th column).

performance of these methods in terms of the various fusion
quality measures (RSNR, UIQI, SAM, ERGAS and DD).
However, the computational time of the proposed algorithm
is reduced by a factor larger than 200 (supervised) and
90 (unsupervised) due to the existence of a closed-form
solution for the Sylvester matrix equation.

2) Example 2 (HS+MS Fusion With a Sparse
Representation): This section investigates a Bayesian
fusion model based on the Gaussian prior associated with
a sparse representation introduced in [20]. The basic idea
of this approach was to design a prior that results from
the sparse decomposition of the target image on a set of
dictionaries learned empirically. Some parameters needed
to be adjusted by the operator (regularization parameter,
dictionaries and supports) whereas the other parameters
(sparse codes) were jointly estimated with the target image.
In [20], the MAP estimator associated with this model was
reached using an optimization algorithm that consists of an
ADMM step embedded in a BCD method (ADMM-BCD).
Using the strategy proposed in Section IV-C, this ADMM
step can be avoid by exploiting the FUSE solution. Thus,
the performance of the ADMM-BCD algorithm in [20] is
compared with the performance of the FUSE-BCD scheme
as described in Section IV-C. As shown in Fig. 2 and the
5th and 6th lines of Table II, the performances of both
algorithms are quite similar. However, the proposed solution
exhibits a significant complexity reduction.

Fig. 3. Convergence speeds of the ADMM [24] and the proposed
FUSE-ADMM with the TV-regularization.

3) Example 3 (HS+MS Fusion With TV Regularization):
The third experiment is based on a TV regularization (can be
interpreted as a specific instance of a non-Gaussian prior) stud-
ied in [24]. The regularization parameter of this model needs to
be fixed by the user. The ADMM-based method investigated
in [24] requires to compute a TV-based proximity operator
(which increases the computational cost when compared to
the previous algorithms). To solve this optimization problem,
the frequency domain SE solution derived in Section IV-B2
can be embedded in an ADMM algorithm. The fusion results



Fig. 4. Hyperspectral pansharpening results. 1st column: HS image. 2nd column: PAN image. 3rd column: Reference image. 4th column: ADMM [23].
5th column: Proposed method.

obtained with the ADMM method of [24] and the proposed
FUSE-ADMM method are shown in Fig. 2 and are quite
similar. The last two lines of Table II confirms this similarity
more quantitatively by using the quality measures introduced
in Section V-A. Note that the computational time obtained
with the proposed explicit fusion solution is reduced when
compared to the ADMM method. In order to complement
this analysis, the convergence speeds of the FUSE-ADMM
algorithm and the ADMM method of [24] are studied by
analyzing the evolution of the objective function for the
two fusion solutions. Fig. 3 shows that the FUSE-ADMM
algorithm converges faster at the starting phase and gives
smoother convergence result.

C. Hyperspectral Pansharpening

When nλ = 1, the fusion of HS and MS images reduces
to the HS pansharpening (HS+PAN) problem, which is the
extension of conventional pansharpening (MS+PAN) and has
become an important and popular application in the area of
remote sensing [10]. In order to show that the proposed method
is also applicable to this problem, we consider the fusion of
HS and PAN images using another HS dataset. The reference
image, considered here as the high-spatial and high-spectral
image, is an HS image of size 396 × 184 × 176 acquired over
Moffett field, CA, in 1994 by the JPL/NASA airborne visi-
ble/infrared imaging spectrometer (AVIRIS) [45]. This image
was initially composed of 224 bands that have been reduced
to 176 bands after removing the water vapor absorption bands.
The HS image has been generated by applying a 5×5 Gaussian
filter on each band of the reference image. Besides, a PAN
image is obtained by successively averaging the adjacent bands
in visible bands (1 ∼ 41 bands) according to realistic spectral
responses. In addition, the HS and PAN images have been
both contaminated by zero-mean additive Gaussian noises. The
SNR of the HS image is 35dB for the first 126 bands and 30dB
for the last remaining bands. The SNR of the PAN image is
30dB.

The FUSE based method is compared with the ADMM
method6 of [23] to solve the supervised pansharpening

6Due to space limitation, only the Gaussian prior of [23] is considered in
this experiment. However, additional simulation results for other priors are
available in the technical report [43].

TABLE III

PERFORMANCE OF THE PANSHARPENING METHODS: RSNR (IN dB),

UIQI, SAM (IN DEGREE), ERGAS, DD (IN 10−2) AND

TIME (IN SECOND)

problem (i.e., with fixed hyperparameters). The results are
displayed in Fig. 4 whereas more quantitative results are
reported in Table III. Again, the proposed FUSE-based
method provides similar qualitative and quantitative fusion
results with a significant computational cost reduction. More
results for the HS pansharpening are also available in a
recently published review paper, where the authors compare
eleven fusion algorithms, including the proposed FUSE-based
strategies, on three different datasets [10].

VI. CONCLUSION

This paper developed a fast multi-band image fusion
method based on an explicit solution of a Sylvester equation.
This method was applied to both the fusion of multispectral
and hyperspectral images and to the fusion of panchromatic
and hyperspectral images. Coupled with the alternating
direction method of multipliers and the block coordinate
descent, the proposed algorithm can be easily generalized to
compute Bayesian estimators for different fusion problems.
Besides, the analytical solution of the Sylvester equation
can be embedded in a block coordinate descent algorithm to
compute the solution of a fusion model based on hierarchical
Bayesian inference. Numerical experiments showed that
the proposed fast fusion method compares competitively
with the ADMM based methods, with the advantage of
reducing the computational complexity significantly. Future
work will consist of incorporating learning of the subspace
transform matrix H into the fusion scheme. Implementing
the proposed fusion scheme in real datasets will also be
interesting.



APPENDIX A
PROOF OF LEMMA 1

As A1 is symmetric (resp. Hermitian) positive definite,

A1 can be decomposed as A1 = A
1
2
1 A

1
2
1 , where A

1
2
1 is also

symmetric (resp. Hermitian) positive definite thus invertible.
Therefore, we have

A1A2 = A
1
2
1

(
A

1
2
1 A2A

1
2
1

)
A

− 1
2

1 . (29)

As A
1
2
1 and A2 are both symmetric (resp. Hermitian) matrices,

A
1
2
1 A2A

1
2
1 is also a symmetric (resp. Hermitian) matrix that

can be diagonalized. As a consequence, A1A2 is similar to a
diagonalizable matrix, and thus it is diagonalizable.

Similarly, A2 can be written as A2 = A
1
2
2 A

1
2
2 , where

A
1
2
2 is positive semi-definite. Thus, A

1
2
1 A2A

1
2
1 = A

1
2
1 A

1
2
2 A

1
2
2 A

1
2
1

is positive semi-definite showing that all its eigenvalues are
non-negative. As similar matrices share equal similar eigen-
values, the eigenvalues of A1A2 are non-negative.

APPENDIX B
PROOF OF LEMMA 2

The n dimensional DFT matrix F can be written explicitly
as follows

F = 1√
n

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωn−1

1 ω2 ω4 ω6 · · · ω2(n−1)

1 ω3 ω6 ω9 · · · ω3(n−1)

...
...

...
...

. . .
...

1 ωn−1 ω2(n−1) ω3(n−1) · · · ω(n−1)(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

where ω = e− 2π i
n is a primitive nth root of unity in which

i = √−1. The matrix S can also be written as follows

S = E1 + E1+d + · · · + E1+(m−1)d

where Ei ∈ R
n×n is a matrix containing only one non-zero

element equal to 1 located at the i th row and i th column as
follows

Ei =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

.

It is obvious that Ei is an idempotent matrix, i.e., Ei = E2
i .

Thus, we have

FH Ei F = (Ei F)H Ei F =
[
0T · · · f H

i · · · 0T
]

⎡
⎢⎢⎢⎢⎢⎢⎣

0
...
fi
...
0

⎤
⎥⎥⎥⎥⎥⎥⎦

= f H
i fi

where fi = 1√
n

[
1 ωi−1 ω2(i−1) ω3(i−1) · · · ω(n−1)(i−1)

]
is

the i th row of the matrix F and 0 ∈ R
1×n is the zero vector

of dimension 1 × n. Straightforward computations lead to

f H
i fi = 1

n

⎡
⎢⎢⎢⎣

1 ωi−1 · · · ω(i−1)(n−1)

ω−(i−1) 1 · · · ω(i−1)(n−2)

...
...

. . .
...

ω−(i−1)(n−1) ω−(i−1)(n−2) · · · 1

⎤
⎥⎥⎥⎦.

Using the ω’s property
∑n

i=1 ωi = 0 and n = md leads to

f H
1 f1 + f H

1+d f1+d + · · · f H
1+(m−1)df1+(m−1)d

= 1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

m 0 · · · 0
0 m · · · 0
...

...
. . .

...
0 0 · · · m

⎤
⎥⎥⎥⎦ · · ·

⎡
⎢⎢⎢⎣

m 0 · · · 0
0 m · · · 0
...

...
. . .

...
0 0 · · · m

⎤
⎥⎥⎥⎦

...
. . .

...⎡
⎢⎢⎢⎣

m 0 · · · 0
0 m · · · 0
...

...
. . .

...
0 0 · · · m

⎤
⎥⎥⎥⎦ · · ·

⎡
⎢⎢⎢⎣

m 0 · · · 0
0 m · · · 0
...

. . .
...

...
0 0 · · · m

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

d

⎡
⎢⎣

Im · · · Im
...

. . .
...

Im · · · Im

⎤
⎥⎦ = 1

d
Jd ⊗ Im .

APPENDIX C
PROOF OF LEMMA 3

According to Lemma 2, we have

FH SFD = 1

d
(Jd ⊗ Im) D = 1

d

⎡
⎣

D1 D2 · · · Dd
...

...
. . .

...
D1 D2 · · · Dd

⎤
⎦

(30)

Thus, multiplying (30) by P on the left side and by P−1 on
the right side leads to

M = P
(

FH SFD
)

P−1

= 1

d

⎡
⎢⎢⎣

Di D2 · · · Dd
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎦P−1

= 1

d

⎡
⎢⎢⎢⎢⎢⎣

d∑
i=1

Di D2 · · · Dd

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

APPENDIX D
PROOF OF THEOREM 1

Substituting (13) and (14) into (12) leads to (32), as shown
at the top of the next page, where

C̄3 =

⎡
⎢⎢⎢⎣

(C̄3)1,1 (C̄3)1,2 · · · (C̄3)1,d

(C̄3)2,1 (C̄3)2,2 · · · (C̄3)2,d
...

...
. . .

...

(C̄3)d,1 (C̄3)d,2 · · · (C̄3)d,d

⎤
⎥⎥⎥⎦. (31)



⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1,1

(
1
d

d∑
i=1

Di + λ1
C In

)
λ1

C ū1,2 + 1
d ū1,1D2 · · · λ1

C ū1,d + 1
d ū1,1Dd

ū2,1

(
1
d

d∑
i=1

Di + λ2
CIn

)
λ2

C ū2,2 + 1
d ū2,1D2 · · · λ2

C ū2,d + 1
d ū2,1Dd

...
...

. . .
...

ūm̃λ,1

(
1
d

d∑
i=1

Di + λm̃λ
C In

)
λm̃λ

C ūm̃λ,2 + 1
d ūm̃λ,1D2 · · · λm̃λ

C ūm̃λ,d + 1
d ūm̃λ,1Dd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C̄3 (32)

Identifying the first (block) columns of (32) allows us to
compute the element ū1,1 for l = 1, ..., d as follows

ūl,1 = (C̄3)l,1

(
1

d

d∑
i=1

Di + λl
C In

)−1

for l = 1, · · · , m̃λ. Using the values of ūl,1 determined above,
it is easy to obtain ūl,2, · · · , ūl,d as

ūl, j = 1

λl
C

[
(C̄3)l, j − 1

d
ūl,1D j

]

for l = 1, · · · , m̃λ and j = 2, · · · , d .
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