Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

PhD Thesis

Algorithmes de réception GNSS multifréquence pour positionnement précis

Author: Carcanague Sébastien

Defended in 2013

Download document

GNSS and particularly GPS and GLONASS systems are currently used in some geodetic applications to obtain a centimeter-level precise position. Such a level of accuracy is obtained by performing complex processing on expensive high-end receivers and antennas, and by using precise corrections. Moreover, these applications are typically performed in clear-sky environments and cannot be applied in constrained environments. The constant improvement in GNSS availability and accuracy should allow the development of various applications in which precise positioning is required, such as automatic people transportation or advanced driver assistance systems. Moreover, the recent release on the market of low-cost receivers capable of delivering raw data from multiple constellations gives a glimpse of the potential improvement and the collapse in prices of precise positioning techniques. However, one of the challenge of road user precise positioning techniques is their availability in all types of environments potentially encountered, notably constrained environments (dense tree canopy, urban environments…). This difficulty is amplified by the use of multi-constellation low-cost receivers and antennas, which potentially deliver lower quality measurements. In this context the goal of this PhD study was to develop a precise positioning algorithm based on code, Doppler and carrier phase measurements from a low-cost receiver, potentially in a constrained environment. In particular, a precise positioning software based on RTK algorithm is described in this PhD study. It is demonstrated that GPS and GLONASS measurements from a low-cost receivers can be used to estimate carrier phase ambiguities as integers. The lower quality of measurements is handled by appropriately weighting and masking measurements, as well as performing an efficient outlier exclusion technique. Finally, an innovative cycle slip resolution technique is proposed. Two measurements campaigns were performed to assess the performance of the proposed algorithm. A horizontal position error 95th percentile of less than 70 centimeters is reached in a beltwayenvironment in both campaigns, whereas a 95th percentile of less than 3.5 meters is reached in urban environment. Therefore, this thesis demonstrates the possibility of precisely estimating the position of a road user using low-cost hardware.

Read more

Signal and image processing / Localization and navigation

Conference Paper

Martinet : A Disciplinarian Protocol for Resource Access in DTN

Authors: Raveneau Patrice, Chaput Emmanuel, Dhaou Riadh, Dubois Emmanuel, Gélard Patrick and Beylot André-Luc

In Proc. IEEE IFIP Wireless Days (WD 2013), Valencia, Spain, November 13-15, 2013.

This paper analyses the congestion on a LEO satellite architecture with intermittent connectivity. The satellites are used to sense and gather data from ground terminals. The DTN (Delay Tolerant Networking) architecture allows the terminals to wait for the next contact when the satellite is not in the line of sight. The lack of connectivity of the network may create starvations for some stations. A model of the network is provided using Queueing Theory which allows to determine a probability of loss. This derivation proves that loss depends more on the number of terminals than on packet lifetime. The proposed scheduler and protocol allow to distribute traffic and loss fairly among stations. A testbed has been designed to validate the protocol.

Read more

Networking / Space communication systems

On Estimating the End-to-End Bandwidth in Multi-Transceiver Multi-Hop Cognitive Radio Networks

Authors: Artero Gallardo Guillaume, Jakllari Gentian, Canourgues Lucile and Beylot André-Luc

In Proc. Workshop on Performance Monitoring and Measurement of Heterogeneous Wireless and Wired Networks (PM2HW2N), Barcelona, Spain, November 3-8, 2013.

Download document

Cognitive radios promise to revolutionize the performance of wireless networks in general and multi-hop wireless networks in particular by making efficient use of the portion of the licensed spectrum left un-utilized. Realizing this promise, however, requires revisiting many of the current network architectures and protocols, which is the subject of a very active research effort. In this work, we focus on Quality of Service routing and more specifically, admission control. We consider a multi-hop cognitive radio network where every node is equipped with multiple transceivers. Because the research and development of a widely accepted MAC protocol for these networks is still ongoing, we assume a bare-bones TDMA protocol at the link layer. We show that, for the network considered, the problem of finding the maximum end-to-end bandwidth of a given path is NP-Complete. Given this result, we consider a relaxed version of the problem wherein the slot allocations are carried out at each node by selecting at random the required number of slots among those available. For this case, we provide a linear time algorithm for computing the average residual end-to-end bandwidth. We perform an extensive numerical analysis that demonstrates its accuracy and enabling value for performing admission control.

Read more

Networking / Other

A Disciplinarian Protocol for Resource Access in DTN

Authors: Raveneau Patrice, Chaput Emmanuel, Dhaou Riadh, Dubois Emmanuel, Gélard Patrick and Beylot André-Luc

IFIP Wireless Days (WD'2013), Valencia, Spain, November 1-3, 2013.

Download document

This paper analyses the congestion on a LEO satellite architecture with intermittent connectivity. The satellites are used to sense and gather data from ground terminals. The DTN (Delay Tolerant Networking) architecture allows the terminals to wait for the next contact when the satellite is not in the line of sight. The lack of connectivity of the network may create starvations for some stations. A model of the network is provided using Queueing Theory which allows to determine a probability of loss. This derivation proves that loss depends more on the number of terminals than on packet lifetime. The proposed scheduler and protocol allow to distribute traffic and loss fairly among stations. A testbed has been designed to validate the protocol.

Read more

Networking / Space communication systems

Initial Spreading : a Fast Start-Up TCP Mechanism

Authors: Sallantin Renaud, Baudoin Cédric, Chaput Emmanuel, Arnal Fabrice, Dubois Emmanuel and Beylot André-Luc

In Proc. IEEE Conference on Local Computer Networks (LCN 2013), Sydney, Australia, October 21-24, 2013.

Download document

With most internet connections being short-lived (i.e. 10 segments), it is very tempting to enlarge the TCP Initial Window (IW). This would save two of the three RTTs needed to transfer most of the web pages through a legacy slow start. However it has been demonstrated that the bursts created by a larger IW greatly impair global performance. An intuitive solution is the TCP Pacing. By spreading the transmission over the whole RTT, Pacing smoothes the bursts and delays the congestion. While postponing congestion provides good performance for short-lived connections, it could significantly deteriorate global network performance insofar as the reaction to congestion is also delayed. This paper analyzes the weaknesses of large IW and TCP Pacing and proposes a fast Start-Up mechanism to speed up short-lived connections while preserving long-term connections. Extensive simulations and analysis demonstrate that our solution is as efficient as a larger IW would be in an uncongested network and better than current mechanisms in congested environments.

Read more

Networking / Space communication systems

Multicarrier Passive Inter-Modulation Prediction from 2-Carrier Measurements

Author: Sombrin Jacques B.

In Proc. International Conference on Satellite and Space Communications (ICSS), Florence, Italie, October 14-17, 2013.

Download document

Passive inter-modulation products between transmitted signals may prevent the correct operation of satellite receivers using the same antenna. In many cases, these passive products do not obey the classical rule of 3 dB/dB slope as a function of carrier input power and they cannot be modeled using the classical theory based on polynomials. This has prevented the exact computation of carrier to inter-modulation ratio in multicarrier conditions from 2-carrier measurements. This has led to the use of higher than necessary margins. We present non-analytic models that generate non-integer inter-modulation slopes identical to that obtained in measurements and permit to predict multicarrier results.

Read more

Digital communications / Space communication systems

Metro Ethernet for Future Satcom Systems

Authors: Arnal Fabrice, Paillassa Béatrice, Dhaou Riadh, Chaput Emmanuel, Baudoin Cédric, Dubois Emmanuel and Gélard Patrick

AIAA International Communication Satellite Systems Conference (ICSSC), Florence, Italy, October 14-17, 2013.

Read more

Networking / Space communication systems

A Generalized Semi-Analytical Model for Delay/Doppler Altimetry and its Estimation Algorithms

Authors: Tourneret Jean-Yves, Mailhes Corinne, Halimi Abderrahim, Thibaut Pierre, Boy François and Moreau Thomas

in Ocean Surface Topography Science Team Meeting (OSTST), Boulder, CO, USA, October 8-11, 2013.

Download document

The concept of delay/Doppler radar altimeter has been under study since the mid 90’s, aiming at reducing the measurement noise and increasing the along-track resolution in comparison with the conventional pulse limited altimeters. This paper introduces a generalized semi-analytical model for the delay/Doppler echo that accounts for antenna mispointing, as well as an associated least squares estimation algorithms. The mean power of a delay/Doppler echo can be expressed by a convolution of three terms that are the probability density function (PDF) of the heights of the specular scatterers, the time/frequency point target response (PTR) of the radar and the flat surface impulse response (FSIR). The first contribution of this paper is the derivation of a generalized analytical model for the FSIR that accounts for antenna mispointing. The proposed analytical expression for the FSIR also considers Earth curvature, a circular antenna pattern and a Gaussian approximation for the antenna gain. The two dimensional delay/Doppler map (DDM) is then obtained by a numerical computation of the convolution between the proposed analytical FSIR expression, the PDF of the sea wave height and the time/frequency PTR. The resulting DDM depends on five altimetric parameters that are the epoch, the significant wave height, the amplitude, the along-track and the across-track mispointing angles. Appropriate processing, including range migration and multi-looking, is applied to the resulting DDM yielding the Doppler echo (also known as the multi-look echo). The second contribution of this paper is the derivation of estimators for the five parameters associated with the multi-look echo. A least squares approach is investigated by means of the Levenberg-Marquardt algorithm. Moreover, the study of the effect of antenna mispointing shows high correlation between the along-track mispointing and the echo's amplitude. Thus, a four parameter estimation strategy has been proposed rather than the mere estimation of the five parameters of interest. In order to evaluate these strategies, we compare their estimation performance to that obtained using the three parameter model derived in a previous paper [1]. Validation of the proposed model and the corresponding algorithms is achieved on simulated and real Cryosat-2 data. The obtained results are very promising and confirm the accuracy of the proposed model.

Read more

Signal and image processing / Earth observation

On the Trade-off Between Spectrum Efficiency with Dedicated Access and Short End-to-End Transmission Delays with Random Access in DVB-RCS2

Authors: Kuhn Nicolas, Bui Huyen-Chi, Lacan Jérôme, Radzik José and Lochin Emmanuel

In Proc. ACM LCDNet, Miami, United States, September 30, 2013.

Download document

This paper analyses the performance of TCP over random and dedicated access methods in the context of DVB-RCS2. Random access methods introduce a lower connection delay compared to dedicated methods. We investigate the potential to improve the performance of short flows in regards to transmission delay, over random access methods for DVB-RCS2 that is currently under development. Our simulation experiments show that the transmission of the first ten IP datagrams of each TCP flow can be 500 ms faster with random access than with dedicated access making the former of interest to carry Internet traffic. Such methods, however, are less efficient in regards to bandwidth usage than dedicated access mecanisms and less reliable in overloaded network conditions. Two aspects of channel usage optimization can be distinguished: reducing the duration of ressource utilization with random access methods, or increasing the spectrum efficiency with dedicated access methods. This article argues that service providers may let low-cost users exploit the DVB-RCS2 to browse the web by introducing different services, which choice is based on the channel access method.

Read more

Networking / Space communication systems

PhD Defense Slides

Téléchargement de contenus dans les réseaux véhiculaires

Author:

Defended in September 2013

Download document

for Intelligent Transportation Systems (ITS). They may or may not use the infrastructure. They will consider from the traffic safety applications up to the driver’s comfort or network games. The map updates are, from our point of view, a representative application but in the other hand it can help to reduce congestion in improving efficiency in decision making. It has well-defined characteristics : high volume of data, low delay constraint, possibility of implementation of infrastructure-to-vehicle communications, between vehicles and hybrids. The objective is that the contents are fully downloaded by all vehicles in minimum time, using fewer resources and lower costs. The solutions that have emerged as the most suitable concerned the use of the technology 802.11p with or without infrastructure. In the case of solutions with infrastructure, a number of access points broadcast information with coverage areas most often disjointed. Given the size of area used and/or flow devoted to this type of applications, the transition to a single access point is not enough to download these maps. It is then to define strategies of information dissemination. A first study was to compare a unicast strategy face to broadcast/multicast strategy. The latter appears largely improved. A combination of these principles does not improve system performance, because the flow devoted to unicast transmission does not compensate for the flow not used by the broadcast. The problem is duplicate chunks received by vehicles passing from several consecutive access points. To mitigate the phenomenon of duplication, we used the linear network coding pseudorandom. The idea is that the access point broadcasts linear combinations of chunks of files. The large number of these linear combinations significantly reduces this phenomenon. In a complementary manner, we investigated the use of ad hoc communications to fill the missing chunks of file, particularly in the absence of infrastructure. We verified that we could achieve good results in this context based on the diversity of chunks of files which are owned by the encountered vehicles.

Read more

Networking / Localization and navigation

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique