Publications

Articles, Thèses, Brevets, Séminaires, Livres, Notes techniques

Recherche

Article de conférence

Bayesian Sparse Model for Complex-Valued Magnetic Resonance Spectroscopy Restoration

Auteurs : Labriji Wafae, Ken Soleakhena, Dormio Gaëlle, Tourneret Jean-Yves, Moyal Cohen-Jonathan Elizabeth et Chaari Lotfi

In Proc. 21st International Symposium on Biomedical Imaging (ISBI), Athens, Greece, May 27-30, 2024.6-30, 2024.

Sparse regularisation has proven its worth and effectiveness in many fields, such as medical imaging. In this sense, nuclear magnetic resonance spectroscopy (MRS) is one of the modalities that could greatly benefit from sparse regularisation. This paper introduces a novel Bayesian approach for MRS restoration that accounts for possible errors in the observation linear operator. The algorithm is tailored to the complex nature of MRS data, incorporating both real and imaginary parts of the spectrum. An MCMC (Markov chain Monte Carlo) inference is conducted using a Gibbs sampler strategy. The method has been successfully validated on both synthetic and clinical data of high-grade brain tumor glioblastoma (GBM) patients. This study will enable further analysis of metabolites of interest not conventionally considered in clinics because of their undetectable concentration.

Lire la suite

Traitement du signal et des images / Autre

Séminaire

Cooperative Positioning using Pseudorange Measurements: Solvability and Conservative Algorithms

Auteurs : Cros Colin, Amblard Pierre-Olivier, Prieur Christophe et Da Rocha Jean-François

Seminar of TeSA, Toulouse, January 30, 2025.

Télécharger le document

In this talk, Colin Cros will focus on the problem of cooperative positioning in the context of GNSS (Global Navigation Satellite Systems). The presentation is divided into two parts. The first examines the solvability of the problem from a theoretical point of view, where the specificity comes from the type of measurements made: pseudo-distances. The approach adopted is based on a study of the measurement graph and the theory of rigidity. The second part deals with practical aspects, presenting how to integrate a cooperative measurement into a Kalman-type navigation filter. The difficulty arises from the lack of knowledge of the correlations between the agents' errors, which means that so-called conservative filters have to be used. This presentation is based on my doctoral thesis, which is available at: https://theses.fr/2024GRALT032

Lire la suite

Traitement du signal et des images / Localisation et navigation

Article de journal

Exponential Families, Rényi Divergence and the Almost Sure Cauchy Functional Equation

Auteurs : Letac Gérard et Piccioni Mauro

Journal of Theoretical Probability, January, 2025.

Télécharger le document

If P1, . . . , Pn and Q1, . . . , Qn are probability measures on Rd and P1 ∗ · · · ∗ Pn and Q1 ∗ · · · ∗ Qn are their respective convolutions, the Rényi divergence Dλ of order λ ∈ (0, 1] satisfies Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn) ≤ ni=1 Dλ(Pi ||Qi ). When Pi belongs to the natural exponential family generated by Qi , with the same natural parameter θ for any i = 1, . . . , n, the equality sign holds. The present note tackles the inverse problem, namely “does the equality Dλ(P1 ∗ · · · ∗ Pn||Q1 ∗ · · · ∗ Qn) = ni=1 Dλ(Pi ||Qi ) imply that Pi belongs to the natural exponential family generated by Qi for every i = 1, . . . , n?” The answer is not always positive and depends on the set of solutions of a generalization of the celebrated Cauchy functional equation. We discuss in particular the case P1 = · · · = Pn = P and Q1 = · · · = Qn = Q, with n = 2 and n = ∞, the latter meaning that the equality holds for all n. Our analysis is mainly devoted to P and Q concentrated on non-negative integers, and P and Q with densities with respect to the Lebesgue measure. The results cover the Kullback– Leibler divergence (KL), this being the Rényi divergence for λ = 1. We also show that the only f -divergences such that Df (P∗2||Q∗2) = 2Df (P||Q), for P and Q in the same exponential family, are mixtures of KL divergence and its dual.

Lire la suite

Traitement du signal et des images / Autre

Cramér-Rao Bound for Lie Group Parameter Estimation With Euclidean Observations and Unknown Covariance Matrix

Auteurs : Labsir Samy, El Bouch Sara, Renaux Alexandre, Vilà-Valls Jordi et Chaumette Eric

IEEE Transactions on Signal Processing, vol. 73, pp. 130-141, 2025.

Télécharger le document

This article addresses the problem of computing a Cramér-Rao bound when the likelihood of Euclidean observations is parameterized by both unknown Lie group (LG) parameters and covariance matrix. To achieve this goal, we leverage the LG structure of the space of positive definite matrices. In this way, we can assemble a global LG parameter that lies on the product of the two groups, on which LG's intrinsic tools can be applied. From this, we derive an inequality on the intrinsic error, which can be seen as the equivalent of the Slepian-Bangs formula on LGs. Subsequently, we obtain a closed-form expression of this formula for Euclidean observations. The proposed bound is computed and implemented on two real-world problems involving observations lying in $\mathbb{R}^{p}$, dependent on an unknown LG parameter and an unknown noise covariance matrix: the Wahba's estimation problem on $SE(3)$, and the inference of the pose in $SE(3)$ of a camera from pixel detections.

Lire la suite

Traitement du signal et des images / Localisation et navigation

On the Efficiency of Misspecified Gaussian Inference in Nonlinear Regression: Application to Time-Delay and Doppler Estimation

Auteurs : Fortunati Stefano et Ortega Espluga Lorenzo

Signal processing, vol. 225, December 2024.

Télécharger le document

Nonlinear regression plays a crucial role in various engineering applications. For the sake of mathematical tractability and ease of implementation, most of the existing inference procedures are derived under the assumption of independent and identically distributed (i.i.d.) Gaussian-distributed data. However, real-world situations often deviate from this assumption, with the true data generating process being a correlated, heavy-tailed and non-Gaussian one. The paper aims at providing the Misspecified Cramér–Rao Bound (MCRB) on the Mean Squared Error (MSE) of any unbiased (in a proper sense) estimator of the parameters of a nonlinear regression model derived under the i.i.d. Gaussian assumption in the place of the actual correlated, non-Gaussian data generating process. As a special case, the MCRB for an uncorrelated, i.i.d. Complex Elliptically Symmetric (CES) data generating process under Gaussian assumption is also provided. Consistency and asymptotic normality of the related Mismatched Maximum Likelihood Estimator (MMLE) will be discussed along with its connection with the Nonlinear Least Square Estimator (NLLSE) inherent to the nonlinear regression model. Finally, the derived theoretical findings will be applied in the well-known problem of time-delay and Doppler estimation for GNSS.

Lire la suite

Traitement du signal et des images / Localisation et navigation et Systèmes spatiaux de communication

Thèse de Doctorat

Machine learning-based Solutions for Channel Decoding in M2M-type Communications

Auteur : De Boni Rovella Gastón

Defended on December 13, 2024.

Télécharger le document

In this Ph.D. thesis, we explore machine learning-based solutions for channel decoding in Machine-to-Machine type communications, where achieving ultra-reliable lowlatency communications (URLLC) is essential. Their primary issue arises from the exponential growth in the decoder’s complexity as the packet size increases. This curse of dimensionality manifests itself in three different aspects: i) the number of correctable noise patterns, ii) the codeword space to be explored, and iii) the number of trainable parameters in the models. To address the first limitation, we explore solutions based on a Support Vector Machine (SVM) framework and suggest a bitwise SVM approach that significantly reduces the complexity of existing SVM-based solutions. To tackle the second limitation, we investigate syndromebased neural decoders and introduce a novel message-oriented decoder, which improves on existing schemes both in the decoder architecture and in the choice of the parity check matrix. Regarding the neural network size, we develop a recurrent version of a transformer-based decoder, which reduces the number of parameters while maintaining efficiency, compared to previous neural-based solutions. Lastly, we extend the proposed decoder to support higherorder modulations through Bit-Interleaved and generic Coded Modulations (BICM and CM, respectively), aiding its application in more realistic communication environments.

Lire la suite

Communications numériques / Systèmes spatiaux de communication et Autre

Présentation de soutenance de thèse

Machine learning-based Solutions for Channel Decoding in M2M-type Communications

Auteur : De Boni Rovella Gastón

Defended on December 13, 2024.

Télécharger le document

In this Ph.D. thesis, we explore machine learning-based solutions for channel decoding in Machine-to-Machine type communications, where achieving ultra-reliable lowlatency communications (URLLC) is essential. Their primary issue arises from the exponential growth in the decoder’s complexity as the packet size increases. This curse of dimensionality manifests itself in three different aspects: i) the number of correctable noise patterns, ii) the codeword space to be explored, and iii) the number of trainable parameters in the models. To address the first limitation, we explore solutions based on a Support Vector Machine (SVM) framework and suggest a bitwise SVM approach that significantly reduces the complexity of existing SVM-based solutions. To tackle the second limitation, we investigate syndromebased neural decoders and introduce a novel message-oriented decoder, which improves on existing schemes both in the decoder architecture and in the choice of the parity check matrix. Regarding the neural network size, we develop a recurrent version of a transformer-based decoder, which reduces the number of parameters while maintaining efficiency, compared to previous neural-based solutions. Lastly, we extend the proposed decoder to support higherorder modulations through Bit-Interleaved and generic Coded Modulations (BICM and CM, respectively), aiding its application in more realistic communication environments.

Lire la suite

Communications numériques / Systèmes spatiaux de communication et Autre

Thèse de Doctorat

Autonomous and Robust Time Scale Algorithm for a Swarm of Nanosatellites

Auteur : Mc Phee Hamish Scott

Defended on November 15, 2024

Télécharger le document

Cette thèse s’intéresse à la construction d’une échelle de temps autonome et robuste aux erreurs d’horloge pour des essaims de satellites. Prévue pour une utilisation dans un essaim de nanosatellites, cette nouvelle échelle de temps appelée ATST (Autonomous Time Scale using the Student’s T-distribution) peut traiter les anomalies dues aux imperfections des horloges et aux liens inter-satellites manquants dans un environnement hostile. Plus précisément, les types d’anomalies traités incluent les sauts de phase, les sauts de fréquence, un bruit de mesure élevé dans certains liens et d’éventuelles données manquantes. En calculant la moyenne pondérée des résidus issus de l’équation de l’échelle de temps de base (BTSE), la contribution des satellites avec des mesures anormales est réduite pour la génération de l’échelle de temps. Les poids attribués à chaque horloge sont basés sur l’hypothèse que les résidus de l’ensemble suivent une loi de Student, ce qui permet d’utiliser des méthodes d’estimation robustes à la présence d’éléments aberrants. La performance de l’algorithme ATST est équivalente à celle de l’algorithme AT1 oracle, qui est une version de l’échelle de temps AT1 avec la capacité de détecter parfaitement toutes les anomalies dans des données simulées. Bien que l’algorithme n’ait pas de méthode de détection explicite, l’algorithme ATST affiche toujours un niveau de robustesse comparable à celui d’un détecteur parfait. Cependant, l’algorithme ATST est concu pour un essaim avec de nombreuses horloges de types homogènes et est limité par une complexité numérique élevée. De plus, les anomalies sont toutes traitées de la même manière sans distinction entre les différents types d’anomalies. Malgré ces limitations identifiées, ce nouvel algorithme ATST représente une contribution prometteuse dans le domaine des échelles de temps grâce a la robustesse atteinte. Une méthode de traitement des horloges ajoutées ou retirées de l’ensemble des horloges disponibles est également proposée dans cette thèse en conjonction avec la méthode ATST. La méthode obtenue préserve la continuité de phase et de fréquence de l’échelle de temps en attribuant un poids nul aux horloges concernées lorsque le nombre total d’horloges est modifié. Un estimateur des moindres carrés (Least Squares, LS) est présenté pour montrer comment les mesures des liens inter-satellites peuvent être traitées en amont pour réduire le bruit de mesure et en même temps remplacer les mesures manquantes. L’estimateur LS peut être utilisé avec une méthode de détection qui élimine les mesures anormales. Il peut alors remplacer les mesures supprimées par les estimations correspondantes. Cette thèse étudie également les performances de l’estimateur du maximum de vraisemblance (MLE) pour les paramètres des lois de probabilités à queues lourdes, plus précisément pour la loi de Student et pour un mélange de lois gaussiennes. Les améliorations obtenues en supposant que ces lois sont effectivement à queues lourdes par rapport à l’hypothèse de la loi gaussienne sont démontrées avec les bornes de Cramér-Rao mal-spécifiées (MCRB). Les expressions obtenues des MCRB pour une loi de Student et un mélange de lois gaussiennes confirment que les lois à queues lourdes sont meilleures pour l’estimation de la moyenne en présence de valeurs aberrantes. Elles permettent également de montrer que l’estimation des paramètres des lois à queues lourdes nécessite au moins 25 horloges pour obtenir une erreur d’estimation proche de la MCRB correspondante, c’est-à-dire que l’estimateur atteigne son efficacité asymptotique. Des propositions de pistes de recherche futures incluent le traitement des limitations de l’algorithme ATST concernant les types et le nombre d’horloges. Une nouvelle définition des pondérations des résidus issue d’une méthode d’apprentissage statistique utilisant des données d’apprentissage est envisageable grâce `a l’utilisation des résidus de l’échelle de temps de base BTSE. Une autre piste de recherche est le traitement des anomalies transitoires qui pose actuellement problème pour l’algorithme ATST. Un traitement de ce type d’erreurs pourrait être envisagé avec un algorithme d’apprentissage statistique ou avec un estimateur robuste de la fréquence des horloges sur une fenêtre de données passées. Mots clés: Estimation robuste, échelles de temps, détection des anomalies, bornes de Cramér-Rao mal-spécifiées.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Présentation de soutenance de thèse

Autonomous and Robust Time Scale Algorithm for a Swarm of Nanosatellites

Auteur : Mc Phee Hamish Scott

Defended on November 15, 2024

Télécharger le document

Cette thèse s’intéresse à la construction d’une échelle de temps autonome et robuste aux erreurs d’horloge pour des essaims de satellites. Prévue pour une utilisation dans un essaim de nanosatellites, cette nouvelle échelle de temps appelée ATST (Autonomous Time Scale using the Student’s T-distribution) peut traiter les anomalies dues aux imperfections des horloges et aux liens inter-satellites manquants dans un environnement hostile. Plus précisément, les types d’anomalies traités incluent les sauts de phase, les sauts de fréquence, un bruit de mesure élevé dans certains liens et d’éventuelles données manquantes. En calculant la moyenne pondérée des résidus issus de l’équation de l’échelle de temps de base (BTSE), la contribution des satellites avec des mesures anormales est réduite pour la génération de l’échelle de temps. Les poids attribués à chaque horloge sont basés sur l’hypothèse que les résidus de l’ensemble suivent une loi de Student, ce qui permet d’utiliser des méthodes d’estimation robustes à la présence d’éléments aberrants. La performance de l’algorithme ATST est équivalente à celle de l’algorithme AT1 oracle, qui est une version de l’échelle de temps AT1 avec la capacité de détecter parfaitement toutes les anomalies dans des données simulées. Bien que l’algorithme n’ait pas de méthode de détection explicite, l’algorithme ATST affiche toujours un niveau de robustesse comparable à celui d’un détecteur parfait. Cependant, l’algorithme ATST est concu pour un essaim avec de nombreuses horloges de types homogènes et est limité par une complexité numérique élevée. De plus, les anomalies sont toutes traitées de la même manière sans distinction entre les différents types d’anomalies. Malgré ces limitations identifiées, ce nouvel algorithme ATST représente une contribution prometteuse dans le domaine des échelles de temps grâce a la robustesse atteinte. Une méthode de traitement des horloges ajoutées ou retirées de l’ensemble des horloges disponibles est également proposée dans cette thèse en conjonction avec la méthode ATST. La méthode obtenue préserve la continuité de phase et de fréquence de l’échelle de temps en attribuant un poids nul aux horloges concernées lorsque le nombre total d’horloges est modifié. Un estimateur des moindres carrés (Least Squares, LS) est présenté pour montrer comment les mesures des liens inter-satellites peuvent être traitées en amont pour réduire le bruit de mesure et en même temps remplacer les mesures manquantes. L’estimateur LS peut être utilisé avec une méthode de détection qui élimine les mesures anormales. Il peut alors remplacer les mesures supprimées par les estimations correspondantes. Cette thèse étudie également les performances de l’estimateur du maximum de vraisemblance (MLE) pour les paramètres des lois de probabilités à queues lourdes, plus précisément pour la loi de Student et pour un mélange de lois gaussiennes. Les améliorations obtenues en supposant que ces lois sont effectivement à queues lourdes par rapport à l’hypothèse de la loi gaussienne sont démontrées avec les bornes de Cramér-Rao mal-spécifiées (MCRB). Les expressions obtenues des MCRB pour une loi de Student et un mélange de lois gaussiennes confirment que les lois à queues lourdes sont meilleures pour l’estimation de la moyenne en présence de valeurs aberrantes. Elles permettent également de montrer que l’estimation des paramètres des lois à queues lourdes nécessite au moins 25 horloges pour obtenir une erreur d’estimation proche de la MCRB correspondante, c’est-à-dire que l’estimateur atteigne son efficacité asymptotique. Des propositions de pistes de recherche futures incluent le traitement des limitations de l’algorithme ATST concernant les types et le nombre d’horloges. Une nouvelle définition des pondérations des résidus issue d’une méthode d’apprentissage statistique utilisant des données d’apprentissage est envisageable grâce `a l’utilisation des résidus de l’échelle de temps de base BTSE. Une autre piste de recherche est le traitement des anomalies transitoires qui pose actuellement problème pour l’algorithme ATST. Un traitement de ce type d’erreurs pourrait être envisagé avec un algorithme d’apprentissage statistique ou avec un estimateur robuste de la fréquence des horloges sur une fenêtre de données passées. Mots clés: Estimation robuste, échelles de temps, détection des anomalies, bornes de Cramér-Rao mal-spécifiées.

Lire la suite

Traitement du signal et des images / Localisation et navigation

Séminaire

Explainable Learning with Gaussian Processes

Auteur : Djurić Petar M.

Seminar of TeSA, Toulouse, November 14, 2024.

Télécharger le document

Explainable artificial intelligence (XAI) focuses on creating methods to provide transparency in how complex machine learning models make decisions. A key approach in XAI is feature attribution, which breaks down the model's predictions into the contributions of individual input features. In this presentation, we address feature attribution within the framework of Gaussian process regression (GPR). We present a principled approach that incorporates model uncertainty into the attribution process, expanding existing methods. Despite the GPR's flexibility and non-parametric nature, we demonstrate that interpretable, closed-form expressions for feature attributions can still be derived. Using integrated gradients as the attribution technique, we show that these attributions follow a Gaussian process distribution, effectively capturing the uncertainty inherent in the model. Through both theoretical and experimental validations, we show the robustness and versatility of this approach. Moreover, in applicable cases, the exact GPR attributions are not only more precise but also computationally more efficient than commonly used approximation methods.

Lire la suite

Traitement du signal et des images / Observation de la Terre, Systèmes spatiaux de communication et Autre

ADRESSE

7 boulevard de la Gare
31500 Toulouse
France

CONTACT


CNES
Thales Alenia Space
Collins Aerospace
Toulouse INP
ISEA-SUPAERO
IPSA
ENAC
IMT Atlantique