Publication

Journal papers, Talks, Conference papers, Books, Technical notes

Search

Journal Paper

Delay Optimization of Conventional Non-Coherent Differential CPM Detection

Authors: Jerbi Anouar, Amis Karine, Guilloud Frédéric and Benaddi Tarik

IEEE Communications Letters, vol. 27, issue 1, pp. 234-238, January, 2023.

Download document

The conventional non-coherent differential detection of continuous phase modulations (CPM) is quite robust to channel impairments such as phase and Doppler shifts. Its implementation is on top of that simple. It consists in multiplying the received baseband signal by its conjugate version delayed by one symbol period. However it suffers from a signal-to-noise ratio gap compared to the optimum coherent detection. In this paper, we improve the error rate performance of the conventional differential detection by using a delay higher than one symbol period. We derive the trellis description as well as the branch and cumulative metrics that take into account a delay of K symbol periods. We then determine an optimized delay K opt based on the minimum Euclidean distance between two differential signals for some popular CPM formats. The optimized values are confirmed by error rate simulations.

Read more

Digital communications / Aeronautical communication systems and Space communication systems

Clean-to-Composite Bound Ratio: A Multipath Criterion for GNSS Signal Design and Analysis

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Vilà-Valls Jordi, Lestarquit Laurent and Chaumette Eric

IEEE Transactions on Aerospace and Electronic Systems, vol. 58, issue 6, pp. 5412-5424, December, 2022.

Download document

Multipath is one of the most challenging propagation conditions affecting Global Navigation Satellite Systems (GNSS), which must be mitigated in order to obtain reliable navigation information. In any case, the random multipath nature makes it difficult to anticipate and overcome. Therefore, for legacy GNSS signal performance assessment, modern GNSS signal design and future GNSS-based applications, robustness to multipath is a fundamental criterion. Different multipath metrics exist in the literature, such as the multipath error envelope, usually leading to analyses only valid for a dedicated receiver/signal combination and only providing information on the bias. This paper presents a general criterion to characterize the multipath robustness of a generic band-limited signal (e.g., GNSS or radar), considering the joint delay-Doppler and phase estimation. This criterion is based on the Cramr-Rao bound, which makes it universal, regardless the receiver architecture and the signal under analysis, and provides information on the actual achievable performance in terms of estimated time-delay (i.e., pseudo-range) and Doppler frequency variances.

Read more

Signal and image processing and Networking / Localization and navigation

Technical Note

Details on Impulse Response Estimation and Size Determination

Authors: Lubeigt Corentin, Ortega Espluga Lorenzo, Chaumette Eric and Vilà-Valls Jordi

This is a supplementary material associated with the article "Band-limited impulse response estimation performance" that can be found, in the online version, at doi: https://doi.org/10.1016/j.sigpro.2023.108998.

Read more

Signal and image processing / Localization and navigation

Talk

Matched, mismatched and semiparametric inference in elliptical distributions

Author: Fortunati Stefano

Seminar of TeSA, Toulouse, November 17, 2022.

Download document

Read more

Signal and image processing / Aeronautical communication systems, Earth observation, Localization and navigation and Space communication systems

Data Driven Optical Coding Optimization in Computational Imaging

Author: Arguello Fuentes Henry

Seminar of TeSA, Toulouse, October 25, 2022.

Download document

Read more

Signal and image processing / Aeronautical communication systems, Earth observation, Localization and navigation and Space communication systems

PhD Thesis

Apprentissage profond pour la compression embarquée d'images d'observation de la Terre.

Author: Alves de Oliveira Vinicius

Defended on October 21, 2022.

Download document

The new generation of satellite instruments enables the acquisition of images with evergrowing spectral and spatial resolutions. The counterpart is that an increasing amount of data must be processed and transmitted to the ground. Onboard image compression becomes thus crucial to preserve transmission channel bandwidth and reduce data transmission time. Recently, convolutional neural networks have shown outstanding results for lossy image compression compared to traditional compression schemes, however, at the cost of a high computational complexity. Autoencoder architectures are trained end-to-end, taking beneĄt from extensive datasets and computing power available on mighty clusters. Consequently, the potential contributions and feasibility of deep learning techniques for onboard compression are arousing great interest. In this context, nevertheless, computational resources are subject to severe limitations: a trade-off between compression performance and complexity must be established. In this thesis, the main objective is to adapt learned compression frameworks to onboard compression, simplifying them and training them with speciĄc images. In a Ąrst step, we propose simplifying these architectures as much as possible while preserving high performance, particularly maintaining the adaptability to handle diverse input images. In a second step, we investigate how such architectures can further be improved by aggregating other functionalities such as denoising. Thus, we intend to incorporate denoising, either considering the above mentioned compression architectures for joint compression and denoising concurrently or as a sequential approach. The sequential approach consists in using, on the ground, a different architecture to denoise the images issued from the preceding learned compression framework. By running experiments on simulated but realistic satellite images, we show that the proposed simpliĄcations to the learned compression framework result in considerably lower complexity while maintaining high performance. Concerning learned compression and denoising, the joint and sequential approaches are beneĄcial and complementary, allowing to surpass the CNES imaging system performance, and thus opening the path towards operational compression and denoising pipelines for satellite images.

Read more

Signal and image processing / Earth observation

PhD Defense Slides

Apprentissage profond pour la compression embarquée d'images d'observation de la Terre.

Author: Alves de Oliveira Vinicius

Defended on October 21, 2022.

Download document

The new generation of satellite instruments enables the acquisition of images with evergrowing spectral and spatial resolutions. The counterpart is that an increasing amount of data must be processed and transmitted to the ground. Onboard image compression becomes thus crucial to preserve transmission channel bandwidth and reduce data transmission time. Recently, convolutional neural networks have shown outstanding results for lossy image compression compared to traditional compression schemes, however, at the cost of a high computational complexity. Autoencoder architectures are trained end-to-end, taking beneĄt from extensive datasets and computing power available on mighty clusters. Consequently, the potential contributions and feasibility of deep learning techniques for onboard compression are arousing great interest. In this context, nevertheless, computational resources are subject to severe limitations: a trade-off between compression performance and complexity must be established. In this thesis, the main objective is to adapt learned compression frameworks to onboard compression, simplifying them and training them with speciĄc images. In a Ąrst step, we propose simplifying these architectures as much as possible while preserving high performance, particularly maintaining the adaptability to handle diverse input images. In a second step, we investigate how such architectures can further be improved by aggregating other functionalities such as denoising. Thus, we intend to incorporate denoising, either considering the above mentioned compression architectures for joint compression and denoising concurrently or as a sequential approach. The sequential approach consists in using, on the ground, a different architecture to denoise the images issued from the preceding learned compression framework. By running experiments on simulated but realistic satellite images, we show that the proposed simpliĄcations to the learned compression framework result in considerably lower complexity while maintaining high performance. Concerning learned compression and denoising, the joint and sequential approaches are beneĄcial and complementary, allowing to surpass the CNES imaging system performance, and thus opening the path towards operational compression and denoising pipelines for satellite images.

Read more

Signal and image processing / Earth observation

Conference Paper

Multifractal Anomaly Detection in Images via Space-Scale Surrogates

Authors: Wendt Herwig, Leon Arencibia Lorena, Tourneret Jean-Yves and Abry Patrice

In Proc. IEEE International Conference on Image Processing (ICIP), Bordeaux, France, October 16-19, 2022.

Download document

Multifractal analysis provides a global description for the spatial fluctuations of the strengths of the pointwise regularity of image amplitudes. A global image characterization leads to robust estimation, but is blind to and corrupted by small regions in the image whose multifractality differs from that of the rest of the image. Prior detection of such zones with anomalous multifractality is thus crucial for relevant analysis, and their delineation of central interest in applications, yet has never been achieved so far. The goal of this work is to devise and study such a multifractal anomaly detection scheme. Our approach combines three original key ingredients: i) a recently proposed generic model for the statistics of the multiresolution coefficients used in multifractal estimation (wavelet leaders), ii) an original surrogate data generation procedure for simulating a hypothesized global multifractality and iii) a combination of multiple hypothesis tests to achieve pixel-wise detection. Numerical simulations using synthetic multifractal images show that our procedure is operational and leads to good multifractal anomaly detection results for a range of target sizes and parameter values of practical relevance.

Read more

Signal and image processing / Other

A Complete SSA Scheme for a Sustainable Low Earth Orbit: Space DATA Aggregation and AI Combined with In Orbit Inspection

Authors: Zamoum Selma, Huuson Thomas, Kebe Fatoumata, Barthélémy Mathieu, Gigleux Benjamin, Sombrin Jacques B. and Durand-Carrier Franck

In Proc. Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS), Maui, Hawaï-USA, September 27-30, 2022.

Download document

The exponential increase in the number of satellites along with the hazards of the space environment they encounter endangers the sustainability of low earth orbit (LEO). The consequences of events such as collisions, fragmentations and fatal failures are then becoming more than ever a threat to any kind of space activity. Therefore, the space situational awareness is of utter importance in all its aspects, i.e., assessing and predicting the risks from space weather and SST (Space Surveillance and Tracking), in addition to implementing mitigation measures. In this context, this paper covers the benefits of in-orbit inspection combined with the aggregation and processing of existing space data, proposed by the French company SpaceAble for low earth orbit sustainability. Collision risk awareness for a LEO constellation is raised in this paper through the analysis of the conjunction risks of the Starlink constellation. An inspection plan is also derived in terms of the number of inspections for different scenarios, and with respect to different LEO altitudes.

Read more

Signal and image processing / Space communication systems

Talk

RF-Optics Hybrid GaN-FDSOI Technology Solutions for 5G & 6 G

Authors: Wane Sidina, Sombrin Jacques B. and Huard Vincent

In Proc. Workshop Réseaux Non Terrestres (5G & 6G), Toulouse, France, September 29, 2022.

Download document

Read more

Digital communications / Space communication systems

ADDRESS

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique