Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

Patent

Codage LDPC à Protection Différenciée

Authors: Ortega Espluga Lorenzo, Poulliat Charly, Al Bitar Hanaa, Boucheret Marie-Laure and Aubault-Roudier Marion

n° FR3097388, BOPI 2020-51, December 18, 2020.

Download document

The invention provides a new method of unequal error protection which is based on a particular parity matrix structure for LDPC-type codes - Figure 1.

Read more

Digital communications / Space communication systems

Conference Paper

Robust Tracking under Measurement Model Mismatch via Linearly Constrained Extended Kalman Filtering

Authors: Ortega Espluga Lorenzo, Vilà-Valls Jordi, Chaumette Eric, Pages Gaël and Vincent François

In Proc. 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, December 14-18, 2020.

Download document

Standard state estimation techniques, ranging from the linear Kalman filter to nonlinear sigma-point or particle filters, assume a perfectly known system model, that is, process and measurement functions and system noise statistics (both the distribution and its parameters). This is a strong assumption which may not hold in practice, reason why several approaches have been proposed for robust filtering. In the context of linear filtering, a solution to cope with a possible system matrices mismatch is to use linear constraints. In this contribution we further explore the extension and use of recent results on linearly constrained Kalman filtering (LCKF) for robust tracking/localization under measurement model mismatch. We first derive the natural extension of the LCKF to nonlinear systems, and its use to mitigate parametric modelling errors in the nonlinear measurement function. A tracking problem where a set of sensors at possibly mismatched (unknown to a certain extent) positions track a moving object from time of arrival measurements is used to support the discussion.

Read more

Signal and image processing / Localization and navigation and Space communication systems

A Compact CRB for the Single Source Conditional Signal Model with Application to Delay-Doppler-Phase Estimation of Band-Limited Signals

Authors: Ortega Espluga Lorenzo, Medina Daniel, Vilà-Valls Jordi, Vincent François and Chaumette Eric

In Proc. 59th IEEE Conference on Decision and Control (CDC), Jeju Island, Republic of Korea, December 14-18, 2020.

Download document

The derivation of tight estimation lower bounds is a key player to design and assess the performance of new estimators. In this contribution, we derive a new compact Cramér-Rao bound (CRB) for the conditional signal model, where the deterministic parameter's vector includes a real positive amplitude and the signal phase. Then, such CRB is particularized to the delay, Doppler, phase and amplitude estimation with band-limited (narrowband) signals, where transmitter and receiver are in relative uniform radial movement. The latter expression is especially easy to use because it only depends on the signal samples. We provide illustrative results for a representative Global Navigation Satellite System positioning example.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Reactivity Enhancement of Cooperative Congestion Control for Satellite Networks

Authors: Thibaud Adrien, Fasson Julien, Arnal Fabrice, Sallantin Renaud, Dubois Emmanuel and Chaput Emmanuel

In Proc. Hot Information-Centric Networking (HotICN), Hefei, Anhui, China, December 12-14, 2020.

Download document

The new paradigm of Information Centric Network (ICN) proposes a shift from the host-centric model to a contentcentric model. This approach, especially well suited to the current Internet’s usage, is promising for Satellite Networks. In particular, Named Data Networking (NDN) architecture seems to be a great candidate: it gathers the benefits of Content Delivery Networks (CDN), Peer-to-Peer networks (P2P) and HTTP in the network layer. In this study, we propose to compare the performances of TCP-like congestion control algorithms and our new Cooperative Congestion Control (CCC) approach. CCC is a pace-based multipath and multi-flow aware congestion control. We evaluate those algorithms with simulations on a topology where we place the satellite link on different positions. We show that CCC outperforms window-based algorithms but has still some drawbacks. We thus proposed an enhancement of CCC that corrects the flaws by increasing its reactivity. Simulations results show that the performances on terrestrial scenarios are also enhanced.

Read more

Networking / Other

Journal Paper

Joint Delay-Doppler Estimation Performance in a Dual Source Context

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

Remote sensing, vol. 12, issue 3, p. 3894, November, 2020.

Download document

Evaluating the time-delay, Doppler effect and carrier phase of a received signal is a challenging estimation problem that was addressed in a large variety of remote sensing applications. This problem becomes more difficult and less understood when the signal is reflected off one or multiple surfaces and interferes with itself at the receiver stage. This phenomenon might deteriorate the overall system performance, as for the multipath effect in Global Navigation Satellite Systems (GNSS), and mitigation strategies must be accounted for. In other applications such as GNSS reflectometry (GNSS-R) it may be interesting to estimate the parameters of the reflected signal to deduce the geometry and the surface characteristics. In either case, a better understanding of this estimation problem is directly brought by the corresponding lower performance bounds. In the high signal-to-noise ratio regime of the Gaussian conditional signal model, the Cramér-Rao bound (CRB) provides an accurate lower bound in the mean square error sense. In this article, we derive a new compact CRB expression for the joint time-delay and Doppler estimation in a dual source context, considering a band-limited signal and its specular reflection. These compact CRBs are expressed in terms of the baseband signal samples, making them especially easy to use whatever the baseband signal considered, therefore being valid for a variety of remote sensors. This extends existing results in the single source context and opens the door to a plethora of usages to be discussed in the article. The proposed CRB expressions are validated in two representative navigation and radar examples.

Read more

Signal and image processing / Localization and navigation

Seeing around corners with edge-resolved transient imaging

Authors: Rapp Joshua, Saunders Charles, Tachella Julian, Murray-Bruce John, Altmann Yoann, Tourneret Jean-Yves, McLaughlin Stephen, Dawson Robin M. A., Wong Franco N.C. and Goyal Vivek K.

Nat. Commun., vol. 11, no. 1, pp. 5929, November 23, 2020.

Download document

Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180∘ field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.

Read more

Signal and image processing / Other

PhD Thesis

Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la Détection d'Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite

Author: Pilastre Barbara

Defended on November 6, 2020.

Download document

La surveillance automatique de systèmes et la prévention des pannes sont des enjeux majeurs dans de nombreux secteurs et l’industrie spatiale ne fait pas exception. Par exemple, le succès des missions des satellites suppose un suivi constant de leur état de santé réalisé à travers la surveillance de la télémesure. Les signaux de télémesure sont des données issues de capteurs embarqués qui sont reçues sous forme de séries temporelles décrivant l’évolution dans le temps de différents paramètres. Chaque paramètre est associé à une grandeur physique telle qu’une température, une tension ou une pression, ou à un équipement dont il reporte le fonctionnement à chaque instant. Alors que les approches classiques de surveillance atteignent leurs limites, les méthodes d’apprentissage automatique (machine learning en anglais) s’imposent afin d’améliorer la surveillance de la télémesure via un apprentissage semi-supervisé : les signaux de télémesure associés à un fonctionnement normal du système sont appris pour construire un modèle de référence auquel sont comparés les signaux de télémesure récemment acquis. Les méthodes récentes proposées dans la littérature ont permis d’améliorer de manière significative le suivi de l’état de santé des satellites mais elles s’intéressent presque exclusivement à la détection d’anomalies univariées pour des paramètres physiques traités indépendamment. L’objectif de cette thèse est de proposer des algorithmes pour la détection d’anomalies multivariées capables de traiter conjointement plusieurs paramètres de télémesure associés à des données de différentes natures (continues/discrètes), et de prendre en compte les corrélations et les relations qui peuvent exister entre eux. L’idée motrice de cette thèse est de supposer que la télémesure fraîchement reçue peut être estimée à partir de peu de données décrivant un fonctionnement normal du satellite. Cette hypothèse justifie l’utilisation de méthodes d’estimation parcimonieuse et d’apprentissage de dictionnaires qui seront étudiées tout au long de cette thèse. Une deuxième forme de parcimonie propre aux anomalies satellites a également motivé ce choix, à savoir la rareté des anomalies satellites qui affectent peu de paramètres en même temps. Dans un premier temps, un algorithme de détection d’anomalies multivariées basé sur un modèle d’estimation parcimonieuse est proposé. Une extension pondérée du modèle permettant d’intégrer de l’information externe est également présentée ainsi qu’une méthode d’estimation d’hyperparamètres qui a été développée pour faciliter la mise en œuvre de l’algorithme. Dans un deuxième temps, un modèle d’estimation parcimonieuse avec un dictionnaire convolutif est proposé. L’objectif de cette deuxième méthode est de contourner le problème de non-invariance par translation dont souffre le premier algorithme. Les différentes méthodes proposées sont évaluées sur plusieurs cas d’usage industriels associés à de réelles données satellites et sont comparées aux approches de l’état de l’art.

Read more

Signal and image processing / Other

PhD Defense Slides

Estimation Parcimonieuse et Apprentissage de Dictionnaires pour la Détection d'Anomalies Multivariées dans des Données Mixtes de Télémesure Satellite

Author: Pilastre Barbara

Defended on November 6, 2020.

Download document

La surveillance automatique de systèmes et la prévention des pannes sont des enjeux majeurs dans de nombreux secteurs et l’industrie spatiale ne fait pas exception. Par exemple, le succès des missions des satellites suppose un suivi constant de leur état de santé réalisé à travers la surveillance de la télémesure. Les signaux de télémesure sont des données issues de capteurs embarqués qui sont reçues sous forme de séries temporelles décrivant l’évolution dans le temps de différents paramètres. Chaque paramètre est associé à une grandeur physique telle qu’une température, une tension ou une pression, ou à un équipement dont il reporte le fonctionnement à chaque instant. Alors que les approches classiques de surveillance atteignent leurs limites, les méthodes d’apprentissage automatique (machine learning en anglais) s’imposent afin d’améliorer la surveillance de la télémesure via un apprentissage semi-supervisé : les signaux de télémesure associés à un fonctionnement normal du système sont appris pour construire un modèle de référence auquel sont comparés les signaux de télémesure récemment acquis. Les méthodes récentes proposées dans la littérature ont permis d’améliorer de manière significative le suivi de l’état de santé des satellites mais elles s’intéressent presque exclusivement à la détection d’anomalies univariées pour des paramètres physiques traités indépendamment. L’objectif de cette thèse est de proposer des algorithmes pour la détection d’anomalies multivariées capables de traiter conjointement plusieurs paramètres de télémesure associés à des données de différentes natures (continues/discrètes), et de prendre en compte les corrélations et les relations qui peuvent exister entre eux. L’idée motrice de cette thèse est de supposer que la télémesure fraîchement reçue peut être estimée à partir de peu de données décrivant un fonctionnement normal du satellite. Cette hypothèse justifie l’utilisation de méthodes d’estimation parcimonieuse et d’apprentissage de dictionnaires qui seront étudiées tout au long de cette thèse. Une deuxième forme de parcimonie propre aux anomalies satellites a également motivé ce choix, à savoir la rareté des anomalies satellites qui affectent peu de paramètres en même temps. Dans un premier temps, un algorithme de détection d’anomalies multivariées basé sur un modèle d’estimation parcimonieuse est proposé. Une extension pondérée du modèle permettant d’intégrer de l’information externe est également présentée ainsi qu’une méthode d’estimation d’hyperparamètres qui a été développée pour faciliter la mise en œuvre de l’algorithme. Dans un deuxième temps, un modèle d’estimation parcimonieuse avec un dictionnaire convolutif est proposé. L’objectif de cette deuxième méthode est de contourner le problème de non-invariance par translation dont souffre le premier algorithme. Les différentes méthodes proposées sont évaluées sur plusieurs cas d’usage industriels associés à de réelles données satellites et sont comparées aux approches de l’état de l’art.

Read more

Signal and image processing / Other

Journal Paper

Compact CRB for delay, Doppler, and phase estimation – application to GNSS SPP and RTK performance characterisation

Authors: Medina Daniel, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Closas Pau, Vincent François and Chaumette Eric

IET Radar, Sonar & Navigation, vol. 14, issue 10, pp.1537-1549, October, 2020.

Download document

The derivation of tight estimation lower bounds is a key tool to design and assess the performance of new estimators. In this contribution, first, the authors derive a new compact Cramér–Rao bound (CRB) for the conditional signal model, where the deterministic parameter's vector includes a real positive amplitude and the signal phase. Then, the resulting CRB is particularised to the delay, Doppler, phase, and amplitude estimation for band‐limited narrowband signals, which are found in a plethora of applications, making such CRB a key tool of broad interest. This new CRB expression is particularly easy to evaluate because it only depends on the signal samples, then being straightforward to evaluate independently of the particular baseband signal considered. They exploit this CRB to properly characterise the achievable performance of satellite‐based navigation systems and the so‐called real‐time kinematics (RTK) solution. To the best of the authors’ knowledge, this is the first time these techniques are theoretically characterised from the baseband delay/phase estimation processing to position computation, in terms of the CRB and maximum‐likelihood estimation.

Read more

Signal and image processing / Localization and navigation and Space communication systems

Conference Paper

Constrained Bundle Adjustment Applied to Wing 3D Reconstruction with Mechanical Limitations

Authors: Demoulin Quentin, Lefebvre-Albaret François, Basarab Adrian, Kouamé Denis and Tourneret Jean-Yves

In Proc. IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, October 25-28, 2020.

Download document

Aircraft certification procedures require the estimation of wing deformation, which is a very challenging problem in photogrammetry applications. Indeed, in real flight conditions with varying environment, 3D reconstruction is strongly degraded. To cope with this issue, we propose to introduce prior knowledge about the wing mechanical limits in the photogrammetry reconstruction method. These mechanical limits are expressed as appropriate regularizations that are included into the classical bundle adjustment step. The proposed approach is evaluated using data acquired on a real aircraft yielding promising results.

Read more
Watch this video on YouTube.
This video is embedded from YouTube. Playing it is subject to Google's privacy policy.

Signal and image processing / Aeronautical communication systems

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique