Search
Conference Paper
Estimation bayésienne locale du paramètre de multifractalité à l’aide d’un algorithme de Monte Carlo Hamiltonien
In Proc. Groupement de Recherche en Traitement du Signal et des Images (GRETSI), September 8-11, 2015.
La caractérisation de la texture d’une image peut être conduite via l’étude des fluctuations de la régularité locale de son amplitude dans le cadre théorique de l’analyse multifractale. Les images étant souvent composées de différentes textures, cette analyse doit être locale. Cet article s’attaque à ce problème en formulant un modèle bayésien par patch reposant sur un modèle semi-paramétrique récemment proposé pour la statistique du logarithme des coefficients dominants. Les estimateurs bayésiens sont obtenus via une procédure d’échantillonnage utilisant un algorithme de Monte-Carlo Hamiltonien. Les performances de ces estimateurs sont illustrées à l’aide de processus synthétiques.
Signal and image processing / Earth observation
Estimation de la Dimension Intrinsèque des Images Hyperspectrales à l’Aide d’un Modèle à Variances Isolées
In Proc. Groupement de Recherche en Traitement du Signal et des Images (GRETSI), September 8-11, 2015.
Cet article propose une approche automatique pour estimer le nombre de spectres de composés purs dans les images hyperspectrales. L’estimation est basée sur de récents résultats de la théorie des matrices aléatoires sur les “modèles à variances isolées”. Plus précisément, nous étudions l’écart entre les valeurs propres successives de la matrice de covariance des observations. L’algorithme d’estimation proposé est automatique et robuste à la présence de bruit corrélé. Cette stratégie est validée sur des images synthétiques et réelles. Les résultats expérimentaux sont prometteurs et montrent la pertinence de cette approche par rapport à l’état de l’art.
Signal and image processing / Earth observation
Récepteur exact pour la décomposition de Laurent pour les CPM
In Proc. Groupement de Recherche en Traitement du Signal et des Images (GRETSI), September 8-11, 2015.
Dans ce papier, on propose un récepteur exact pour les modulations à phase continue (CPM) basé sur la décomposition/représentation de Laurent. L’approche proposée permet de remédier aux problèmes des interférences inter-symboles et inter-composantes induites par les composantes de Laurent sans introduire un étage supplémentaire dans le récepteur de type filtre blanchissant. Puis, en se basant sur la décomposition de Rimoldi, on proposera une méthode analytique pour construire le nouveau banc de filtre de réception. In this paper, we derive an exact receiver for continuous phase modulations based on Laurent decomposition. The proposed method allows to cancel the inter-symbol and inter-component interference induced by the Laurent components, without the use of an additional processing stage at the receiver side such as whitening filters. Futhermore, based on Rimoldi decomposition, we will propose an analytical method to derive the new receiver filter bank.
Digital communications / Space communication systems
Passive InterModula1on (PIM) Theory and Simula1on
In Proc. European Microwave Week (EMW), Paris, France, September 6-11, 2015.
Signal and image processing / Space communication systems
Localisation directe de cibles multiples par un réseau de capteurs distribués en environnement multi-trajet
In Proc. Groupement de Recherche en Traitement du Signal et des Images (GRETSI), September 8-11, 2015.
Signal and image processing / Aeronautical communication systems
A Multi-Replica Decoding Technique for Contention Resolution Diversity Slotted Aloha
In Proc. Vehicular Technology Conference (VTC Fall), Boston, USA, September 6-9, 2015.
This paper proposes a new method for data reception over a random access channel in a satellite communication system. The method is called Multi-replicA decoding using corRelation baSed locALisAtion (MARSALA). It uses the same transmission scheme as in Contention Resolution Diversity Slotted Aloha (CRDSA) where each user sends several replicas of the same packet over the frame. MARSALA is a new decoding technique that localises all the replicas of a packet using a correlation based method, then combines them to decode the data. With MARSALA, the system can achieve a normalized throughput higher than 1.2, resulting in a significant gain compared to CRDSA, while adding a relatively low implementation complexity at the receiver. We also highlight on the practical issues related to channel estimation and how to perform coherent signal combination in MARSALA.
Digital communications / Space communication systems
Reconstruction et filtrage linéaire avec échantillonnage irrégulier
In Proc. Groupement de Recherche en Traitement du Signal et des Images (GRETSI), September 8-11, 2015.
Cet article traite du problème de l'échantillonnage non uniforme dans le cas des processus aléatoires. Une nouvelle méthode est proposée permettant d'effectuer une reconstruction exacte du signal avec une meilleure vitesse de convergence en termes de nombre d'échantillons et un filtrage linéaire directement à partir des échantillons non uniformes. Ce procédé peut être appliqué à des signaux de type passe-bas comme à des signaux de type passe-bande.
Signal and image processing / Other
Bayesian Parameter Estimation for Asymetric Power Distributions
In Proc. European Signal Processing Conference (EUSIPCO), Nice, France, August 31-September 4, 2015.
This paper proposes a hierarchical Bayesian model for estimating the parameters of asymmetric power distributions (APDs). These distributions are defined by shape, scale and asymmetry parameters which make them very flexible for approximating empirical distributions. A hybrid Markov chain Monte Carlo method is then studied to sample the unknown parameters of APDs. The generated samples can be used to compute the Bayesian estimators of the unknown APD parameters. Numerical experiments show the good performance of the proposed estimation method. An application to an image segmentation problem is finally investigated.
Signal and image processing / Earth observation
Sparse Signal Recovery Using a Bernoulli Generalized Gaussian Prior
In Proc. European Signal Processing Conference (EUSIPCO), Nice, France, August 31-September 4, 2015.
Bayesian sparse signal recovery has been widely investigated during the last decade due to its ability to automatically estimate regularization parameters. Prior based on mixtures of Bernoulli and continuous distributions have recently been used in a number of recent works to model the target signals, often leading to complicated posteriors. Inference is therefore usually performed using Markov chain Monte Carlo algorithms. In this paper, a Bernoulli-generalized Gaussian distribution is used in a sparse Bayesian regularization framework to promote a two-level flexible sparsity. Since the resulting conditional posterior has a non-differentiable energy function, the inference is conducted using the recently proposed non-smooth Hamiltonian Monte Carlo algorithm. Promising results obtained with synthetic data show the efficiency of the proposed regularization scheme.
Signal and image processing / Earth observation
Unmixing Multitemporal Hyperspectral Images Accounting for Endmember Variability
In Proc. European Signal Processing Conference (EUSIPCO), Nice, France, August 31-September 4, 2015.
This paper proposes an unsupervised Bayesian algorithm for unmixing successive hyperspectral images while accounting for temporal and spatial variability of the endmembers. Each image pixel is modeled as a linear combination of the endmembers weighted by their corresponding abundances. Spatial endmember variability is introduced by considering the normal compositional model that assumes variable endmembers for each image pixel. A prior enforcing a smooth temporal variation of both endmembers and abundances is considered. The proposed algorithm estimates the mean vectors and covariance matrices of the endmembers and the abundances associated with each image. Since the estimators are difficult to express in closed form, we propose to sample according to the posterior distribution of interest and use the generated samples to build estimators. The performance of the proposed Bayesian model and the corresponding estimation algorithm is evaluated by comparison with other unmixing algorithms on synthetic images.
Signal and image processing / Earth observation
ADDRESS
7 boulevard de la Gare
31500 Toulouse
France